Transactional Processing for Polyglot Persistence

Ricardo Jimenez-Peris *, Marta Patifio-Martinez T, Ivan Brondino T and Valerio Vianello
*LeanXcale
Madrid
Email: rjimenez@leanxcale.com
T Universidad Politécnica de Madrid Spain Email:mpatino,ibrondino,vvianello @fi.upm.es

Abstract—NoSQL data stores have emerged in last years as a
solution to provide scalability and flexibility in data modelling
for operational databases. These data stores have proven that
they are better suited for some kinds of problems than rela-
tional databases. In order to scale, they relaxed the properties
provided by relational databases, mainly transactions. However,
transactional semantics is still needed by most applications. In
this paper we describe how CoherentPaaS provides scalable
holistic transactions across SQL and NoSQL data stores such as
document-oriented data stores, key-value data stores and graph
databases.

Index Terms—NoSQL, databases, transaction processing.

I. INTRODUCTION

Companies have traditionally used transactional SQL
databases to keep their operational data. In the last few years,
with the advent of NoSQL, many companies are embracing
new NoSQL data stores. These data stores include docu-
ment oriented data stores, such as MongoDB [1], key-value
data stores, such as Apache HBase [2] and graph databases,
such as Neo4J [3] and Sparksee [4]. Companies use NoSQL
technology due to different reasons. In some cases, because
the flexibility of the data models that enables to store semi-
structured data that has a high degree of variability that makes
too hard to store them on relational databases oriented towards
fully structured data. This is for instance the case for key-
value data stores that are schemaless and enable to store tuples
arbitrary schemas. In some other cases, it is because of the
need of a different query language or API to access the data in
a more comfortable manner. For instance, document-oriented
data stores such as MongoDB offer an API that enables to
query semi-structure documents in a flexible and comfortable
way. Sometimes it is due to efficiency as happens with graph
databases. Graph databases enable to perform traversals of a
graph with a single invocation to the graph database what
avoids a myriad of exchanges between the client and server
side needed in a relational database to make a graph traversal.
Another reason why NoSQL solutions have been adopted is
due to some of them satisfy the scalability requirements of
some applications that traditional transactional SQL databases
fail to fulfill.

This trend has resulted in a situation where many companies
now store their operational data in a diverse set of technologies
both SQL and NoSQL leading to the so-called Polyglot Persis-
tence [5]. Companies with Polyglot Persistence environments
are facing now new challenges. The first one is that NoSQL

data stores are non-transactional or at most allow transactions
updating a single row. This fact creates many difficulties in
the advent of failures and/or concurrent updates. It has been
reported that BitCoin was stolen a lot of money because they
were using NoSQL technology !. A hacker ran in parallel
massive transfers of money over a set of accounts, since there
was no transactional isolation, the hacker was able to transfer
the original amount many times before the first transfer of
money was able to update the value of the account to zero.

The lack of atomicity also causes many problems when
multiple rows should be updated as part of a business op-
eration, a failure in the middle will result in an inconsistent
database since only a fraction of the rows would be updated.
For instance, if a key-value data store such as HBase is
used in a banking application, if there is a failure during a
money transfer between two accounts it might happen that the
withdrawal from the origin account completes but the deposit
in the destination account is not performed. This scenario will
lead to an inconsistent database.

The above problems become more acute in a Polyglot
Persistence environment. It is very typical to store structured
data in an operational SQL database and the semi-structured
part of the data on a NoSQL data store such as a key-value
or document-oriented data store. However, both pieces of data
are part of an integral conceptual business operation. A failure
after one data store is updated and before a second data store
is updated results in an inconsistent logical database (the set
of data stores being used).

The CoherentPaaS FP7 European project [6] is addressing
the problems that companies are facing when they use Polyglot
Persistence. This paper addresses the set of pains related to
the lack of transactional ACID properties within and across
data stores in these Polyglot environments. CoherentPaaS is
leveraging the ultra-scalable transactional technology from
LeanXcale [7] to bring scalable transactional processing to
Polyglot Persistence environments and to NoSQL data stores.
The rest of paper presents an overview of CoherentPaaS
(Section II), then transactions are presented in Section ??.
Finally, we present an overview on how transactions have
been scaled and the modifications needed on the data stores
in order to provide transactional semantics and transactions
across different data stores (Section IV).

Uhttp://hackingdistributed.com/2014/04/06/another-one-bites-the-dust-
flexcoin/



Fig. 1. CoherenPaaS components

II. COHERENTPAAS

CoherentPaaS project goal is to reduce the effort required
to build and increase the quality of the cloud applications
using multiple cloud data management technologies via a
single query language, a uniform programming model, and
ACID-based global transactional semantics. Figure 1 shows
the components of the transactional management system,
LeanXcale, the common query language, CloudMdsQL [10],
used to access all the data stores using a common program-
ming language, and the different types of data stores that are
integrated in CoherentPaaS. All types of data stores are being
considered in CoherentPaaS, SQL databases, columnar, graph
data stores and document oriented data stores.

III. TRANSACTIONS

Transactions are the most convenient way to guarantee data
consistency in the advent of failures and concurrent accesses.
They provide the so-called ACID properties: Atomicity, Con-
sistency, Isolation and Durability. Atomicity provides all-or-
nothing semantics in the advent of failures. That is, in the
advent of failures either all the updates in a transaction succeed
or the final effect is as none of them have been performed.
Consistency is enforced by the application. Basically, a trans-
action that starts with a consistent database should produce
a new consistent database, that is, the application should be
correct. Isolation states that the effect of executing concurrent
transactions should guarantee certain properties. In the case
of serializability a concurrent execution of transactions should
be equivalent to a serial (sequential) execution of these trans-
actions. Isolation simplifies the development of applications,
since they access the database as a sequential application,
that is, they do not have to program explicit concurrency
control. Isolation enforces concurrency control implicitly and
so the application developer simply programs a sequential
applications that extremely much simpler than a concurrent
application. Durability guarantees that once a transaction is
committed, its updates cannot be lost, even if there are failures
after the transaction has been committed.

Serializability is quite powerful. However, it has an inherent
bottleneck. Serializability when there are predicate reads, reads
that select a set of items based on a predicate, it highly

constrains the concurrency of updates. The issue is that read
and write operations of concurrent transactions conflict that is,
an arbitrary predicate can conflict with any concurrent update
on the same table. When the predicate is not performed over
indexed columns the only way to guarantee serializability is
by locking the whole table what prevents doing updates over
the table concurrently with the predicate reads.

Different isolation levels have been proposed. For instance,
the ANSI isolation levels enable to reduce the number of
conflicts by reducing the level of isolation. Unfortunately,
the ANSI isolation levels below serializability can exhibit
serious anomalies in most applications that results in data
inconsistencies. Fortunately, in 1995 a new isolation level was
proposed called Snapshot Isolation (SI) [?] that is very close
to serializability but, it avoids the conflicts between reads and
writes, therefore avoiding on one hand the bottleneck between
predicate reads and updates, and on the other hand, avoiding
the interference between long read queries and updates that
also result in highly constraining the potential concurrency
across transactions.

Snapshot isolation provides for any running transaction a
photograph or snapshot of the committed state of the database
as of the start time of the transaction. In this way, it provides
a high level of isolation since a running transaction does not
observe any changes for concurrent transactions that commit.
Snapshot isolation can be enforced by using two rules: the read
rule and the write rule. The read rule ensures that a transaction
observes all the updates of the transactions committed before
the transactions starts. The write rule guarantees that no two
concurrent transactions can update the same data item and
commit. That is, at least one of them should be rollback. In
this way, in snapshot isolation only write-write conflicts can
happen, but never read-write conflicts. There are two ways
for implementing the write rule: first updater wins or first
committer wins. If there are two concurrent transactions trying
to update the same item, the one that updates first the item will
commit if the first updater rule is implemented. The second
updater will abort. If the first committer rule is implemented,
the transaction that commits in the first place is the one that
will commit, the other transaction will abort.

IV. SCALABLE TRANSACTIONAL PROCESSING

Transactions have been for decades the bottleneck that pre-
vented databases from scaling-out. LeanXcale [?] implements
a parallel-distributed transactional engine able to process mil-
lions of transactions per second. The transactional processing
decomposes the ACID properties and scales each of them
separately, but in a composable manner. The provided isolation
is Snapshot Isolation (SI) [8]. This technology has been used
to build an ultra-scalable full SQL full ACID database.

LeanXcale implements atomicity in a component so-called
local transaction manager (LTM) that manages the lifecycle
of a set of transactions. This component scales out by using
as many LTM as needed to scale the number of concurrent
transactions being submitted to the database. Isolation is
decomposed in LeanXcale into two subproperties, isolation of



. Ilsolu"on
‘Atomicity: Writes
4 w
) 4
7\

Durability,

Fig. 2. Scaling-Out ACID Properties

writes and isolation of reads. Isolation of writes is enforced by
conflict managers. A conflict manager takes care of detecting
conflicts over a set of keys. Any two transactions modifying
the same key will access the same conflict manager instance.
Conflict management is scaled out by assigning the responsi-
bility of different set of keys to different conflict managers.

Isolation of reads is the most sophisticated task. It is deal
with two components that provide commit timestamps and
start timestamps guaranteeing the snapshot isolation semantics.
Durability in LeanXcale is enforced by loggers. A logger
takes care of persisting the redo log records of committed
transactions from a subset of local transaction managers.
Loggers are scaled out by assigning to each of them the
responsibility of making durable different subsets of executing
transactions.

All above components can be scaled out except the two deal-
ing with isolation of reads. However, these two components
perform a tiny amount of work per update transaction and
benchmarking shows that they are able to do process the work
corresponding to many millions of transactions per second. A
detailed description of the ultra-scale transactional processing
is presented in [9].

The LeanXcale transaction manager is agnostic to the data
management layer and only requires from a data manager
to implement multi-versioning. Multi-versioning requires that
every time a row is updated, a new version of the row is
created tagged with a new version number. This means that
multiple versions of the same row might exist at a particular
point in time.

This fact has been exploited in CoherentPaaS to enrich
NoSQL data stores with transactional semantics. In particular,
MongoDB, HBase, and Sparksee have been extended with
transactional semantics. For that purpose, each data store must
provide two capabilities LeanXcale transactional manager:

« Being able to tag versions of updated data items with a

commit timestamp provided by the transactional manager.

o To be able to read from a given snapshot providing a start

timestamp. This requirement has implied to extend the
integrated NoSQL data stores to support multi-versioning.

CoherentPaaS provides the individual NoSQL data stores
with ACID semantics. For instance, a full ACID version of

MongoDB has been produced as well a full ACID version
of HBase that enables arbitrary multi-row transactions. At the
same time CoherentPaaS provides global transactions across
all data stores. An application can start a global transaction
using the transactional manager API and then access any inte-
grated data store such as LeanXcale SQL database, MongoDB,
HBase, Sparksee and Neo4j, with full transactional guarantees.
This means that global transactions across any combination of
the previous data stores provide full isolation, atomicity and
durability.

V. DATA ACCESS

CoherentPaaS also deals with another major issue in Poly-
glot Persistence environments, that is, how to query data
across different data stores that provide different query lan-
guages/APIs and have different data models. This issue has
been addressed in CoherentPaaS by developing a federated
query language, CloudMdsQL [10], that combines SQL with
the native query languages/APIs of the underlying data stores.
Basically, CloudMdsQL enables to combine subqueries written
in the native query languages/APIs for the individual data
stores and global queries in SQL across the data stores to join
and correlate data across data stores. A detailed presentation
is provided in [10].

ACKNOWLEDGMENTS

This research has been partially funded by the European
Commission under project CoherentPaaS (grant agreement
FP7-611068), the Madrid Regional Council (CAM), FSE
and FEDER under project Cloud4BigData (grant S2013TIC-
2894), and the Spanish Research Agency MICIN under project
BigDataPaaS (grant TIN2013-46883).

REFERENCES

[1] “MongoDB,” http://https://www.mongodb.org/.

[2] “HBase,” http://www.hbase.org.

[3] “Neo4j,” http://neo4j.com/.

[4] “Sparksee,” http://sparsity-technologies.com/.

[5] M. Fowler and P. Sadalge, NoSQL Distilled. Pearson, 2013.

[6] “CoherentPaas,” http://coherentpaas.eu/ .

[7] “LeanXcale,” http://leanxcale.com.

[8] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and
P. E. O’Neil, “A critique of ansi sql isolation levels.” in ACM SIGMOD
International Conference on Management Of Data, 1995.

[9]1 R. Jimenez-Peris and M. Patifio-Martinez, “System and method for

highly scalable decentralized and low contention transactional pro-

cessing. 2011. patent application number 61/561/508. us patent and
trademark office.”

B. Koleb, P. Valduriez, C. Bondiombouy, R. Jimenez-Peris, J. O. Pereira,

and R. Pau, “Cloudmdsql: Querying heterogeneous cloud data stores

with a common language,” 2015.

[10]



