
Design of an RDMA Communication Middleware for Asynchronous
Shuffling in Analytical Processing

Rui C. Gonçalves1, José Pereira1 and Ricardo Jiménez-Peris2

1HASLab, INESC TEC & U. Minho, Braga, Portugal
2LeanXcale, Madrid, Spain

Keywords: Shuffling, Analytical Processing, Middleware, RDMA.

Abstract: A key component in a distributed parallel analytical processing engine is shuffling, the distribution of data
to multiple nodes such that the computation can be done in parallel. In this paper we describe the initial
design of a communication middleware to support asynchronous shuffling of data among multiple processes
on a distributed memory environment. The proposed middleware relies on RDMA (Remote Direct Memory
Access) operations to transfer data, and provides basic operations to send and queue data on remote machines,
and to retrieve this queued data. Preliminary results show that the RDMA-based middleware can provide a
75% reduction on communication costs, when compared with a traditional sockets implementation.

1 INTRODUCTION

The proliferation of sensors networks or web plat-
forms supporting user generated content, in conjunc-
tion with the decrease on the costs of storage equip-
ments, lead to a significant increase of the rate of data
generation.

This explosion of data brought new opportunities
for business, which can leverage this data to improve
its operation. On the other hand, storing and pro-
cessing these massive amounts of data poses tech-
nological challenges, which lead to the emergence
NoSQL database systems and solutions based on the
MapReduce (Dean and Ghemawat, 2008) program-
ming model, as an alternative to the traditional Re-
lation Database Managements Systems (RDBMS) in
large scale data processing.

An important concept in several frameworks for
large scale data processing (e.g. Hadoop MapRe-
duce (Hadoop, ), FlumeJava (Chambers et al., 2010),
Apache Storm (Storm, )) is data shuffling. Shuffling
redistributes data among multiple processes, namely
to group related data objects in the same process.
Even though the basic concept is simple, different
frameworks use different approaches to implement
shuffling. For example, there are pull-based solu-
tions, where the receiver process requests data from
the source process, or push-based solutions, where
the source pushes the data to the receiver. Multiple
strategies may also be used to organize the data and

to select the receiver process. For example, data ob-
jects may be distributed randomly or based on a hash
function. The shuffling process may also sort the data
objects of each process.

In this paper we propose a Java communica-
tion middleware designed to support efficient asyn-
chronous data shuffling, using a push-based approach,
which takes advantage of RDMA (Remote Direct
Memory Access) for communication. It was designed
to support hash shuffling on an analytical process-
ing application, which was previously relying on Java
sockets.

RDMA protocols provide efficient mechanisms to
read/write data directly from the main memory of re-
mote machines, without the involvement of the re-
mote machine’s CPU (at least when the RDMA pro-
tocol is directly supported by the network hardware).
This enables data transfers with lower latency and
higher throughput.

The proposed design relies on the RDMA Verbs
programming interface, and uses one-sided write op-
erations to transfer data, and send/receive operations
to exchange control messages.

2 RDMA BACKGROUND

RDMA technologies (Mellanox, 2015) provide reli-
able data transfers with low latency/high-throughput,

348
Gonçalves, R., Pereira, J. and Jimenez-Peris, R.
Design of an RDMA Communication Middleware for Asynchronous Shuffling in Analytical Processing.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 1, pages 348-351
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



by avoiding memory copies and complex network
stacks. Moreover, as applications access the network
adapter directly when they need to exchange data,
there is no need for the operating system intervention,
which also reduces CPU utilization.

The RDMA Verbs is the basic programming in-
terface to use RDMA. It provides two types of com-
munication semantics: memory semantics or channel
semantics. The former relies on one-sided read and
write operations to transfer data. The latter relies on
typical two-sided send/receive operations, where one
side of the communication executes a send operation,
and the other side executes a receive operation. It
should be noted that the receive operation must be ini-
tiated before the send operation.

Network operations in RDMA Verbs are asyn-
chronous. Requests for network operations (e.g.,
write, send) are posted on queue pairs (each one com-
prised of a send and a receive queue) maintained
by the network adapter. A queue pair is associ-
ated with one connection between two communica-
tion end-points. The application may choose to re-
ceive completion events when requests are finished,
which are posted into a completion queue associated
with the queue pair. Moreover, the application may
request to be notified when a completion event was
added to the queue (these notifications are sent to a
completion channel). This is useful to avoid the need
of active polling the completion queues.

RDMA Verbs works with locked memory, i.e., the
memory buffers must be registered. Besides locking
the memory, the registration process also provides a
security mechanisms to limit the operations that can
be performed on each buffer. Network adapters have
on-chip memory that can be used to cache address
translation tables and other connection related data.
Due to the limited amount of on-chip memory, the
number of connections and the amount of registered
memory used must be carefully decided (Dragojević
et al., 2014).

The RDMA protocol and its Verbs programming
interface may be supported directly by the network
hardware, but it may also be provided by software
(e.g., Soft-iWARP, Soft-RoCE). Even though these
solutions do not provide some of the typical advan-
tages of RDMA (e.g., they still require the involve-
ment of the remote machine’s CPU on network op-
erations), they can provide improved performance as
buffers are guaranteed to use locked memory, and by
reducing system-calls.

In our prototype implementation, we are using the
jVerbs library (Stuedi et al., 2013), a Java implemen-
tation of the RDMA Verbs interface available on the
IBM JRE. Besides providing an RDMA Verbs API for

Java, jVerbs relies on modifications of the IBM Java
Virtual Machine to reduce memory copies, even when
using an RDMA protocol implemented by software.

3 RDMA COMMUNICATION
MIDDLEWARE

The goal for the communication middleware is to
provide efficient data exchange between multiple
threads, running on multiple processes. RDMA was
previously explored by Wang et al. (Wang et al.,
2013) for shuffling in Hadoop MapReduce. Their
implementation followed a synchronous pull-based
approach, and used send/receive requests to request
data, and then RDMA write requests to transfer the
data. In that case the data is produced in one phase,
and consumed in a later phase, which means data to
shuffle is likely to need to be stored on disk, to avoid
blocking threads. Our proposal was designed for ap-
plications where data to shuffle is being produced and
consumed at the same time (as it is the case of Apache
Storm, for example). We also assume that data is pro-
duced and consumed at a similar rate (i.e. buffers
rarely fill up), thus in our design data is never sent
to disk. Instead, in case a buffer fills up, the thread
using it will block.

On the base of our proposed design we have shuf-
fle queues. They are used to asynchronously receive
data objects from other processes (and its threads).
That is, the shuffle queues abstract a set of queues
used by a thread to receive data objects from the
threads running on remote processes.

For threads running on the same process, data ob-
jects can be exchanged directly using shared mem-
ory and dynamic queues. However, when sending
data objects to remote threads, the use of the net-
work is required. In those cases, a thread maintains
an incoming and an outgoing buffer per each remote
thread. When sending data objects to a remote thread,
they are initially serialized to the appropriate outgo-
ing buffer (considering the target thread). The com-
munication middleware provides the functionality of
transferring data from the outgoing buffer of a thread
to the matching incoming buffer of the target thread,
from where the data objects will eventually be pulled
by the remote thread.

In summary, the communication middleware was
designed to provide the following functionalities:

• ability to send and queue data objects to remote
threads;

• ability to pull queued remote data objects;

Design of an RDMA Communication Middleware for Asynchronous Shuffling in Analytical Processing

349



• ability to block a thread when there is no data ob-
jects to process (and to wake it up when new data
objects become available); and

• ability to block a thread when local buffers are full
(and to wake it up when space becomes available).

The RDMA middleware uses mainly one-sided
RDMA write operations to transfer data objects di-
rectly between Java memory buffers. Additionally, it
also uses send/receive operations to exchange control
data.

When initializing the application, communica-
tion end-points are created on each process, i.e., an
RDMA server connection is created, and bound to the
machine IP. The next task is to connect the network.
Briefly, this comprises the following steps:

• allocation and registration of memory buffers;

• allocation of queue pairs, completion channel, and
completion queue;

• start of a new thread (the network thread), which
handles the completion events;

• establish RDMA connections with all other pro-
cesses;

• exchange of memory keys between processes (re-
quired to allow the execution of one-sided RDMA
write operations), using send/receive operations.

• pre-allocation and initialization of objects needed
to execute the network requests.

When shuffling data, threads send and receive data
objects asynchronously using incoming and outgoing
buffers to serialize data objects and to temporarily
store them until they are transferred/pulled. These
buffers are implemented as circular buffers. They
have an head and a tail (new data is written at the
head position, that is, the data available in the buffer
is stored between the tail and the head).

When sending data objects to remote threads, the
object is serialized to the outgoing buffer, and an
RDMA write request is posted (queued for execu-
tion), to transfer a segment of data to the appropriate
remote incoming buffer. The thread only queues the
RDMA write request, i.e., it does not have to wait for
the request to be actually executed. As there is no in-
tervention of the receiving side, send/receive requests
are used to notify the remote process that a data object
was written in its buffers. This is done by the network
thread, after it receives an event confirming that the
RDMA write requests completed successfully. More-
over, the network thread will also update the tail of
the outgoing buffer from where the data was trans-
ferred, as the space occupied by the data sent can now
be reused.

Before posting the RDMA write request, the
thread needs to determine whether there is free space
available on the remote buffer. This is determined by
the tail position of the remote before, which is tracked
on the sending side (notifications are also used to up-
date this information). If there is no space available
on the remote buffer, the thread continues its oper-
ation, and the network thread will post the RDMA
write request when it receives a notification updating
the tail of the remote buffer.

The local outgoing buffers may also become full.
When this happens, the thread blocks, as it cannot se-
rialize its current object and proceed to the next one.
When the network thread is notified that an RDMA
write request completed, and space was released on
the desired buffer, the network thread wakes up the
blocked thread.

The data objects transferred will eventually be
pulled by the receiver thread. The threads do not
know when data was transferred into their buffers. To
overcome this limitation, network threads exchange
notifications when data is transferred. The network
thread maintains a queue of buffers with data avail-
able for each thread, which allows the threads to avoid
the need to actively poll all incoming buffers. If a
thread has no data objects to process, it blocks. It is
the network thread that will wake up this thread when
additional data arrives. That is, the shuffle queues act
as blocking queues. This design enables the overlap
of communication and computation, as long as data is
produced at a similar rate as it is consumed.

A prototype implementation of the proposed mid-
dleware design was implemented, and compared with
a previously used middleware based on sockets, to
provide a preliminary evaluation of the benefits of us-
ing RDMA. The sockets middleware used a similar
push-based approach using circular buffers, but re-
lied on non-blocking Java sockets between each pair
of buffers to transfer data from outgoing to incom-
ing buffers. This preliminary implementation for the
RDMA middleware provided a reduction of commu-
nication costs of around 75%, when shuffling data
among 32 threads on 8 machines, and using a soft-
ware implementation of the RDMA protocol (Soft-
iWARP).

4 CONCLUDING REMARKS

In this paper we proposed the design of an RDMA-
based communication middleware to support push-
based asynchronous shuffling.

Preliminary results, based on a prototype imple-
mentation of the RDMA-based middleware, show that

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

350



the RDMA approach proposed can provide a reduc-
tion of communication costs of around 75%, when
compared with a sockets implementation. This pre-
liminary work shows that we can benefit significantly
from RDMA technologies, and that this is a research
direction worth exploring.

ACKNOWLEDGEMENTS

This work has received funding from the European
Union’s Seventh Framework Programme for research,
technological development and demonstration under
grant agreement no 619606, project LeanBigData –
Ultra-Scalable and Ultra-Efficient Integrated and Vi-
sual Big Data Analytics (http://leanbigdata.eu).

REFERENCES

Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry,
R. R., Bradshaw, R., and Weizenbaum, N. (2010).
Flumejava: Easy, efficient data-parallel pipelines. In
PLDI ’10: Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 363–375.

Dean, J. and Ghemawat, S. (2008). Mapreduce: Simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113.

Dragojević, A., Narayanan, D., Castro, M., and Hodson, O.
(2014). FaRM: Fast remote memory. In NSDI ’14:
11th USENIX Symposium on Networked Systems De-
sign and Implementation, pages 401–414.

Hadoop. Apache hadoop project. http://hadoop.apache.org.
Mellanox (2015). RDMA Aware Networks Programming

User Manual. Mellanox Technologies.
Storm. Apache storm project. http://storm.apache.org.
Stuedi, P., Metzler, B., and Trivedi, A. (2013). jverbs: Ultra-

low latency for data center applications. In SOCC ’13:
Proceedings of the 4th Annual Symposium on Cloud
Computing, pages 10:1–10:14.

Wang, Y., Xu, C., Li, X., and Yu, W. (2013). Jvm-bypass for
efficient hadoop shuffling. In IPDPS ’13: Proceedings
of the 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing, pages 569–578.

Design of an RDMA Communication Middleware for Asynchronous Shuffling in Analytical Processing

351


