
PaaS-CEP
A Query Language for Complex Event Processing and Databases

Ricardo Jiménez-Peris1, ValerioVianello2 and Marta Patiño-Martinez2
1LeanXcale, Madrid, Spain

2Universidad Politécnica de Madrid, Madrid, Spain

Keywords: CEP, DBMS, SQL.

Abstract: Nowadays many applications must process events at a very high rate. These events are processed on the fly,
without being stored. Complex Event Processing technology (CEP) is used to implement such applications.
Some of the CEP systems, like Apache Storm the most popular CEPs, lack a query language and operators
to program queries as done in traditional relational databases. This paper presents PaaS-CEP, a CEP
language that provides a SQL-like language to program queries for CEP and its integration with data stores
(database or key-value store). Our current implementation is done on top of Apache Storm however, the
CEP language can be used with any CEP. The paper describes the architecture of the PaaS-CEP, its query
language and the algebraic operators. The paper also details the integration of the CEP with traditional data
stores that allows the correlation of live streaming data with the stored data.

1 INTRODUCTION

Nowadays, enterprises face the problem of
processing large amount of unstructured data almost
in real time. Complex event processing is an
emerging technology that has the potential to
process huge amounts of data in real time. In the last
decade several implementations of CEP came out on
the market from both academia and industry
(Borealis, 2007), (Flink, 2015), (Spark, 2016).
Among those, Apache Storm (Storm, 2015) is
considered state of the art in distributed complex
event processing. Storm is a distributed, reliable and
fault-tolerant computation system currently released
as an open source project by the Apache foundation.
Storm is a distributed stream processing engine that
can process on-the-fly data coming from different
data sources to produce new streams of data as
output. However, Storm does not provide a language
for describing queries and operators on the streams.
Everything is done programmatically. This approach
although flexible, it is error prone and time
consuming. More over, the integration of the CEP
with data stores (relational databases or key-value
data stores) is not fully addressed by CEP systems.
This paper presents the complex event processing
language available in the CoherentPaaS suite
(CoherentPaaS, 2013) used in other settings like the
LeanBigData project (LeanBigData, 2014). Paas-

CEP language provides:
• A query language for the creation of CEP

queries.
• A set of algebraic operators.
• Integration with external data stores.
• Pluggable CEP language for any CEP.
The current implementation of PaaS-CEP is

based on Storm although, other CEPs can be
plugged-in PaaS-CEP.

The rest of the paper presents the architecture of
PaaS-CEP (Section 2), then the algebraic operators
are presented in Section 3. Section 4 is devoted to
the interaction with data stores. Section 5 presents
the query language and query compiler. Section 6
concludes the paper.

2 ARCHITECTURE

PaaS-CEP is a parallel-distributed engine able to read
and write raw data from/to external data stores and to
materialize the results of continuous queries in such
data stores. One of the main issues in the integration
of the CEP with external data stores is the impedance
mismatch between CEP queries that are continuous
and SQL queries that are point-in-time. A CEP query
is deployed and then, it is delivering results
continuously till it is decommissioned. However, a

406
Jiménez-Peris, R., Vianello, V. and Patiño-Martinez, M.
PaaS-CEP - A Query Language for Complex Event Processing and Databases.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 1, pages 406-411
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

SQL query is a point-in-time query that processes
existing data and delivers the result.

In order to solve this impedance mismatch
PaaS-CEP integrates two new mechanisms. The first
one enables CEP queries to correlate events in real-
time with data stored in external data stores, for
example to enrich the event with stored information,
or to check whether there is related information in a
data store or for storing some events. That is, the
output of a CEP query can be used by the data stores
queries. For this to happen, it materialization
operators are needed. These operators can store the
output of a CEP query in external data store.
Furthermore, in order to ease the use of the CEP,
PaaS-CEP also offers a SQL-like language to
formulate CEP query. Figure 1 shows the main
components of PaaS-CEP using a block diagram.

Figure 1: PaaS-CEP components.

The query language, together with the query
compiler and deployer, allows programmers to
define a query in a SQL-like language, translate it
into the corresponding CEP query and deploy the
resulting query in the container. The container can
be any CEP, in this case we are using Storm
although other CEPs can be used. Operators are the
building blocks of the CEP continuous queries and
they are classified in three main categories:

• CEP algebraic operators. They provide the
basis for supporting CEP queries.

• CEP database operators. They enable to
correlate events with information stored in
external data stores.

• CEP materialization operators. They allow
storing the output of CEP queries in external
data stores.

3 ALGEBRAIC OPERATORS

CEP continuous queries are modelled as an acyclic
graph where the nodes are streaming operators and

arrows are streams of events. Streaming operators
are computational boxes that process events received
over the incoming stream and produce output events
on the outgoing streams. Algebraic operators can be
either stateless or stateful, depending on whether
they operate on the current event (tuple) or on a set
of events (window).

Stateless operators process incoming events one
by one. The output of these operators, if any, only
depends on the last received event. Stateless operators
provide basic processing functionalities such as
filtering and projection transformations. The stateless
operators in PaaS-CEP are: map, filter, multi-filter
and union. Their definition is presented in Table 1.

Table 1: Stateless operators.

Map
it is a generalized projection operator
defined as:

Map(S) = { A’1 = f1 (t), A’2 = f2 (t), . . . , A’n
= fn (t) , O}

It requires one input stream and one output
stream. The schema of these two streams
may be different. The map operator
transforms each tuple t on the input stream
S by applying a boolean and/or arithmetic
expression (fi). The resulting tuple has
attributes A’1, . . . , A’n where, A’i = fi (t),
and is sent through the output stream O.

Filter
it is a selection operator defined as:

Filter(S) = {(P(t) , O)}

The filter operator requires one input stream
and one output stream with the same
schema. It verifies the match of tuples t on
the input stream S with the user defined
predicate P. When P(t) is satisfied the tuple
t is emitted on the output stream O.

MultiFilter
it is a selection and semantic routing
operator defined as:

MultiFilter(S) = {(P1(t) , O1), (P2(t) , O2),
. . . , (Pn(t) , On)}

The multiFilter operator requires one input
stream and at least one output stream, all
with the same schema. The multiFilter
emits a tuple t on all the output streams Oi

for which the user defined predicate, Pi(t) is
satisfied.

Union it is a merger operator defined as:
Union(S1, S2, . . ., Sn){O}

The union operator requires at least one
input stream and only one output stream, all
with the same schema. It is used to merge
different input streams Si with the same
schema into one output stream O.

PaaS-CEP - A Query Language for Complex Event Processing and Databases

407

Stateful operators perform operations over a set
of incoming events called sliding window. A sliding
window is a volatile memory data structure. PaaS-
CEP defines three types of sliding windows:

• Tuple-based window: it stores up to n tuples.
• Time-based window: it stores the tuples

received in the last t seconds.
• Batch-based window: it stores all the tuples

received between a start and stop conditions.
Tuple and time based windows must be

configured with the size and advance parameters.
The size parameter defines the capacity of the
window (number of events/time in seconds) and the
advance parameter defines which events must be
removed from the window when the window is full.
Two statefull operators are defined in PaaS-CEP :
aggregate and join. Table 2 presents the definition
of these operators.

Table 2: Stateful operators.

Aggregate It computes aggregate functions (e.g.,
sum, average, min, count, ...) on a
window of events. It is defined as:

Aggregate(S) = { A’1 = f1(t ,W), . . . , A’n =
fn(t ,W) , s, adv, t, Group-by(A1, . . . , Am),
O}

The aggregate operator accepts only one
input stream and defines one output
stream. It supports both time based sliding
windows and tuple based sliding
windows. Parameters s, adv and t define
the size, the advance and the type of the
sliding window. The Group-by parameter
indicates how to cluster the input events;
that is, the operator keeps a separate
window for each of cluster defined by the
attributes (A1, . . . , Am). Any time a new
event t arrives on the input stream and the
sliding window of the corresponding
cluster is full, the set of aggregate
functions {fi}i1≤i≤n are computed over the
events in that sliding window W. The
resulting tuple with attributes A’1, . . . ,
A’n where, A’i = fi(t ,W), is inserted in the
output stream O. Finally, after producing
the output tuple, all the windows are slid
according with the advance adv
parameter.

Join It joins events coming from two input
streams. It is defined as:

Join(Sl,Sr) = {A’1 = f1(t ,Wl,Wr),.. , A’n =
fn(t , Wl,Wr) , P, wl, wr, Group-by(A1, ..,
Am), O}

The join operator accepts two input

streams and define one output stream. Sl
identifies the left input stream and Sr

identifies the right input stream. P is a
user defined predicate over pairs of events
tl and tr belonging to input streams Sl and
Sr, respectively; wl and wr define the size
and the advance of the left and right
sliding windows while de group-by
defines the clustering as in the aggregate
operator. In order to be deterministic the
join operator only supports time based
sliding windows. In the following we
consider the simplified situation where the
group-by parameter is empty and there is
only one sliding window per stream. For
each event tl received on the input stream
Sl (respectively tr from stream Sr) the
concatenation of events tl | ti is emitted on
the output stream O, if these conditions
are satisfied:
(1) ti is a tuple currently stored in Wr

(respectively in Wl)
(2) P is satisfied for the pair tl and ti

(respectively tr and ti)
The attributes A’1, . . . , A’n of tuples that
are indeed inserted in the output stream O
are a subset of the concatenation of events
tl | ti where, A’i = fi(t ,Wl,Wr). After that all
the output tuples triggered by the tuple tl
(respectively tr) received on the input are
produced, the sliding window Wr

(respectively in Wl) is slid according with
the advance parameter.

Figure 2 shows an example of the Map operator.
In the example the Map is used to transform the input
tuples, with the schema [idcaller, idreceiver, duration,
timestamp] representing a simplified Call Description
Record (CDR) by adding a new field cost evaluated
with the expression cost=duration*10 + 10

Figure 2: Example of Map operator.

4 CEP INTEGRATION WITH
DATA STORES

CEP systems, since are in-memory processing
systems, do not have the notion of transactions.
Additionally, tuples are handled fully independently
which makes difficult to define the notion of a
transaction. However, CEP queries need many times

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

408

to access transactional data stores for correlating the
incoming data with the stored data. Relational
databases provide to ways to interact with them: the
so called auto-commit mode, where each SAL
sentence executed on the database is a transaction, or
bracketing mode, where a set of sentences is
executed as a transaction. In this paper we only
address the auto-commit mode and define operators
for accessing a data store in that mode.

4.1 Database Operators

Data store operators provide the CEP with the
capability of reading and writing tuples from/to an
external data store. PaaS-CEP accesses the data
stores using operators that issue queries written in
SQL. Operators that access the data stores must be
able to retrieve data at high rates in order to correlate
stored data with the large amount of events produced
by the CEP. At the same time the data stores must be
able to store the results produced by the CEP at very
high rates. The available data store operators are
described in Table 3.

Table 3: Data store operators.

ReadSQL The ReadSQL operator requires one
input stream, S, and one output stream.
The schema of these two streams may
be different. The operator is
configured with a parameterized query
to be run against a data store. The
parameterized query must be a
SELECT statement. For each tuple, t,
received on the input stream, S, the
operator replaces the parameters in the
query with the values read from the
corresponding fields in the input tuple
t and then, it executes the query. The
operator produces as many tuples on
the output stream as tuples has the
result set of the query executed on the
data store. Each output tuple is created
either using fields of the incoming
tuple, t, or fields of the result set row
or a combination of them.

UpdateSQL The UpdateSQL operator is in charge
of storing results of the CEP query in a
data store. It requires one input and
one output stream. The schema of
these two streams may be different.
This operator is also configured with a
parameterized query that must be an
update statement, that is, it modifies,
inserts or deletes data in the data store.
For each tuple, t, received on the input
stream S, the UpdateSQL operator
replaces the parameters in the query

with the values from the corresponding
fields in the input tuple and then, it
executes the query updating the data
store. The UpdateSQL operator creates
one output tuple for each input tuple.
The output tuple can be either a copy
of the input tuple or the number of
modified rows in the data store or a
concatenation of the two.

Figure 3 shows an example of the ReadSQL
operator. The operator receives CDRs and fetches
from an external data store the monthly plan (idplan)
of the user making the phone call. The output tuple
is composed by the fields idcaller, duration and
timestamp of the input tuple plus the idplan field
read from the data store.

Figure 3: Example of ReadSQL operator.

5 QUERY LANGUAGE

Programmers can use the operators to generate
continuous queries however, most programmers are
familiar with SQL language. Our proposal is to
provide CEPs with a SQL-like language to ease the
programmer task. PaaS-CEP Query Language (CPL)
is defined as a subset of the traditional SQL
language where tables are replaced by continuous
streams.

It allows to feed and filter events from one
stream to another one, to aggregate information of a
stream, to join or merge events from different
streams. The query language is similar to the one of
Esper (Esper, 2006) however, Esper is a centralized
CEP while our approach is generic and can be
plugged into any available CEP, and targets
distributed CEP.

CPL queries always start with the declaration of
streams and windows structures followed by the
definition of one or more statements over these
streams and windows. Each statement requires at
least one input and one output stream. Input streams
must be defined either before any statements or as
output stream of previous statements. Streams can

PaaS-CEP - A Query Language for Complex Event Processing and Databases

409

be defined at the beginning of a CPL query using the
CREATE STREAMSCHEMA clause and they can
have an arbitrary number of fields:

CREATE STREAMSCHEMA s1 WITH fieldname
fieldType [, fieldname fieldType] [, ….]

FieldTypes can be chosen among several
common types such as boolean, integer, double,
char, varchar, etc. Each statement must include the
three mandatory clauses INSERT INTO, SELECT
and FROM. INSERT INTO is used to name the
output stream of a statement:

INSERT INTO streamName
streamName is the name to give to the output

stream and it can be any literal string. The FROM
clause specifies the source streams for a statement
and its syntax is:

FROM streamName [, streamName] [, …]
streamName is the name of the input stream of

the statement. The number of parameters in a FROM
clause depends on the number of input streams of
the statement. If the statement is doing a projection,
transformation or aggregation then, there is only one
parameter. The SELECT clause is used to picking
data from streams. Depending on the number of
source streams defined in the statement, the SELECT
clause is used to (i) select or (ii) rename fields, (iii)
evaluate expressions over multiple fields and (iv)
compute aggregation functions over single fields. As
an example, the syntax to evaluate aggregation
function over an input stream is:

SELECT aggFunc(fieldname) AS newFieldname
[, aggFunc(fieldname) AS newFieldname] [, …]

where aggFunc is an aggregation function
(maximum, minimum, sum, average, etc) and AS is
the clause used to name the result of the function in
the output stream. Some other clauses available in
CPL language are: WHERE, HAVING, GROUP-BY
and ON SQL. In particular, the ON SQL clause is
used to execute a classical SQL query against an
external data store. The syntax for ON SQL clause
is:

ON SQL queryName, tableName, fieldname1
[,fieldname2][,..],outfieldname1[,
outfieldname2][,..]

queryName is a variable with the SQL statement
to be executed. tableName is the name to give to the
result set of the SQL query. fieldnames are fields
belonging to the input stream used as parameter for
the SQL statement.outfieldname is used to identify
the fields of the result set in order to be used in other
clauses such as SELECT or WHERE.

As an example of a whole CQL query let us
consider a simple scenario where there are two
streams with Call Description Records (CDR) events
into the CEP and we want to calculate the daily bill
of each phone number. We assume that:

• A CDR event has the following fields:
idcaller (id of the caller), idreceiver (id of the
receiver), duration (duration of the phone call
in seconds), timestamp (timestamp of the
phone call).

• Calls with a duration less than 10 seconds are
free.

• The cost of the call is calculated with the
formula: cost=duration*10 +10

Figure 4: Query written using the CEP query language.

The query for billing clients is shown in Figure
4. First, the schema of the two input streams is
declared. Then a first statement (INSERT) is used to
merge the two streams into one output stream named
unionout. A SELECT statement is used to calculate
the cost of each phone call and to filter out all these
calls whose duration in shorter than 10 seconds.
Finally, the last SELECT statement calculates the
daily bill for each user.

5.1 Compiler

The query compiler is the component in charge of
translating queries written using the declarative
language (SLQ like) into continuous queries made
by algebraic operators. As an example the query
compiler can transform the CQL query from Figure
4 into the graph of algebraic operator depicted in
Figure 5

Figure 5: Query translated into graph of algebraic
operators.

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

410

6 CONCLUSIONS

This paper presented PaaS-CEP, a complex event-
processing engine that provides a SQL-like language
for programming queries over streaming data. The
main features PaaS-CEP provides are:

1. Algebraic operators.
2. Integration the CEP with external data

stores allowing the correlation of streaming
data with historical data in an ACID way.

3. Definition of a query language to ease the
definition of continuous CEP query.

ACKNOWLEDGEMENTS

This research has been partially funded by the
European Commission under projects CoherentPaaS
and LeanBigData (grants FP7-611068, FP7-
619606), the Madrid Regional Council, FSE and
FEDER, project Cloud4BigData (grant S2013TIC-
2894), and the Spanish Research Agency MICIN
project BigDataPaaS (grant TIN2013-46883)

REFERENCES

CoherentPaaS, 2013. CoherentPaaS project web site
http://www.coherentpaas.eu Last visited 20/01/2016.

Storm, 2015. Aoache Strom web page
http://www.coherentpaas.eu Last visited 20/01/2016.

Esper, 2006. Esper EQL documentation. http://www.es
pertech.com/esper/documentation.php Last visited
20/01/2016.

LeanBigData, 2014. LeanBigData project web site
http://leanbigdata.eu/ Last visited 20/01/2016.

Borealis, 2007. The Borealis project, http://cs.brown
.edu/research/borealis/public/ Last visited 20/01/2016.

Flink, 2015. Apache Flink web page,
https://flink.apache.org/ Last visited 20/01/2016.

Spark, 2016. Apache Spark streaming web page,
http://spark.apache.org/streaming/

PaaS-CEP - A Query Language for Complex Event Processing and Databases

411

