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Abstract: Nowadays many applications must process events at a very high rate. These events are processed on the fly, 
without being stored. Complex Event Processing technology (CEP) is used to implement such applications. 
Some of the CEP systems, like Apache Storm the most popular CEPs, lack a query language and operators 
to program queries as done in traditional relational databases. This paper presents PaaS-CEP, a CEP 
language that provides a SQL-like language to program queries for CEP and its integration with data stores 
(database or key-value store). Our current implementation is done on top of Apache Storm however, the 
CEP language can be used with any CEP. The paper describes the architecture of the PaaS-CEP, its query 
language and the algebraic operators. The paper also details the integration of the CEP with traditional data 
stores that allows the correlation of live streaming data with the stored data. 

1 INTRODUCTION 

Nowadays, enterprises face the problem of 
processing large amount of unstructured data almost 
in real time. Complex event processing is an 
emerging technology that has the potential to 
process huge amounts of data in real time. In the last 
decade several implementations of CEP came out on 
the market from both academia and industry 
(Borealis, 2007), (Flink, 2015), (Spark, 2016). 
Among those, Apache Storm (Storm, 2015) is 
considered state of the art in distributed complex 
event processing. Storm is a distributed, reliable and 
fault-tolerant computation system currently released 
as an open source project by the Apache foundation. 
Storm is a distributed stream processing engine that 
can process on-the-fly data coming from different 
data sources to produce new streams of data as 
output. However, Storm does not provide a language 
for describing queries and operators on the streams. 
Everything is done programmatically. This approach 
although flexible, it is error prone and time 
consuming. More over, the integration of the CEP 
with data stores (relational databases or key-value 
data stores) is not fully addressed by CEP systems. 
This paper presents the complex event processing 
language available in the CoherentPaaS suite 
(CoherentPaaS, 2013) used in other settings like the 
LeanBigData project (LeanBigData, 2014). Paas-

CEP language provides: 
• A query language for the creation of CEP 

queries.  
• A set of algebraic operators. 
• Integration with external data stores. 
• Pluggable CEP language for any CEP. 
The current implementation of PaaS-CEP is 

based on Storm although, other CEPs can be 
plugged-in PaaS-CEP. 

The rest of the paper presents the architecture of 
PaaS-CEP (Section 2), then the algebraic operators 
are presented in Section 3. Section 4 is devoted to 
the interaction with data stores. Section 5 presents 
the query language and query compiler. Section 6 
concludes the paper. 

2 ARCHITECTURE 

PaaS-CEP is a parallel-distributed engine able to read 
and write raw data from/to external data stores and to 
materialize the results of continuous queries in such 
data stores. One of the main issues in the integration 
of the CEP with external data stores is the impedance 
mismatch between CEP queries that are continuous 
and SQL queries that are point-in-time. A CEP query 
is deployed and then, it is delivering results 
continuously till it is decommissioned. However, a 
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SQL query is a point-in-time query that processes 
existing data and delivers the result.  

In order to solve this impedance mismatch 
PaaS-CEP integrates two new mechanisms. The first 
one enables CEP queries to correlate events in real-
time with data stored in external data stores, for 
example to enrich the event with stored information, 
or to check whether there is related information in a 
data store or for storing some events. That is, the 
output of a CEP query can be used by the data stores 
queries. For this to happen, it materialization 
operators are needed. These operators can store the 
output of a CEP query in external data store. 
Furthermore, in order to ease the use of the CEP, 
PaaS-CEP also offers a SQL-like language to 
formulate CEP query. Figure 1 shows the main 
components of PaaS-CEP using a block diagram. 

 
Figure 1: PaaS-CEP components. 

The query language, together with the query 
compiler and deployer, allows programmers to 
define a query in a SQL-like language, translate it 
into the corresponding CEP query and deploy the 
resulting query in the container. The container can 
be any CEP, in this case we are using Storm 
although other CEPs can be used. Operators are the 
building blocks of the CEP continuous queries and 
they are classified in three main categories: 

• CEP algebraic operators. They provide the 
basis for supporting CEP queries. 

• CEP database operators. They enable to 
correlate events with information stored in 
external data stores. 

• CEP materialization operators. They allow 
storing the output of CEP queries in external 
data stores. 

3 ALGEBRAIC OPERATORS 

CEP continuous queries are modelled as an acyclic 
graph where the nodes are streaming operators and 

arrows are streams of events. Streaming operators 
are computational boxes that process events received 
over the incoming stream and produce output events 
on the outgoing streams. Algebraic operators can be 
either stateless or stateful, depending on whether 
they operate on the current event (tuple) or on a set 
of events (window).  

Stateless operators process incoming events one 
by one. The output of these operators, if any, only 
depends on the last received event. Stateless operators 
provide basic processing functionalities such as 
filtering and projection transformations. The stateless 
operators in PaaS-CEP are: map, filter, multi-filter 
and union. Their definition is presented in Table 1. 

Table 1: Stateless operators. 

Map 
it is a generalized projection operator 
defined as: 

 

Map(S) = { A’1 = f1 (t), A’2 = f2 (t), . . . , A’n 
= fn (t) , O} 

 

It requires one input stream and one output 
stream. The schema of these two streams 
may be different. The map operator 
transforms each tuple t on the input stream 
S by applying a boolean and/or arithmetic 
expression (fi). The resulting tuple has  
attributes A’1, . . . , A’n where, A’i = fi (t),  
and is sent through the output stream O. 

Filter 
it is a selection operator defined as:  

 

Filter(S) = {(P(t) , O  )} 
 
The filter operator requires one input stream 
and one output stream with the same 
schema. It verifies the match of tuples t on 
the input stream S with the user defined 
predicate P. When P(t) is satisfied the tuple 
t  is emitted on the output stream O. 

MultiFilter 
it is a selection and semantic routing 
operator defined as: 

 

MultiFilter(S) = {( P1(t) , O1  ), ( P2(t) , O2  ),  
. . . ,  ( Pn(t) , On  )} 
 
The multiFilter operator requires one input 
stream and at least one output stream, all 
with the same schema. The multiFilter 
emits a tuple t on all the output streams Oi 

for which the user defined predicate, Pi(t) is 
satisfied. 

Union it is a merger operator defined as:  
Union(S1, S2, . . ., Sn){O} 
 
The union operator requires at least one 
input stream and only one output stream, all 
with the same schema. It is used to merge 
different input streams Si with the same 
schema into one output stream O. 
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Stateful operators perform operations over a set 
of incoming events called sliding window.  A sliding 
window is a volatile memory data structure. PaaS-
CEP defines three types of sliding windows: 

• Tuple-based window: it stores up to n tuples. 
• Time-based window: it stores the tuples 

received in the last t seconds. 
• Batch-based window: it stores all the tuples 

received between a start and stop conditions. 
Tuple and time based windows must be 

configured with the size and advance parameters. 
The size parameter defines the capacity of the 
window (number of events/time in seconds) and the 
advance parameter defines which events must be 
removed from the window when the window is full.  
Two statefull operators are defined in PaaS-CEP : 
aggregate and join. Table 2 presents the definition 
of these operators. 

Table 2: Stateful operators. 

Aggregate It computes aggregate functions (e.g., 
sum, average, min, count, ...) on a 
window of events. It is defined as: 
 

Aggregate(S) = { A’1 = f1(t ,W), . . . , A’n = 
fn(t ,W) , s, adv, t, Group-by(A1, . . . , Am), 
O} 
 
The aggregate operator accepts only one 
input stream and defines one output 
stream. It supports both time based sliding 
windows and tuple based sliding 
windows. Parameters s, adv and t define 
the size, the advance and the type of the 
sliding window.  The Group-by parameter 
indicates how to cluster the input events; 
that is, the operator keeps a separate 
window for each of cluster defined by the 
attributes (A1, . . . , Am). Any time a new 
event t arrives on the input stream and the 
sliding window of the corresponding 
cluster is full, the set of aggregate 
functions {fi}i1≤i≤n are computed over the 
events in that sliding window W. The 
resulting tuple with attributes A’1, . . . , 
A’n where, A’i = fi(t ,W), is inserted in the 
output stream O. Finally, after producing 
the output tuple, all the windows are slid 
according with the advance adv 
parameter. 

Join It joins events coming from two input 
streams. It is defined as:
 

Join(Sl,Sr) = {A’1 = f1(t ,Wl,Wr),.. , A’n = 
fn(t , Wl,Wr) , P, wl, wr, Group-by(A1, .., 
Am), O}
 
The join operator accepts two input 

streams and define one output stream. Sl 
identifies the left input stream and Sr 

identifies the right input stream. P is a 
user defined predicate over pairs of events 
tl and tr belonging to input streams Sl and 
Sr, respectively; wl and wr define the size 
and the advance of the left and right 
sliding windows while de group-by 
defines the clustering as in the aggregate 
operator. In order to be deterministic the 
join operator only supports time based 
sliding windows. In the following we 
consider the simplified situation where the 
group-by parameter is empty and there is 
only one sliding window per stream. For 
each event tl received on the input stream 
Sl (respectively tr from stream Sr) the 
concatenation of events tl | ti is emitted on 
the output stream O, if these conditions 
are satisfied:  
(1) ti is a tuple currently stored in Wr 

(respectively in Wl ) 
(2) P is satisfied for the pair tl and ti  

(respectively tr and ti ) 
The attributes A’1, . . . , A’n of tuples that 
are indeed inserted in the output stream O 
are a subset of the concatenation of events 
tl | ti where,  A’i = fi(t ,Wl,Wr). After that all 
the output tuples triggered by the tuple tl 
(respectively tr) received on the input are 
produced, the sliding window Wr 

(respectively in Wl ) is slid according with 
the advance parameter. 

Figure 2 shows an example of the Map operator. 
In the example the Map is used to transform the input 
tuples, with the schema [idcaller, idreceiver, duration, 
timestamp] representing a simplified Call Description 
Record (CDR) by adding a new field  cost evaluated 
with the expression cost=duration*10 + 10 

 
Figure 2: Example of Map operator. 

4 CEP INTEGRATION WITH 
DATA STORES 

CEP systems, since are in-memory processing 
systems, do not have the notion of transactions. 
Additionally, tuples are handled fully independently 
which makes difficult to define the notion of a 
transaction. However, CEP queries need many times 
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to access transactional data stores for correlating the 
incoming data with the stored data. Relational 
databases provide to ways to interact with them: the 
so called auto-commit mode, where each SAL 
sentence executed on the database is a transaction, or 
bracketing mode, where a set of sentences is 
executed as a transaction. In this paper we only 
address the auto-commit mode and define operators 
for accessing a data store in that mode. 

4.1 Database Operators 

Data store operators provide the CEP with the 
capability of reading and writing tuples from/to an 
external data store. PaaS-CEP accesses the data 
stores using operators that issue queries written in 
SQL. Operators that access the data stores must be 
able to retrieve data at high rates in order to correlate 
stored data with the large amount of events produced 
by the CEP. At the same time the data stores must be 
able to store the results produced by the CEP at very 
high rates. The available data store operators are 
described in Table 3. 

Table 3: Data store operators. 

ReadSQL The ReadSQL operator requires one 
input stream, S, and one output stream. 
The schema of these two streams may 
be different. The operator is 
configured with a parameterized query 
to be run against a data store. The 
parameterized query must be a 
SELECT statement. For each tuple, t, 
received on the input stream, S, the 
operator replaces the parameters in the 
query with the values read from the 
corresponding fields in the input tuple 
t and then, it executes the query. The 
operator produces as many tuples on 
the output stream as tuples has the 
result set of the query executed on the 
data store. Each output tuple is created 
either using fields of the incoming 
tuple, t, or fields of the result set row 
or a combination of them. 

UpdateSQL The UpdateSQL operator is in charge 
of storing results of the CEP query in a 
data store. It requires one input and 
one output stream. The schema of 
these two streams may be different. 
This operator is also configured with a 
parameterized query that must be an 
update statement, that is, it modifies, 
inserts or deletes data in the data store. 
For each tuple, t, received on the input 
stream S, the UpdateSQL operator 
replaces the parameters in the query 

with the values from the corresponding 
fields in the input tuple and then, it 
executes the query updating the data 
store. The UpdateSQL operator creates 
one output tuple for each input tuple. 
The output tuple can be either a copy 
of the input tuple or the number of 
modified rows in the data store or a 
concatenation of the two. 

Figure 3 shows an example of the ReadSQL 
operator. The operator receives CDRs and fetches 
from an external data store the monthly plan (idplan) 
of the user making the phone call. The output tuple 
is composed by the fields idcaller, duration and 
timestamp of the input tuple plus the idplan field 
read from the data store. 

 
Figure 3: Example of ReadSQL operator. 

5 QUERY LANGUAGE 

Programmers can use the operators to generate 
continuous queries however, most programmers are 
familiar with SQL language. Our proposal is to 
provide CEPs with a SQL-like language to ease the 
programmer task. PaaS-CEP Query Language (CPL) 
is defined as a subset of the traditional SQL 
language where tables are replaced by continuous 
streams.   

It allows to feed and filter events from one 
stream to another one, to aggregate information of a 
stream, to join or merge events from different 
streams. The query language is similar to the one of 
Esper (Esper, 2006) however, Esper is a centralized 
CEP while our approach is generic and can be 
plugged into any available CEP, and targets 
distributed CEP.  

CPL queries always start with the declaration of 
streams and windows structures followed by the 
definition of one or more statements over these 
streams and windows. Each statement requires at 
least one input and one output stream. Input streams 
must be defined either before any statements or as 
output stream of previous statements. Streams can 
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be defined at the beginning of a CPL query using the 
CREATE STREAMSCHEMA clause and they can 
have an arbitrary number of fields: 

CREATE STREAMSCHEMA s1 WITH fieldname 
fieldType [, fieldname fieldType] [, …. ] 

FieldTypes can be chosen among several 
common types such as boolean, integer, double, 
char, varchar, etc. Each statement must include the 
three mandatory clauses INSERT INTO, SELECT 
and FROM. INSERT INTO is used to name the 
output stream of a statement: 

INSERT INTO streamName 
streamName is the name to give to the output 

stream and it can be any literal string. The FROM 
clause specifies the source streams for a statement 
and its syntax is: 

FROM streamName [, streamName] [, …] 
streamName is the name of the input stream of 

the statement. The number of parameters in a FROM 
clause depends on the number of input streams of 
the statement. If the statement is doing a projection, 
transformation or aggregation then, there is only one 
parameter. The SELECT clause is used to picking 
data from streams. Depending on the number of 
source streams defined in the statement, the SELECT 
clause is used to (i) select or (ii) rename fields, (iii) 
evaluate expressions over multiple fields and (iv) 
compute aggregation functions over single fields. As 
an example, the syntax to evaluate aggregation 
function over an input stream is: 

SELECT aggFunc(fieldname) AS newFieldname 
[, aggFunc(fieldname) AS newFieldname] [, … ] 

where aggFunc is an aggregation function 
(maximum, minimum, sum, average, etc) and AS is 
the clause used to name the result of the function in 
the output stream. Some other clauses available in 
CPL language are: WHERE, HAVING, GROUP-BY 
and ON SQL. In particular, the ON SQL clause is 
used to execute a classical SQL query against an 
external data store. The syntax for ON SQL clause  
is: 

ON SQL queryName, tableName, fieldname1 
[,fieldname2][,..],outfieldname1[, 
outfieldname2][,..] 

queryName is a variable with the SQL statement 
to be executed. tableName is the name to give to the 
result set of the SQL query. fieldnames are fields 
belonging to the input stream used as parameter for 
the SQL statement.outfieldname is used to identify 
the fields of the result set in order to be used in other 
clauses such as SELECT or WHERE. 

As an example of a whole CQL query let us 
consider a simple scenario where there are two 
streams with Call Description Records (CDR) events 
into the CEP and we want to calculate the daily bill 
of each phone number. We assume that: 

• A CDR event has the following fields: 
idcaller (id of the caller), idreceiver (id of the 
receiver), duration (duration of the phone call 
in seconds), timestamp (timestamp of the 
phone call). 

• Calls with a duration less than 10 seconds are 
free. 

• The cost of the call is calculated with the 
formula: cost=duration*10 +10  

 
Figure 4: Query written using the CEP query language. 

The query for billing clients is shown in Figure 
4. First, the schema of the two input streams is 
declared. Then a first statement (INSERT) is used to 
merge the two streams into one output stream named 
unionout. A SELECT statement is used to calculate 
the cost of each phone call and to filter out all these 
calls whose duration in shorter than 10 seconds. 
Finally, the last SELECT statement calculates the 
daily bill for each user. 

5.1 Compiler 

The query compiler is the component in charge of 
translating queries written using the declarative 
language (SLQ like) into continuous queries made 
by algebraic operators. As an example the query 
compiler can transform the CQL query from Figure 
4 into the graph of algebraic operator depicted in 
Figure 5 

 
Figure 5: Query translated into graph of algebraic 
operators. 
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6 CONCLUSIONS 

This paper presented PaaS-CEP, a complex event-
processing engine that provides a SQL-like language 
for programming queries over streaming data. The 
main features PaaS-CEP provides are: 

1. Algebraic operators. 
2. Integration the CEP with external data 

stores allowing the correlation of streaming 
data with historical data in an ACID way. 

3. Definition of a query language to ease the 
definition of continuous CEP query. 
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