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Abstract. In the last decade it has been observed an exponential explosion of generated user data over the

internet. Traditional data management solutions such as relational databases are simply not able to process this

large amount of data in a reasonable time. A new need of high scalable data management tools emerged, the

cloud data stores. These technologies are able to process petabytes of data but with an important trade-off:

the lack of transactional consistency. The scenario becomes even more complex for those applications whose

building blocks is on top of a hybrid data store ecosystem. This works presents a novel protocol to provide

transaction semantics on top of heterogeneous data stores transparently to applications.
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1 Introduction

In the last decade it has been observed an exponential explosion of generated user data over the internet. Traditional

data management solutions such as relational databases are simply not able to process this large amount of data

in a reasonable time. A new need of high scalable data management tools emerged, the cloud data stores. Internet

companies, like Facebook3, Google4 and Twitter5, created data management solutions to satisfy this need, the

NoSQL data stores. HBase6, an open source implementation modeled after Google’s Bigtable key value data

store [1] or Cassandra [2], another key value data store, are only a couple of examples. These technologies are

able process petabytes of data but with an important trade-off: the lack of strong transactional consistency. The

secret behind this technologies is known as sharding, where data is partitioned and a single node is responsible to

manage a reduced part of the data. There is no coordination between nodes when data items from different nodes

are updated by the application.

The scenario becomes even more complex when other data store technologies come into play like document

and graph data stores, i.e., MongoDB [3] and Sparksee [4] or Neo4j 7 respectively. Graph databases became very

popular after the social networks explosion, in the beginning of this century. The problem remains the same:

the lack or reduced support of transactional semantics. Applications whose building blocks rely on this type of

technolgies, formally defined as polyglot persistence [5], are facing a big pain on providing consistency across

data stores.

In this work we present a transactional processing architecture with special emphasis in the provisions that are

needed in order to support transaction consistency across multiple data stores. The transactional processing lever-

ages the ultra-scalable transactional management from the CumuloNimbo ultra-scalable transaction processing

system [6].

The reminder of this work is organized as follows. Section 2 provides some background on transactional

processing. Section 3 presents a simplified version of the CumuloNimbo transactional processing protocol. Then,

Section 4 introduces the designed extensions on the transaction manager and the implementation efforts required

on the data stores to provide full ACID support across heterogeneous data stores. Finally, Section 5 concludes this

paper with some initial conclusions and defines a road map for the next steps in our research.

2 Transactions

2.1 ACID Properties

A transaction is a sequence of data operations that are executed in an atomic way. Transactions provide the so-

called ACID properties [7], namely:

3 http://www.facebook.com
4 http://www.google.com
5 http://www.twitter.com
6 http://hbase.apache.org
7 http://www.neo4j.com



– Atomicity: It provides all-or-nothing semantics in the advent of failures. That is, the effect of a transaction

should be “all” it if succeeds (the transaction committed) or nothing if it does not succeed (the transaction

aborted or rolled back).

– Consistency: It is provided by the application. The application code in a transaction should guarantee that if

provided with a consistent state of the database, it should produce a new consistent state of the database.

– Isolation: It provides synchronization atomicity. It provides the illusion that the user is executing the transac-

tion alone in the system even if multiple transactions are executed concurrently.

– Durability: It guarantees that the updates of a successful (committed) transaction are not lost even in the

advent of failures.

2.2 Why Transactions?

Transactions are a very important abstraction to program since they remove two hard problems when programming

applications. The first one is dealing with concurrency. Users do not need to take care about concurrency control

when they program applications using transactions to bracket the access to shared data. The protocols in charge

of implementing the isolation property will take care of concurrent accesses. Second, applications do not have to

deal with failures. Atomicity and durability protocols provide automated recovery in the advent of failures yielding

all-or-nothing semantics. The ACID properties simplify the task of programmers.

2.3 Implementation of transactional properties

Transactional properties are attained by a combination of different protocols. Atomicity provides the ability to

undo aborted transactions. Durability provides the ability to redo successful transactions. Both atomicity and

durability require having redundancy at the data level, typically in the form of a log, that is, they are implemented

on top of a logging mechanism. The log has to be complemented with a recovery protocol that it is executed upon

recovery after a failure. The recovery protocol is executed before the database becomes available after a failure and

is in charge of restoring the database consistency by undoing updates of aborted transactions and redoing updates

of committed transactions to start with a fully consistent database state.

Isolation requires having implicit concurrency control. The highest level of isolation is known as serializability

[7]. Serializability guarantees that the concurrent execution of transactions is equivalent to a serial execution of

them. Therefore, the result is as if there was not concurrency at all. That is, as if all reads and writes of a transaction

would happen at a single point in time.

However, it is well known that serializability reduces dramatically the potential concurrency due to the conflicts

between predicate reads (e.g. select where SQL statement) and writes. Basically, a predicate read conflicts with

any write on the same table unless the predicate is made exclusively over indexed columns and the predicate can

exploit the index ordering (equalities or inequalities over indexed columns). For this reason, other isolation levels

have been proposed such as the ANSI isolation levels and snapshot isolation. Other ANSI isolation levels reduce

too much the isolation resulting in many potential anomalies. However, snapshot isolation [8] has become very

popular because it only introduces a single anomaly known as write skew that many applications do not even

trigger. Snapshot isolation basically splits the synchronization atomicity of a transaction in two points, the start

of the transaction at which all reads happen logically, and the end of the transaction at which all writes happen

logically.

Snapshot isolation provides a very high isolation level thanks to the fact that transactions read from a snapshot

of the database with the state as it was when the transaction was started. Snapshot isolation requires using multi-

version concurrency control [7]. This mechanism lies in instead of storing a single version of each data item, a

new version is created when a transaction that updated the item commits. Therefore, for a single data item multiple

versions of it can exist at a given time. These versions need to be labeled in a way that they enable to choose the

right version for a given transaction that tries to read a data item. Typically, logical timestamps are used for this

labeling.

Snapshot isolation avoids all read-write conflicts including the aforementioned one between predicate reads

and writes. However, it still forbids write-write conflicts. This requires for checking those conflicts with some

conflict management system.

3 CoherentPaaS Transaction Management

We consider a transaction to be a sequence of read and write operations on data records. A read operation can

read individual records or collections of records selected by means of an arbitrary predicate. We present a so-

lution based on snapshot isolation that avoids conflicts between reads and writes and has been well-established



both for traditional relational database systems as well as transaction solutions on top of key-value data stores.

Many commercial database systems provide snapshot isolation as their highest isolation level, such as Oracle,

PosgreSQL.

We assume a multi-version system where each write operation wi(xi) of transaction Ti on record x creates a

new private version x, and each read operation ri(xj) of transaction Ti reads the latest version of x, xj created by

a committed transaction Tj such that j < i and there is no other committed transaction Tz , such that j < z < i.

With such a multi-version system, snapshot isolation requires the snapshot read and snapshot write properties.

Snapshot read requires that a transaction Ti reads a snapshot of the database that reflects the latest committed

versions of all records as of start time of Ti. In particular, this means that if Ti performs a read ri on x, then it

reads either the private version Ti previously created (read your own writes) or it reads the version xj created

by Tj such that Tj was the last transaction to write x and commit before Ti started. Snapshot write requires that

no two concurrent transactions (i.e., neither committed before the other started) update the same entity. If this

happens one of the two transactions will abort (typical strategies are either the first committer wins, or the first

updater wins). When a transaction commits, the commit timestamp is increased and all the private versions of a

transaction are tagged with that commit timestamp. If the transaction aborts, private versions are discarded.

Fig. 1. Centralized Transaction Manager

In Figure 1, we illustrate a possible execution of transactions under snapshot isolation in a centralized system.

The system is split into a query engine layer that parses and executes SQL queries, the data store layer that

maintains the records (i.e., buffer and file system), and the transaction manager. In the figure, the actions associated

with the transaction manager are indicated as blue boxes, the ones associated with the data store layer with brown

boxes.

In most snapshot isolation implementations, the transaction manager maintains a counter that is used to tag

transactions with start and commit timestamps. The value of the counter reflects the commit timestamp of the last

committed transaction.

At start time of a transaction Ti, the transaction manager (Txn Mng in the figure) assigns the current counter

value, TS, (reflecting the last committed transaction) as start timestamp. In the figure, the initial value of the

counter is 1 (shown as TS = 1). When a transaction Ti wants to write a record x, the write operation will first

perform a conflict check with the transaction manager. A conflict occurs, if there is a concurrent transaction Tj ,

i.e., Tj has not committed yet or its commit timestamp is larger than Ti’s start timestamp (C(Tj) > S(Ti)), and

Tj has written x. If there is no conflict, the write can proceed, creating a new private version of x ,so far only

visible to Ti itself. If there is a conflict, Ti must be aborted to guarantee the snapshot write property. This simply

means to discard the private versions Ti has created so far.

When a transaction Ti requests to read a record x, the data store has to provide the record created by transaction

Tj with commit timestamp C(Tj), such that C(Tj) ≤ S(Ti), and there is no version of x created by a transaction

Tk such that C(Tj) < C(Tk) < S(Ti). This provides the snapshot read property.

At commit time of transaction Ti, several things have to be accomplished. First, the transaction requests a

commit timestamp C(Ti) to the transaction manager, which is done by assigning it the next counter value. Second,



all record versions created by Ti must be labeled with C(Ti). Then, the changes must be made durable, which is

typically performed by persisting the redo-log to stable storage. The changes also must be integrated into the data

management layer. Only then, the commit is confirmed to the user. In principle, this commit processing has to be

an atomic action. In particular, the increment of the counter in the transaction manager and the integration of the

new versions into the data store are tightly related because once the new counter value C(Ti) is assigned as a start

timestamp to a new transaction Tk, Tk must be able to see the updates performed by Ti, i.e., the updates must be

visible in the data store.

CoherentPaaS Holistic Transaction Manager implements a distributed and ultra-scalable version of the de-

scribed protocol. The details of the protocol are out of the scope of this work, more details can be found in [6].

4 Transactions across cloud data stores

CoherentPaaS has a set of subsystems that play an important role in transactional processing. They are: holistic

transactional manager, HTM, data stores and common query engine [9], (CQE). We consider two kinds of data

stores: 1) Data stores that fully delegate transactional processing to the holistic transactional manager; 2) Data

stores that perform internally transactional processing and only delegate coordination of the transaction to the

holistic transactional manager for global transactions (transactions handled by CoherentPaaS ).

The holistic transactional manager provides all the transactional functionality for the first kind of data stores

and transactional coordination for the second kind of data stores. The common query engine has a peculiar role.

From the perspective of a CoherentPaaS application it looks like a complex data store that provides multiple func-

tionalities (i.e. the aggregation of all CoherentPaaS data stores). From the perspective of the holistic transactional

manager it looks as another application executing transactions across all data stores. Both the Application and the

Common Query Engine do have a collocated Local Transaction Manager, LTM(see Figure 2).

The LTM is accessed via an Local Transaction Manager Client, LTMc, similar to a JDBC driver for a database

that exposes the API to manage transactions and acts as an interface towards the holistic transactional manager.

This means that the application and the common query engine do have collocated LTMs. Data stores are accessed

by means of a client proxy as well (a JDBC driver or the equivalent for the data store) that are also collocated with

the client application and the common query engine. Data stores clients implements a common interface that is

used to interact with the LTMc in a transparent manner, independently on the nature of the data store. In order to

support snapshot isolation, data stores must implement multi-versioning.

Fig. 2. CoherentPaaS architecture

4.1 Local Transaction Manager Client design

The Local Transaction Manager Client is the access point towards the CoherentPaaS Holistic Transaction Manager.

At bootstrap, applications and common query engine instance a single LTMc and as many as needed data store



clients instances. Applications register data store clients instances in the LTMc. LTMc uses the references to invoke

callbacks on the data store clients during the transaction execution.

In order to preserve the data store clients API, we have conceived the concept of connection, Cnx. The ap-

plication creates a connection, just like in JDBC. It is through the connection where the transaction life cycle is

managed. The application creates a Cnx to the LTMc invoking getConnection. There is a single connection per

client thread.

A transaction is started through the invocation of Cnx.startTransaction. startTransaction produces a transac-

tion context object, TxnCtx. The transaction context object is doted with a start timestamp, commit timestamp, a

transaction context id and the list of involved data stores, which is empty when the transaction is started. The appli-

cation associates one ore more data store clients to the current transaction, through TxnCtx.associate(DSClient).
Data store clients implement the interface TransactionalDSClient, the contract between data store clients and

the LTMc. TransactionalDSClientis implemented by the clients and declares the following methods: getWS,

applyWS, notifyStartTransaction, redoWS and terminate. We will look at the details of the implementa-

tion details of the contract in the following section. A transaction is terminated (committed or rolled back) invoking

TxnCtx.commit or TxnCtx.abort functions. The TxnCtx object is destroyed once the transaction is terminated.

The abstraction of connection is not present on the common query engine side. The common query engine is

multi-threaded and having a single thread to execute queries against multiple data stores in a serial fashion is not

desired. Instead, on the common query engine, the transaction context object is used directly. It provides the same

API of Cnx allows concurrent access. For the reminder of this work, we provide the details of the implementation

from the application perspective, that includes the whole transaction execution path.

4.2 Transaction Life Cycle

We deepen now in the details of the transaction life cycle. Algorithm 1 describes the initialization process of the

system. The application instantiate one or more client connections to different data stores and the connection to

the HTM, through the creation of a LTMcinstance. The data store client connections are registered in the LTMc.

We describe the process with a transaction executed by the application against two data stores, DataStore and

DataStoreB. We assume DataStore is a simplified version of a key value data, like HBase8, and DataStoreB is a

SQL data store, like LeanXcale9. Algorithm 2 presents the transaction code. The application creates a connection

to the LTMc and starts the transaction (lines 1 and 2). Then, in lines 3 and 4, the data store clients instances

are associated to the transaction. The association (Algorithm 4) tells the LTMc that these particular data stores

participate in the transaction execution. Data stores are also notified that a new transaction is starting and they are

participants of it.

Now the application executes transactionally and transparently two operations across heterogeneous data

stores. The applications firstly reads some value X from the key value data store and them all rows in table

someTable.someColumn in the SQL data store. Finally the transaction commits. Every executed step could

have failed, in such case rollback is invoked and the transaction is aborted. We describe now each of the executed

steps one.

Algorithm 1 System bootstrap

1. DSClient = connect(jdbcUrl)
2. DSClientB = connect(keyV alueConnectUrl)
3. LTMc = new LTMc()
4. LTMc.register(DSClient)
5. LTMc.register(DSClientB)

Algorithm 2 Transaction execution example

1. Cnx = LTMc.getConnection()
2. TxnCtx = Cnx.startTransaction()
3. TxnCtx.associate(DSClient)
4. TxnCtx.associate(DSClientB)
5. val = DSClient.read(X)
6. sqlStmt = ”update someTable set
someColumn = val”

7. DSClientB.execute(sqlStmt)
8. TxnCtx.commit()

Fig. 3. System bootstrap and transaction execution example

8 http://hbase.apache.org
9 http://www.leanxcale.com



Cnx.startTransaction: Algorithm 3 creates a TxnCtx. The LTMc obtains a start timestamp and a context id and

populates the TxnCtx object with them. This timestamp is the Snapshot Isolation version of the data that transaction

will observe. The context id is used to globally uniquely identify this transaction.

TxnCtx.associate: Algorithm 4 associates a particular data store client to a TxnCtx. The association tells the LTMc
that these particular data stores participate in the transaction execution. Data stores are also notified that a new

transaction is starting and they are participants of it. Data store implementation of notifyStartTransaction may

vary depending on the data store nature. A non-transactional data store like HBase, just creates some internal data

structure to keep track of the updates performed by the transaction. A SQL data store like LeanXcale, creates a

SQL transaction and it is mapped to the CoherentPaaS global transaction. Either of the possible paths, the transac-

tion context object is kept in a thread local variable. This decision was carefully though as usually transactions are

executed by a single thread and thus there is no need to break the data store client API providing the transaction

context in the signature of data store methods.

Algorithm 3 Cnx.startTransaction()
1. TxnCtx = new TxnCtx()
2. st = LTMc.getStartT imestamp()
3. txnCtxId = LTMc.getTxnCtxId()
4. ctx.startT imestamp = st
5. ctx.txnCtxId = txnCtxId
6. return TxnCtx

Algorithm 4 TxnCtx.associate(TransactionalDSClient)
1. TxnCtx.addToInvolvedDataStore(TransactionalDSClient)

{make the data store client participant of this transac-

tion}

2. TransactionalDSClient.notifyStartTransaction(TxnCtx)
{notify the data store client that is participant of the

transaction }

Fig. 4. Transaction start (3) and data store association to transactions (4).

DSClient.read(X): Algorithm 5 illustrates a simplification of the read operation. We assume the API does not

change, but instead, the implementation needs to be extended to obtain the start timestamp and the transaction

context id (lines 1 and 2). Then the native read is executed. Data stores that fully delegate the transaction process-

ing on the CoherentPaaS , which is the case of HBase, retrieve the version corresponding to the provided start

timestamp with the value of X. Data stores that delegate the transaction coordination to the CoherentPaaS trans-

action manager simply inform the global transaction context id. On the server side, this global transaction context

id is mapped to an internal transaction and the operation is executed on the context of this internal transaction. In

our example from Algorithm 2 (line 5), the transaction executes a simplified version of the read operation of the

key value data store.

An extension of the read API that receives the context as a parameter is provided for multi-threaded envi-

ronments such as the common query engine. In this case, the transaction context is resolved directly from the

parameter instead of the thread local variable.

DSClient.write(X): Algorithm 6 illustrates a simplified version of the write operation. Likewise read(X), We

assume the API does not change, but instead, the implementation needs to changed to save the private version of

the data item in some internal data structure (lines 6 to 10). Recall that private versions are visible only to the

transaction that generates them and become public at commit time. Depending on the implementation, private

versions may be kept on the client side or on the server side. In our example from Algorithm 2 (line 6 and 7), the

transaction executes a simplified version of an update SQL statement on the JDBC client. Since the statement may

update more than one item, a new private version of each data item is generated.

Apart for keeping the private version, and since under Snapshot Isolation the transaction manager needs to

check for write-write conflicts, data stores that fully delegate the transactional processing on the CoherentPaaS

transaction manager invoke the checkWriteWriteConflict service of the LTMc. If a conflict is found, an error

is thrown and the transaction needs to be aborted. Data stores that only delegate transaction coordination perform

write write conflict checking on the server side. If a conflict is found, the data store returns an error signal and the

transaction is aborted.

Likewise read(X), an extension of the write API that receives the context as a parameter is provided for

multi-threaded environments such as the common query engine. In this case, the transaction context is resolved

directly from the parameter instead of the thread local variable.



DSClient.write(X): Algorithm 6 illustrates a simplified version of the write operation. Likewise read(X), We

assume the API does not change, but instead, the implementation needs to changed to save the private version of

the data item in some internal data structure (lines 6 to 10). Recall that private versions are visible only to the

transaction that generates them and become public at commit time. Depending on the implementation, private

versions may be kept on the client side or on the server side. In our example from Algorithm 2 (line 6 and 7), the

transaction executes a simplified version of an update SQL statement on the JDBC client. Since the statement may

update more than one item, a new private version of each data item is generated.

Algorithm 5 DSClient.read(x)
1. st = TxnCtx.getStartT imestamp()
2. txnCtxId = TxnCtx.getTxnCtxId()
3. val = executeNativeReadForV ersion(x, st, txnCtxId)
4. return val

Algorithm 6 DSClient.write(x, val)
1. ctxId = TxnCtx.getTxnCtxId()
2. conflict = LTMc.checkWriteWriteConflict(x)
3. if conflict == true then
4. return abort on conflict
5. else
6. ws = getPrivateWS(tid)
7. if ws is empty then
8. ws = createPrivateWS(tid)
9. end if

10. ws.addPrivateV ersion(x, val, ctxId)
11. return
12. end if

Fig. 5. Implementation example of DSClient.read(x) and DSClient.write(x, val).

TxnCtx.commit: In our example, Algorithm 2, the commit method is invoked and the commit phase is started

after the transaction code is executed (line 8). The commit process is described in Algorithm 7. The first step is

to certificate that the transaction is conflict free. This is done by invoking the LTMc.certificate function. If there

is not any conflict, the transaction may proceed to the next step otherwise an error is thrown and the transaction

is aborted. Likewise in the commit process from Figure 1, the next step in commit phase is to persist the global

transaction write-set in a durable log. Involved data stores are requested to provide the private write set, invoking

getWS, in an array of bytes, the arrays of bytes are concatenated producing a unique and global array of bytes

(lines 7 to 9). Data stores that delegate the transaction coordination to the CoherentPaaS transaction manager

provides a byte array with a different semantic. The byte array is a handle to an internal commit log record. Also,

some of these data stores perform conflict checking at commit time. If there is a write-write conflict getWS
returns an error and the transaction is aborted.

Read only transactions produce an empty write-set . If so, the transaction does not need to go through the com-

mit process. Every data store is simply informed to cleanup temporary data (TransactionalDSClient.terminate,
lines 18 to 20) associated to the transaction and the transaction is terminated.

Update transactions follow a different path. A commit timestamp is obtained from the CoherentPaaS Holistic

Transaction Manager. This timestamp is used to label the private versions of the write-seton the data stores.

Subsequently, the provided write-set’ are concatenated and the global array of bytes is persisted in the log (lines

11 and 12). This is a no way back point. The transaction is considered to be durable and it must survive any kind

of failure.

Once the transaction is durable, updates are reflected on the data stores. Involved data stores are requested to

apply the write set, by invoking applyWS. Both getWS and applyWS implementations depend on the data store

nature. Once the write-setare reflected on the data stores, the transaction is considered to be readable.

Note that a data store failure results in an error when applyWS is invoked. Since the transaction is considered

to be durable, and in consequence committed, this is simply ignored. write-set will be applied when the data store

is recovered.

Finally, the LTMc informs that the transaction has been committed successfully. The transaction context id

and the commit timestamp of the committed transaction are propagated to the CoherentPaaS holistic transaction

manager. The transaction manager updates the conflict’s table and eventually make this new version visible. Recall

that he updates of a transaction Ti are visible to some transaction Tj when ST (Tj ≥ CT (Ti).

TxnCtx.rollback: In our example, Algorithm 2, instead of invoking commit the application could have decided to

abort the transaction. This would have been done by invoking abort. The abort process is described in Algorithm



8. The procedure ask involved data stores and the LTMc to cleanup temporary data associated to the transaction

(private write set, TxnCtx). Since the propagation of the updates to the data stores takes after the transaction

is marked as durable the cleanup is trivial. Data stores that delegate only the coordination of the transaction

management, the abort process is mapped to an internal transaction abort execution.

Algorithm 7 TxnCtx.commit()

1. ctxId = ctx.getTxnCtxId()
2. conflict = LTMc.certificate(TxnCtx)
3. if conflict == true then
4. return abort on conflict
5. end if
6. ws = {}
7. for dsc in TxnCtx.getInvolvedDS() do
8. ws.append(dsc.getwrite-set(ctxId))
9. end for

10. if ws is not empty then
11. ct = LTMc.getCommitT imestamp()
12. LTMc.commitToLog(ws, ct, ctxId)
13. for dsc in TxnCtx.getInvolvedDS() do
14. dsc.applyWS(ct, ctxId)
15. end for
16. LTMc.commitTxn(txnCtxId, ct)
17. else
18. for dsc in TxnCtx.getInvolvedDS() do
19. dsc.terminate(ctxId)
20. end for
21. end if
22. return

Algorithm 8 TxnCtx.rollback()
1. ctxId = ctx.getTxnCtxId()
2. for dsc in TxnCtx.getInvolvedDS() do
3. dsc.rollback(ctxId))
4. end for
5. LTMc.rollback(TxnCtx))
6. return

Fig. 6. Implementation of commit and abort.

4.3 Recovery

In order to satisfy the durability property of the ACID acronym, the system must be able to survive after failures.

During the recovery phase, the CoherentPaaS transaction manager opens the log file where the write-setare kept.

Write-sets are read one by one and the LTMc requests the data store clients to redo the write-set. Data stores

implement the redoWS function. redoWS receives the write-set provided at commit time, the transaction context

id and the commit timestamp. The data store is in charge to recover the write-set from the array of bytes and apply

the updates on the backing data store.

4.4 Failure scenarios

As stated in Section 4, CoherentPaaS transactions start from the moment the application invokes the startTrans-
action method. Then, the application associates one or more data store clients to the transaction. The application

issues data manipulation operations on the different data stores. Changes made by the transaction (write-set) are

kept as private versions on the data stores and are only visible to the transaction. Other transactions do not observe

these updates until the transaction commits. When the application invokes the commit method, the following steps

are executed:

1. Acquire a commit timestamp

2. Getting the write-set from each data store and persisting the transaction global write-setin the log. After this

step is completed, the transaction is said to be committed,

3. Apply the write-set , that is, request every data store to make the private versions to become public

4. Inform the commit timestamp to the holistic transaction manager. This makes that the newly generated ver-

sions to become visible to other transactions.



The different components of CoherentPaaS participating in a transaction run on a distributed system, therefore,

failures might affect to one or more components simultaneously. Any failure on any component that happens

before the second step of the commit is completed, triggers the transaction rollback. After the second step is

completed, the transaction is considered to be committed. The recovery process undoes the effects of aborted

transactions and completes the transactions that executed successfully the second step.

4.5 Local Transaction Manager Client failures

Local Transaction Manager Client orchestrates the transaction life cycle. Internally it keeps a connection to every

component of the CoherentPaaS transaction manager. It also keeps track every active transaction context object.

LTMc persists the write-set of transaction on the transaction manager. Every transaction persisted is considered

to be committed. When a LTMc fails all non-committed transactions are aborted.

When a LTMc is restarted after a failure, it connects to the CoherentPaaS transaction manager. Then, all data

store clients registered on the LTMc, see Algorithm 1. The data store clients are registered at bootstrap to run the

recovery process before making the system available to the application.

The recovery process is described in Algorithm 9. First, the log file is open (line 1). The recovery process starts

reading one by one the log records from log file (line 2). The log record contains the following information: the

transaction context id, the commit timestamp and the global write-set (the concatenation of all data store’ write-
set). The first byte of the write-set contains the data store id, dsID. The data store id is used to identify the data

store at commit time.

For each log record, the LTMc reads one by one the write-set (line 6 to 10). For each write-set , the data store

id is retrieved in order to know what data store has to redo the transaction. The data store is requested to redo the

write-set , by the invocation of the redoWS.

Once the complete log record is reflected on the data stores, the LTMc informs the successfully committed

transaction id and commit timestamp to the CoherentPaaS transaction manager to update the conflict’s table and

the snapshot isolation counter.

An observer reader may have observed already that a write-set could be applied more than once. Since we run

snapshot isolation, overwriting some version of some data item is an idempotent operation. So no new values are

generated every time redoWS is invoked.

4.6 Data store failures

When a data store is restarted after a failure, it performs its internal recovery process and afterwards they are

registered back in the LTMc. The LTMc triggers a data store recovery process, similar to the one described on

the LTMc recovery process. The log file is open and it is iterated to read every log record, but instead of redoing

all the write-set of the log record, only the recovering data store write-set, identified by recoveringDsID, are

applied. The Algorithm 10 shows the recovery protocol executed by the LTMc when a data store is restarted and

registered in the LTMc.

5 Conclusions and Future Work

We have presented a protocol to enhance transaction consistency semantics across heterogeneous data stores. The

protocol dotes non-transactional data stores, such as MongoDB or HBase, with full ACID semantics compliance

providing the dominant isolation level in the database market, Snapshot Isolation. Transactional data stores like

LeanXCale, MonetDB have been easily incorporated to the platform extending their transactional engines to par-

ticipate in CoherentPaaS transactions in a consistent and transparent manner to application developers.

We have extended the CumuloNimbo [6] transactional engine to support multiple data stores and we have

defined and implemented an API to homogeneously integrate heterogeneous data stores. Data stores have imple-

mented this API and implemented multi-versioning in the backing store to be able to support Snapshot Isolation.

We plan to do an exhaustive evaluation to measure the overhead of the transactional system on each data store

individually. The evaluation will consist in running the Yahoo! Cloud Serving Benchmark (YCSB) [10], which

is the de facto benchmark for cloud data stores. The evaluation will run the benchmark with different workloads

(read-only, update-only, read and update with different percentages of each operation type) for every data store.

Each data store will be evaluated with and without transactional support, thus we can measure the real overhead

of our transactional system. Data stores that have implemented multi-versioning will be also evaluated with and

without multi-versioning support to detect improvements opportunities in our implementation.



Algorithm 9 LTMc recovery

1. logF ile = LTMc.openLogF ile(ltmcId)
2. while not EOF logF ile do
3. logRecord = logF ile.next()
4. ct = logRecord.commitT imestamp
5. txnCtxId = logRecord.txnCtxId
6. for ws in logRecord do
7. dsID = ws.id
8. dsClient = LTMc.getDataStoreClient(dsID)
9. dsClient.redoWS(txnCtxId, ct, ws)

10. end for
11. LTMc.commitTxn(txnCtxId, ct)
12. end while
13. return

Algorithm 10 Data store recovery

1. logF ile = LTMc.openLogF ile(ltmcId)
2. while not EOF logF ile do
3. logRecord = logF ile.next()
4. ct = logRecord.commitT imestamp
5. txnCtxId = logRecord.txnCtxId
6. dsClient = LTMc.getDataStoreClient(recoveringDsID)
7. for ws in logRecord do
8. dsID = ws.id
9. if dsID == recoveringDsID then

10. dsClient.redoWS(txnCtxId, ct, ws)
11. break
12. end if
13. end for
14. LTMc.commitTxn(txnCtxId, ct)
15. end while
16. return

Fig. 7. Implementation of the recovery protocol
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