
Reliable Broadcast in Anonymous Distributed
Systems with Fair Lossy Channels

Jian Tang∗, Mikel Larrea†, Sergio Arévalo‡, and Ernesto Jiménez‡§

∗Distributed Systems Laboratory (LSD), Technical University of Madrid, 28031 Madrid, Spain
Email: tjapply@gmail.com

†University of the Basque Country UPV/EHU, 20018 San Sebastián, Spain
Email: mikel.larrea@ehu.es

‡Technical University of Madrid, 28031 Madrid, Spain
§Prometeo Researcher, EPN, Ecuador

Email: {sergio.arevalo, ernes}@eui.upm.es

Abstract—Reliable Broadcast (RB) is a basic abstraction in
distributed systems, because it allows processes to communi-
cate consistently and reliably to each other. It guarantees that
all correct process reliable deliver the same set of messages.
This abstraction has been extensively investigated in distributed
systems where all processes have different identifiers, and the
communication channels are reliable. However, more and more
anonymous systems appear due to the motivation of privacy. It
is significant to extend RB into anonymous system model where
each process has no identifier. In another hand, the requirement
of reliable communication channels is not always satisfied in real
systems. Hence, this paper is aimed to study RB abstraction in
anonymous distributed systems with fair lossy communication
channels.

In distributed systems, symmetry always mean that two sys-
tems should be considered symmetric if they behave identically,
and two components of a system should be considered symmetric
if they are indistinguishable. Hence, the anonymous distributed
systems is symmetry. The design difficulty of RB algorithm lies
in how to break the symmetry of the system. In this paper,
we propose to use a random function to break it. Firstly, a
non-quiescent RB algorithm tolerating an arbitrary number of
crashed processes is given. Then, we introduce an anonymous
perfect failure detector AP ∗. Finally, we propose an extended
and quiescent RB algorithm using AP ∗.

Index Terms—Anonymous distributed system, asynchronous
system, reliable broadcast, fair lossy communication channels,
failure detector, quiescent.

I. INTRODUCTION

Reliable Broadcast (RB) is a fundamental service in
distributed systems that helps to build reliable distributed
applications. It is used to disseminate messages among a set
of processes with RB-broadcast() and RB-deliver() operations,
which was introduced in [1]. In short, RB is a broadcast service
that requires all non-crashed processes deliver the same set of

This research is partially supported by the Community of Madrid, under
grant CLOUD4BIGDATA (S2013/ICE-2894), the Spanish Research Council,
under grants TIN2013-41123-P and TIN2013-46883-P, the Basque Govern-
ment, under grant IT395-10, the University of the Basque Country UPV/EHU,
under grant UFI11/45, the scholarship of Chinese Scholarship Council, and
SENESCYT, Ecuador.

messages, and that all messages sent by non-crashed processes
must be delivered by all non-crashed processes.

This service as has been extensively studied in classic
distributed systems, i.e., in which each process has a unique
identifier ([2], [3], [4]). On the other hand, this study in anony-
mous distributed systems, i.e., processes have no identifiers
and are programmed identically [5], has few result. In [6],
the RB abstraction has been studied in anonymous distributed
systems with reliable communication channels. Anonymity is a
new and challenging point in distributed computing. In classic
message-passing distributed systems, processes communicate
with each other by passing messages. Because they all have
unique identifiers, senders can choose the recipients of their
messages, and recipients are aware of the identities of the
senders of messages they receive [7]. However, all these rules
have to be changed in anonymous distributed systems. In
anonymous systems, when a process receives a message, it
can not distinguish this message comes from which sender.
The difficulty in the design of any distributed algorithms
in anonymous systems lies in how to break the symmetry
of system, i.e., how to distinguish messages from the same
process or different processes. In the literature, there are
three main methods used to break symmetry in anonymous
distributed systems: randomization [8], leader election [9], and
direction sensitive [10]. Informally, randomization means that
there is a random function subject to a distribution which is
used to give random name to each process; leader election
is a deterministic form of symmetry breaking that an elected
leader can assign names to processes, count the number of
processes of the system, etc.; direction sensitive refers to that
each process has local port number, it senses the message
received or sent from/to which port.

The development of anonymous distributed systems is very
quick. In general, this trend is caused by two important
reasons: privacy and practical constraints. In some distributed
applications, like peer-to-peer file systems, users do not want
to be identified [11]. Other applications that use sensor net-
works has constraints in where a unique identity is not possible

to be included in each sensor node (due, for example, to
small storage capacity, reduced computational capacity, or a
huge number of elements to be identified) [12]. As we have
known, the first paper studied about anonymous systems was
addressed by D. Angluin [13]. Then, lots of paper appeared
in this field, as ring anonymous networks, and shared memory
anonymous systems ([14], [15], [16], [17]).

Moreover, the study of RB (no matter in classic or anony-
mous distributed systems) usually assume that the communi-
cation channels are reliable (if a process p sends a message
to a process q, and both p and q are correct, then q eventually
receives m). However, most of the communication channels
in real systems are unreliable (e.g., fair lossy, which means
that if a message is sent an arbitrary but finite number of
times, then there is no guarantee on its reception, because
the channel can lose an infinite number of messages [18]). In
this regard, several works have addressed the issue of how to
construct reliable channels over unreliable channels in classic
distributed systems [18], [19]. To the best of our knowledge,
RB has not been studied in anonymous distributed systems
with unreliable channels.
Our Contributions This is paper is devoted to the implemen-
tation of Reliable Broadcast abstraction in anonymous asyn-
chronous message-passing systems that processes are crash
prone and communication channels are fair lossy. We have
two main contributions:
• The paper proves that Reliable Broadcast abstraction can

be implemented in anonymous asynchronous system with
fair lossy communication channels and any number of
correct processes. Two implementation algorithms (non-
quiescent and quiescent) and corresponding proofs are
given in this paper. Besides, in these algorithms, every
process is not necessary to know the total number of
processes in the systems.

• A new class of anonymous failure detector AP ∗ is
proposed. This failure detector outputs a set of paris of
label and number, where the label represents a temporal
identifier of a process (ID is used in the failure detector
layer) and the number represents the number of pro-
cesses who have known this label (in the failure detector
layer). The information of correct processes from this
AP ∗ is used to make the Reliable Broadcast algorithm
to be quiescent.

Roadmap This paper is organized as follows. The system
model and several definitions are presented in Section 2. One
non-quiescent algorithm is proposed in section 3 to implement
Reliable Broadcast abstraction in the model of anonymous
asynchronous systems with fair lossy channels. In Section 4,
a new class of failure detector AP ∗ is defined firstly, then a
quiescent Reliable Broadcast implementation algorithm with
AP ∗ is given. Finally, this paper is concluded by the Section
5.

II. SYSTEM MODEL AND DEFINITIONS

In this paper, an anonymous asynchronous system is con-
sidered as a system in which processes have no identifiers and

communicate with each other via fair lossy communication
channels. Two primitives are used in this system to send and
receive messages: broadcast() and receive(). We say that a
process pi broadcasts a message m to all processes (including
itself) when it invokes broadcasti(m); a process pi receives
a message m when it invokes receivei(m). Note that in
an anonymous distributed system, when a process receives
a message m it cannot determine who is the sender of m.
Finally, we assume that there is a global clock whose values
are natural numbers, but processes cannot access it.

Process All processes are anonymous, that means they have
no identifiers and execute the same algorithm. Furthermore,
all processes are asynchronous, that is, there is no assumption
on their respective speeds. In this paper, the anonymous
distributed system is constituted by a set of n anonymous
processes, denoted as Π = {pi}i=1,...,n, such that its size is |Π|
= n. We consider that i(1 ≤ i ≤ n) is the index of each process
of the system. This index cannot be known by processes, it
is just used as a notation to simplify the description of the
algorithm.

There is a global clock T whose values are positive natural
numbers. Note that T is an auxiliary concept that we only use
it for notation, but processes cannot check or modify it.

Failure model A process stops to execute the algorithm
any more is crashed. A process that does not crash in a run is
correct in that run, otherwise it is faulty. We use Correct
to denote the set of correct processes in a run, and Faulty
to denote the set of faulty processes. A process executes its
algorithm correctly until it crashes. A crashed process can not
execute any more statements or recover.

Communication Each pair of processes are connected by
bidirectional fair lossy communication channels. A commu-
nication channel between two processes p and q is called as
fair lossy communication channel if it satisfies the following
properties [20]:
• Fairness: If p sends a message m to q an infinite number

of times and q is correct, then q eventually receives m
from p.

• Uniform Integrity: If q receives a message m from p, then
p previously sent m to q; and if q receives m infinitely
often from p, then p sends m infinitely often to q.

Processes communicate among them by sending and receiv-
ing messages through these channels. We assume that these
channels neither duplicate nor create messages, but may lost
messages.

Reliable Broadcast Reliable Broadcast is one type of fault-
tolerant broadcast service in distributed systems. It requires
that all correct processes deliver the same set of messages, and
that all messages sent by correct processes must be delivered
to all correct processes. Formally, reliable broadcast is defined
by two primitives: RB broadcast(m) and RB deliver(m).
They satisfy three properties as follows:
• Validity: If a correct process broadcasts a message m,

then it eventually delivers m.

• Agreement: If a correct process delivers a message m,
then all correct processes eventually deliver m.

• Uniform Integrity: For any message m, every process
delivers m at most once, and only if m was previously
broadcast by a process.

Note that Validity and Agreement imply that all correct pro-
cesses deliver all the messages broadcast by correct processes.

Failure Detector The failure detector is a module that pro-
vides each process a read-only local variable containing failure
information (may be unreliable) of processes. The notion of
failure detector is proposed and developed by Chandra and
Toueg in their seminal paper [21]. The failure detector is
defined by the completeness and accuracy properties. A failure
detector history H is a function from Π×T to 2Π. H(p, t) is
the value of the failure detector module of process p at time
t. If q ∈ H(p, t), it means that p suspects q at time t in H .

Each process has access to its local failure detector for ob-
taining failure information of processes. They can be divided
into different classes according to the quality of information
they give. A failure detector can make mistakes by wrongly
suspect a running process as a crashed one or does not
suspect a really crashed process. Hence, the failure detector
may repeatedly trust or suspect one process. This character
of failure detector implies that any two failure detector of
different processes may provide different failure information.

Notation The system model is denoted by either AAS Fn,t[∅]
or AAS Fn,t[D]. AAS F is an acronym for anonymous
asynchronous message passing distributed system with fair
lossy communication channels; ∅ means that there is no
additional assumption, while D means that the system is
enriched with a failure detector of class D. The variable n
represents the total number of processes in the system, and t
represents the maximum number of processes that can crash.

III. IMPLEMENTING RELIABLE BROADCAST IN
AAS Fn,t[∅]

In this section, we present an algorithm implementing
Reliable Broadcast abstraction in anonymous asynchronous
systems with fair lossy communication channels. This algo-
rithm can run independently of the number of faulty processes.

In anonymous systems, processes have no identifiers making
the design of Reliable Broadcast algorithm very difficult. In
order to solve this difficulty, we summarize the main challenge
firstly. It is well known that each message can be identified
by both the identifier of its sender and a sequence number
in classic systems. However, in anonymous systems, it is
impossible to use the identifier of process (because processes
do not have identifiers) or to distinguish all identical messages
only by a sequence number (because different process may
use the same one). If a process receives a message, it does
not know where it comes from. The obvious idea, like most
works in the literature, is to assign an identifier to each process,
and then run the algorithm of eponymous distributed systems.
In fact, this method has broken the anonymity of the system
that a process can be tracked by its message flow. Because

a fixed identifier is attached to all messages RB-broadcast by
one process. The possibility of successful tracking is elevated
by the Big Data and Cloud Computing technologies. This
has been confirmed by the state of the art research result of
MIT [22]. In another words, the anonymity gained by the way
of hiding the identifiers of processes is not real anonymity.
Then, we give a definition of anonymity:

In distributed systems, anonymity means that processes have
no identifier, and also means that the relationship between
messages and their senders are unknown and untrackable.

According to this definition, the system is not really anony-
mous if identifiers are assigned to processes that the relation-
ships between message and its sender can be tracked.

In fact, to handle the design difficulty of Reliable Broad-
cast algorithm in anonymous systems without breaking the
anonymity, we do not necessarily need the identifiers of
processes or assign identifiers to them. Instead, what we
really need is the capability to make every message in the
system to be unique (break the symmetry of systems). In
this paper, we propose that each process manages a random
function to assign a unique one-time label to each message.
When one process reliable broadcasts a message, the local
random function of this process generates a random number
which will be piggybacked as a label (denoted by tag) to this
message. Note that, this unique label will neither be used as an
address for sending messages nor to identify a certain process.
Moreover, it is assumed that neither one random function
nor two can generate identical label assigned to two different
messages.

Though the probability of assigning a unique label to each
message is very high, this assignment does not break the
anonymity of the system that no process knows the mapping
relationship between a tag and a process. Moreover, according
the result of [10] and [23], a simple probabilistic analysis using
a well known “birthday paradox” shows that the probability
of a collision is nearly zero if 100 concurrent processes in a
very large-scale system draw from a 128-bit field. Following
this result, processes RB-broadcast messages with an identical
label in one instance is really low. Moreover, in order to
avoid the collision in different instances, each process has a
variable to record the last sequence number of the message
broadcast by itself. With these two parts, a process first draw
a random number, then piggyback a sequence number obtained
by increasing the last sequence number by 1.

Figure 1 presents the algorithm in detail, each process owns
a random function random() which is used to assign a unique
tag to every message before to broadcast it. In order to
facilitate the description, let’s consider a process pi (index
i is used just for description, no process knows which process
is pi, even itself).

Description of the algorithm:

Every process pi manages two local sets:

• MSGi, which records all messages either broadcast or
received by pi.

• RB DELIV EREDi, which records all messages reli-

1 Initialization
2 sets MSGi, RB DELIV EREDi empty
3 activate Task 1

4 When RB broadcasti(m) is executed
5 tag ← randomi()
6 insert (m, tag) into MSGi

7 When receivei(MSG, m, tag) is executed
8 if (m, tag) is not in MSGi then
9 insert (m, tag) into MSGi

10 end if
11 if (m, tag) is not in RB DELIV EREDi then
12 insert (m, tag) into RB DELIV EREDi

13 RB deliveri(m)
14 end if

Task 1:
15 repeat forever
16 for every message (m, tag) in MSGi do
17 broadcasti(MSG, m, tag)
18 end for
19 end repeat

Figure 1. Reliable Broadcast in AAS Fn,t[∅] (code of pi)

ably delivered by pi.

The algorithm works as follows:
Initially, MSGi and RB DELIV EREDi are set to

empty, and Task 1 is activated (lines 1-3). When pi calls
RB broadcasti(m) (line 4), its randomi() generates a ran-
dom tag for m firstly (line 5). Then, pi inserts (m, tag) into
MSGi (line 6), so that m will be broadcast periodically to all
processes in Task 1 (lines 15-19).

When receivei(MSG, m, tag) is executed (line 7), pi
inserts (m, tag) into MSGi if this is the first reception
of m (lines 8-10). Then, pi checks whether m has already
been delivered or not (line 11). If not, pi inserts m into
RB DELIV EREDi and then reliably delivers it (lines 12-
13).

In Task 1, every message in MSGi is periodically broadcast
by pi in order to overcome the message losses caused by the
fair lossy communication channels.
Correctness Proof:
Lemma 1: If a correct process RB broadcast a message m,
then it eventually RB deliver m. (Validity)

Proof: Let us consider a non-fault process pi (i is
used for description, no process knows which process is pi)
that invokes RB broadcast(m). It firstly generates a unique
random number as a tag to this message m (Line 5), then
inserts (m, tag) into its set MSGi to broadcast it to all
processes (included itself) (Lines 6, 15-19). For pi is correct,
this Task 1 will execute forever to disseminate m (broadcast
infinite times). Then, together with the fairness property of fair
lossy communication channels, pi will receive m eventually
(by itself). Because this is the first reception of m and m has
not been RB delivered before by pi, pi RB deliver() m
one time(Lines 11-14). We finish the proof of this Lemma 1.

Lemma 2: If a correct process RB deliver a message m,
then all correct process eventually RB deliver m. (Agree-
ment)

Proof: Let us assume, by the way of contradiction, that
the claim is not true. It means that if a correct process pi has
delivered a message m, then, eventually there exists at least
one correct process does not deliver it.

We suppose that pi has Rb delivered m. According to the
algorithm (Line 6), m must be inserted into the set MSGi by
pi when RB broadcasti(m) is called before RB deliver()
it. And pi is a correct process, it executes Task 1 forever to
broadcast every message (including (m, tag)) that existed in
its set MSGi to all processes (Lines 15-19). According to the
property of fair lossy communication channel, if a message is
broadcast an infinite times by a correct process, this message
must be received by one correct process eventually. If the
assumption is correct that there exists one correct process
does not deliver m which means that this correct process does
not receive m, then we get a contradiction here. Hence, the
assumption is incorrect, and we complete the proof of Lemma
2.

Lemma 3: For any message m, every correct process
RB deliver m at most once, and only if m was previously
RB broadcast by sender(m). (Integrity)

Proof: The second part of this lemma that any message
m was previously RB broadcast by its sender is trivial, due
to the fact that each process only forward messages it has
received and fair lossy channels do not create, duplicate, or
garble messages.

Then, we focus on the proof of the first part of this lemma. It
is supposed that each message has a unique tag, and together
with that each process has a set RB DELIV EREDi to
record all messages that have delivered (Line 12). Even though
each message can be broadcast forever by correct processes
and will be received by every correct process for infinite times
(Lines 15-19), every message has to be checked whether it has
already been RB delivered when it is received by a correct
process. So, the set RB DELIV EREDi guarantees that no
message m will be RB delivered more than once. We finish
the proof of Lemma 3.

Theorem 1 Algorithm 1 guarantees the property of reliable
broadcast.

Proof: According to Lemma 1, 2 and 3, it is trivial to see
that Theorem 1 is correct.

IV. IMPLEMENTING RELIABLE BROADCAST QUIESCENTLY
IN AAS Fn,t[AP

∗]

Observe that the algorithm of Figure 1 is non-quiescent due
to the permanent periodical broadcast of received messages
in Task 1. Hence, in this section we address the design
of a quiescent algorithm implementing Reliable Broadcast.
The approach followed consists in eventually deleting every
message from the set MSG. According to the properties of
Reliable Broadcast, the periodical broadcast of Task 1 could
be safely terminated when all the messages RB delivered
by any correct process have been received by all correct
processes. In other words, we could delete a message from the
set MSG when it has been received by all correct processes.

Based on the previous, the design of a quiescent algorithm is
reduced to the following two sub-problems: (i) determining the
set of all correct processes in the system, and (ii) confirming
that a message has been received by all processes in this
set. We will address the first sub-problem with a failure
detector, and then use it to solve the second sub-problem
algorithmically.

A. Failure Detector AP ∗

The failure detector abstraction, proposed by Chandra and
Toueg [21], provides (possibly unreliable) failure information
of processes. It is defined by both completeness and accuracy
properties. In non-anonymous distributed systems, the failure
information is usually composed of the identifiers of processes.
However, in anonymous distributed systems processes have
no identifiers. Hence, the main difficulty in defining a failure
detector for anonymous distributed systems is how to give
meaningful failure information about processes without iden-
tifiers. In this regard, we follow the approach of the failure
detector AΣ, introduced by Bonnet and Raynal [24], that
assigns a random label to each process as a temporal identifier.
This assignment neither break the anonymity of systems nor
release the information of the relationship between a message
and its sender. Because failure detector is a separate modular
and the assignment is deployed inside this modular. In other
words, the mapping relationship of a process and a label is
packed inside of the failure detector forever.

As mentioned before, a process pi can delete a message m
from its MSGi when it has received acknowledge messages to
this m from all correct processes. So, the failure detector has
to output the information of all correct processes. It means that
this failure detector must have a strong completeness property
that eventually correct processes do not trust any process that
crashes1, and a strong accuracy property that a process cannot
be trusted once it is crashed (may be need a little time).

We define a perfect anonymous failure detector AP ∗ (the
anonymous counterpart of Chandra-Toueg’s perfect failure
detector P) that satisfies strong completeness (eventually all
correct processes are permanently trusted by every correct
process) and strong accuracy (eventually correct processes do
not trust any process that has crashed). AP ∗ provides each
process pi with a read-only local variable a p∗i that contains
pairs (label, number), where label is a temporal identifier of
a process and number is the number of correct processes who
have known label. For example, if process pj’s local variable
a p∗j contains {(label1, number1), ..., (labeli, numberi), ...,
(labeln, numbern)}, it means that pj has known the labels of
n processes and the corresponding number of correct processes
who have known each label. The definition of AP ∗ is as
follows:

• AP ∗-completeness: There is a time after which a p∗

permanently contains pairs of (label, number) associated
to all correct processes.

1We use the complement of a suspicion to describe strong completeness.

• AP ∗-accuracy: If a process crashes, the label of this
process and the corresponding number to this label will
be permanently deleted from a p∗.

More formally:
S(label)τ = {pi : (label, −) ∈ a p∗i

τ}. S(label)τ is the set
of all processes who have known label at time τ .
• AP ∗-completeness: ∃τ ∈ N, ∀pi ∈ Correct, ∀τ ′ ≥ τ ,
∀(label, number) ∈ a p∗i

τ ′ : |S(label)τ
′ ∩ Correct| =

number.
• AP ∗-accuracy: ∀pi, pj ∈ Π, pi ∈ Correct, pj ∈
Faulty, ∃τ , ∀τ ′ ≥ τ : (labelj , numberj) /∈ a p∗i

τ ′ .
Note that eventually the number of pairs (label, number)

output is equal to the number of correct processes. Moreover,
the assignment of labels does not break the anonymity of
the system, because labels are assigned and counted in the
failure detector implementation, and no process knows the
mapping relationship between labels and processes neither in
the Reliable Broadcast layer nor in the failure detector layer.

B. Quiescent Reliable Broadcast Algorithm in
AAS Fn,t[AP

∗]

With failure detector AP ∗, the first sub-problem (determin-
ing the set of all correct processes in the system) has been
solved. The second sub-problem (confirming that a message
has been received by all correct processes) can be solved by
making every process broadcast an “ACK” message when it
receives a “MSG” message. Based on this, a quiescent Reliable
Broadcast algorithm in AAS Fn,t[AP ∗] is given in Figure 2.

Description of the algorithm:
The algorithm works as follows. Now every process pi man-

ages four sets, initially empty: MSGi, RB DELIV EREDi,
MY ACKi (which records all tag ack generated by pi),
and ALL ACKi (which records all tag ack received by
pi). Similarly to the algorithm of Figure 1, when pi calls
RB broadcasti(m) (line 4), its randomi() generates a ran-
dom tag for m firstly (line 5). Then, pi inserts (m, tag) into
MSGi (line 6), so that m will be broadcast periodically to all
processes in Task 1 (lines 49-51).

When receivei(MSG, m, tag) is executed (line 7), pi
inserts (m, tag) into MSGi if this is the first recep-
tion of m (lines 7-12). After that, pi inserts (m, tag)
into RB DELIV EREDi and generates a random tag ack.
Then, pi broadcasts a reception acknowledgment message of
(m, tag), which is composed of both tag ack and label
information (read from a p∗i). After that, pi delivers m (lines
16-23). Otherwise, i.e., if an acknowledgment message of (m,
tag) is recorded in MY ACKi (line 13), then it means that
m has already been delivered by pi. In that case, pi just
broadcasts the recorded acknowledgment message of (m, tag),
but with the updated label information from a p∗i (lines 14-
15).

When process pi receives an acknowledgment message
(ACK, m, tag, tag ack, labelsj) from process pj (note that
pj could be pi itself), there are three cases to consider:

1 Initialization
2 sets MSGi, RB DELIV EREDi, MY ACKi, ALL ACKi empty
3 activate Task 1
4 When RB broadcasti(m) is executed
5 tag ← randomi()
6 insert (m, tag) into MSGi

7 When receivei(MSG, m, tag) is executed
8 if (m, tag) is not in MSGi then
9 if (m, tag) is not in RB DELIV EREDi

10 insert (m, tag) into MSGi

11 end if
12 end if
13 if (m, tag, tag ack) is in MY ACKi then
14 labelsi ← {label | (label, −) ∈ a p∗i }
15 broadcasti(ACK, m, tag, tag ack, labelsi)
16 else
17 insert (m, tag) into RB DELIV EREDi

18 tag ack ← randomi()
19 insert (m, tag, tag ack) into MY ACKi

20 labelsi ← {label | (label, −) ∈ a p∗i }
21 broadcasti(ACK, m, tag, tag ack, labelsi)
22 RB deliveri(m)
23 end if
24 When receivei(ACK, m, tag, tag ack, labelsj) is executed
25 if (m, tag, −, −) is not in ALL ACKi then
26 allocate array label counteri[(m, tag), −]
27 allocate array all labelsi[(m, tag), −]
28 end if
29 if (m, tag, tag ack) is not in ALL ACKi then
30 insert (m, tag, tag ack) into ALL ACKi

31 all labelsi[(m, tag), tag ack] ← labelsj
32 for each label ∈ labelsj do
33 label counteri[(m, tag), label] ← label counteri[(m, tag), label] + 1
34 end for
35 else
36 for each label in labelsj but not in all labelsi[(m, tag), tag ack] do
37 all labelsi[(m, tag), tag ack] ← all labelsi[(m, tag), tag ack] ∪ {label}
38 label counteri[(m, tag), label] ← label counteri[(m, tag), label] + 1
39 end for
40 for each label in all labelsi[(m, tag), tag ack] but not in labelsj do
41 all labelsi[(m, tag), tag ack] ← all labelsi[(m, tag), tag ack] \ label
42 delete label counteri[(m, tag), label]
43 for each label in both all labelsi[(m, tag), tag ack] and labelsj do
44 label counteri[(m, tag), label] ← label counteri[(m, tag), label] - 1
45 end for
46 end for
47 end if
48 Task 1:
49 repeat forever
50 for every message (m, tag) in MSGi do
51 broadcasti(MSG, m, tag)
52 if each pair of (label, number) ∈ a p∗i : label counteri[(m, tag), label] = number ∧ all labelsi[(m, tag), −] = {label | (label, −) ∈ a p∗i

} then
53 if (m, tag) is in RB DELIV EREDi then
54 delete (m, tag) from MSGi

55 end if
56 end if
57 end for
58 end repeat

Figure 2. Quiescent Reliable Broadcast in AAS Fn,t[AP ∗] (code of pi)

• pi receives for the first time an acknowledgment message
of (m, tag) (by checking whether (m, tag) is recorded or
not in the set ALL ACKi), which also means that this
is the first ACK message from process pj (one tag ack
represents one process). In this case, pi allocates an array
label counteri[(m, tag), −] (used to record the number
of processes who have known each label received in this
ACK message and related to (m, tag)), and an array
all labelsi[(m, tag), −] (used to record every label in
each ACK message related to (m, tag)) (lines 25-28).

• pi receives an ACK message coming from a new process
(by checking whether (m, tag, tag ack) is recorded or

not in ALL ACKi). (Observe that the previous case is
naturally included in this case, but this case considers not
only the very first ACK but later ACKs from others
processes). In this case, pi first inserts (m, tag, tag ack)
into ALL ACKi and labelsj into all labelsi[(m, tag),
tag ack]. After that, for each received label in labelsj ,
pi increases its count number by 1 (1 means that every
label is known by the process from which tag ack has
been received) (lines 29-34).

• pi receives a repeated ACK message (with the same
tag ack) (due to the periodical broadcast of messages
to cope with fair lossy channels). There are two mutually

exclusive cases: 1) repeated ACK with “more” (new)
label information (lines 36-39); 2) repeated ACK with
“less” label information (due to the accuracy property
of AP ∗, that may need some time to delete a label
corresponding to a crashed process) (lines 40-46). In case
1, for each new label, pi inserts it into all labelsi[(m,
tag), tag ack] and increases its count number by 1. In
case 2, for each disappeared label, pi deletes it from
all labelsi[(m, tag), tag ack] and its corresponding
label counter. Then, pi decreases the count number of
received labels by 1 (since it was not accurate due to the
ACK message from a faulty process).

In Task 1, for each pair of (label, number) in a p∗i , if
(1) the counted number of each label label counteri[(m, tag),
label] is equal to the corresponding output number of a p∗i
(which means that pi has received number different ACKs
(tag ack) of (m, tag)), and (2) the received labels related to
(m, tag) all labelsi[(m, tag),−] are equal to the output labels
of a p∗i {label | (label, −) ∈ a p∗i } (which means that the
received ACKs are from correct processes) (line 52), together
with the fact that (m, tag) has already been RB delivered,
then pi deletes (m, tag) from the MSGi set (line 54).

Correctness Proof:
Theorem 2. The algorithm of Figure 2 implements Reliable
Broadcast quiescently in AAS Fn,t[AP

∗].
Proof: The proofs of the Validity, Agreement and Uni-

form Integrity properties of Reliable Broadcast are straight-
forward. We will now prove the quiescence property of the
algorithm of Figure 2.

An algorithm is said to be quiescent when eventually no
process sends messages. In the algorithm of Figure 2, it is
obvious that the broadcast of ACK messages (lines 15 and 21)
is caused by the reception of MSG messages (line 7). Hence,
we only need to show that the number of broadcasts of MSG
messages is finite. Moreover, by nature a faulty process can
only broadcast a finite number of times each MSG messages.
Hence, the rest of the proof only focuses on showing that each
correct process broadcasts a finite number of times each MSG
message.

It is easy to see that the broadcast of MSG messages occur
only in Task 1. Let us consider two processes p (correct) and
q, such that p broadcasts (MSG, m, tag) periodically by Task
1.
• If q is correct, then eventually both p and q receive

this MSG due to the fairness property of fair lossy
communication channels. p RB delivers m when it
receives MSG for the first time. Also, by the algorithm
q broadcasts (ACK, m, tag, tag ack, labelq) every time
it receives MSG. By the fairness property of channels,
p will receive some of those ACK messages. According
to lines 29-47, p will count every label in the received
ACK from q, such that label counterp[(m, tag), labelq]
= 2 and label counterp[(m, tag), labelp] = 2. From the
properties of the failure detector AP ∗, the output of AP ∗p
is composed of label and number of correct processes,

e.g., [(labelq , 2), (labelp, 2)]. Then, the condition of line
52 is satisfied, and thus process p deletes (m, tag) from
MSGi and the repeated broadcast of the MSG message
is stopped, which proves that this case is quiescent.

• If q has crashed, then p will only receive ACK from
itself and together with the accuracy property of AP ∗p ,
the label and corresponding number of q will eventually
and permanently be removed from the output of AP ∗p .
Again, the condition of line 52 is satisfied, which proves
that this case is quiescent too.

The previous reasoning completes the proof of the quies-
cence property of the algorithm of Figure 2.

V. CONCLUSION

In this paper, we have studied the implementation of Reli-
able Broadcast in anonymous asynchronous message passing
distributed systems with fair lossy communication channels.
We have initially proposed a non-quiescent algorithm, proving
that it is possible to implement RB in fair lossy anonymous
distributed systems. In this first algorithm, each correct process
has to broadcast all RB delivered messages forever in order
to overcome the message losses caused by the fair lossy
communication channels. Then, an anonymous perfect failure
detector AP ∗ has been proposed, which allows stopping
eventually the periodical broadcast in order to get a more
practical quiescent RB algorithm. Finally, a quiescent RB
algorithm is given in the fair lossy anonymous distributed
system model enriched with AP ∗.

REFERENCES

[1] F. Schneider, D. Gries, and R. Schlichting. Fault-tolerant broadcast.
Science of Computer Programming 4(1), pp. 1–15, 1984.

[2] Vassos Hadzilacos and Sam Toueg. A Modular Approach to Fault-
Tolerant Broadcasts and Related Problems. Technical Report, Cornell
University, Ithaca, NY, USA, 1994.

[3] Chang J M, Maxemchuk N F. Reliable broadcast protocols. ACM
Transactions on Computer Systems (TOCS), 2(3), pp. 251–273, 1984.

[4] Aguilera M K, Chen W, Toueg S. Heartbeat: A timeout-free fail-
ure detector for quiescent reliable communication. Distributed Algo-
rithms, pp. 126–140, Springer Berlin Heidelberg, 1997.

[5] Zohir Bouzid, Pierre Sutra, and Corentin Travers. Anonymous Agree-
ment: The Janus Algorithm. Proc. of the 15th international conference on
Principles of Distributed Systems OPODIS’11, pp. 175–190, Springer-
Verlag Berlin, Heidelberg, 2011.

[6] S. Arévalo, E. Jiménez, and J. Tang. Fault-tolerant broadcast in
anonymous systems. Technical Report, Departamento de Sistemas
Informáticos, Universidad Politécnica de Madrid, Madrid, Spain, 2014.

[7] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. On the power of
anonymous one-way communication. Principles of Distributed Systems,
Lecture Notes in Computer Science Volume 3974, pp. 396–411,Springer
Berlin Heidelberg, 2006.

[8] R. Bakhshi, W. Fokkink, J. Pang, and J. Van de Pol. Leader Election
in Anonymous Rings: Franklin Goes Probabilistic. IFIP International
Federation for Information Processing, Volume 273, pp. 57–72, 2008.

[9] P. Fraigniaud, A. Pelc, D. Peleg, and S. Prennes. Assigning labels in
an unknown anonymous network with a leader. Distributed Computing,
14(3), pp. 163–183, July 2001.

[10] A. D.Kshemkalyani and M. Singhal. Efficient distributed snapshots in an
anonymous asynchronous message-passing system. Journal of Parallel
Distributed Computing, 73(5), pp. 621–629, May 2013.

[11] R. Guerraoui and E. Ruppert. What Can Be Implemented Anonymously?
Proc. of the 19th International Conference on Distributed Computing
(DISC’05), pp. 244–259, Springer, 2005.

[12] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Com-
putation in networks of passively mobile finite-state sensors. Distributed
Computing, 18(4), pp. 235–253, 2006.

[13] D. Angluin. Local and global properties in networks of processors
(extended abstract). Proc. of the 12th Annual ACM Symposium on
Theory of Computing (STOC ’80), pp. 82–93, ACM New York, 1980.

[14] H. Buhrman, A. Panconesi, R. Silvestri, and P. Vityani. On the
importance of having an identity or is consensus really universal?.
Distributed Computing, 18(3), pp. 167–175, 2006.

[15] C. Delporte-Gallet, H. Fauconnier and A. Tielmann. Fault-Tolerant
consensus in unknown and anonymous networks. Proc. of 29th
IEEE International Conference on Distributed Computing Systems
(ICDCS’09), pp. 368–375, 2009.

[16] R. Guerraoui and E. Ruppert. Anonymous and fault-tolerant shared-
memory computing. Distributed Computing, 20(3), pp. 165–177, 2007.

[17] C. Delporte-Gallet, H. Fauconnier, and H. Tran-the. Homonyms
with forgeable identifiers. Proc. of the 19th International Con-
ference on Structural Information and Communication Complexity
(SIROCCO’12), pp. 171–182. Springer-Verlag Berlin, Heidelberg, 2012.

[18] A. Basu, B. Charron-Bost, and S. Toueg. Simulating reliable links
with unreliable links in the presence of process crashes. Proc. of the
10th International Workshop on Distributed Algorithms, pp. 105–122,

Springer-Verlag, London, 1996.
[19] Y. Afek, H. Attiya, A. Fekete, M. Fisher, N. Lynch, Y. Mansour, D.

Wang, and L. Zuck. Reliable communication over unreliable channels.
Journal of the ACM, 41(6), pp. 1267–1297, 1994.

[20] M. Aguilera, S. Toueg, and B. Deianov. Revisiting the weakest failure
detector for uniform reliable broadcast. Proc. of the 13th International
Symposium on Distributed Computing (DISC’99), pp. 19–33, Bratislava,
Slovak Republic, September 1999.

[21] T. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2), pp. 225–267, March
1996.

[22] Yves-Alexandre de Montjoye, L. Radaelli, V. K. Singh, and A. Pentland.
Unique in the shopping mall: On the reidentifiability of credit card
metadata, Science, 347(6221), pp. 536–539, 30 January 2015.

[23] Mathis F. H. A generalized birthday problem. SIAM Review,
33(2), pp. 265–270, 1991.

[24] F. Bonnet and M. Raynal. Anonymous asynchronous systems: the case
of failure detectors. Proc. of the 24th International Symposium on
Distributed Computing (DISC’10), pp. 206–220, Cambridge, MA, USA,
September 2010.

