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a b s t r a c t

In order to transfer the ever increasing multimedia data we need to make use of multiple
paths to realize the bandwidth aggregating. In pervasive computing environment, the
combination of ubiquitous overlay networks and the capacity of multihoming can provide
the possibility of exploiting plentiful available paths. Thus, we introduce a Pervasive
Multipath Architecture (PEMA), in which we use the game theory to investigate the
selfish strategic collaboration of multiple heterogeneous overlays when they are allowed
to use the massively-multipath transfer. Overlay networks are modeled as ‘‘players’’ in
this multipath selection game, and we study the asymmetric case where all overlays have
different Round Trip Times (RTT) and different degrees of waste. We demonstrate the
existence and uniqueness of Nash equilibrium (NE). In addition, we find that overlays
differing only in their RTTs still receive proportional throughput shares and utilities at the
NE. However, if overlays differ only in their degrees of waste, a more wasteful overlay has a
larger utility and a larger throughput (bandwidth) share than a less wasteful overlay. Since
maintaining connected paths consumes resource, we further consider a more generalized
cost function where an overlay’s total resource consumption includes both transferring
data packets and maintaining path connections. In this general game, we find that the
overlay is more conservative, which opens smaller number of paths and obtains smaller
efficiency loss at the NE than in other simplified games. Our simulations confirm the
effectiveness and friendliness of multipath transfer for a range of path numbers and in the
presence of multi-overlay traffic.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

By using the ubiquitous and overlapping access networks, our world has been interconnected as a pervasive computing
environment consisting of massive intelligent network devices, which can process and transport information to adapt to
the associated context and activity. It is challenging to enable multiple access networks to cooperate autonomously to
realize the ubiquitous access andmultipath transfer between any two end hosts. In this environment, themultipath transfer
technologies [1,2] have gained more and more attention from academy and industry, which could maximize the use of
network resources and multiply the available bandwidth. On the other hand, traditional routing policies are restrictive,
which limits the communication between source–destination pairs to only one path, although there often exist more than
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Fig. 1. A multi-homing and overlay network with multiple path support.

one indirect paths through the overlay routing via overlay peer(s). Earlier studies [3,4] have demonstrated the benefits of
overlay multipath transfer to achieve high available bandwidth, good loss patterns and bounded delay in the best-effort
Internet environment. As the last mile bandwidth has been set to increase dramatically over the last few years, as shown
in Fig. 1, we expect that bottlenecks will be shifted away from the network edges and the end-to-end data transfers will
be constrained by the capacity of core links. Thus, we will have the opportunity to exploit path diversity and use multiple
routing paths concurrently to fully saturate the available core link bandwidth for high-volume data transfers, e.g. video
streaming or inter-datacenter bulk transfers.

In this system, end users are effectively providedwith a large set of potential paths fromwhich they choose a small subset
of paths to improve the performance. As the selected paths may negatively affect each other and the underlying network,
there is a need for the management system that controls and adapts their behaviors to meet their specific demands and
those of the network and service providers. The following questions arise naturally: How many paths are required? How
can we design a multipath selection mechanism that only opens the necessary and sufficient number of paths to exploit
the multipath transfer capability? One of the main objectives of the multipath selection is to establish a number of rules
guaranteeing that common resources are fairly shared among all the overlays. In most prior models, it has been assumed
that each flow is assigned a single path between its source and destination. However, in multipath models each flow can
be split into multiple paths simultaneously by a unified control. As using excessive paths can degrade the overall system
performance, we should select the number of paths as small as possible. Selfish overlay networks are often accused to be
unfriendlywhen they share network resourceswith traditional or other overlay flows. As the paths are shared betweenmany
flows, the greedy selection behavior can easily lead to unstable network state. The cooperation is hard to maintain due to
the characteristics of selfish overlays. Even if Nash equilibrium (NE) appears, it may not be optimal. The number of paths
used by each application is determined by the multipath selection according to the observed qualities of total networks.

In this paper we analyze a scenario where multiple selfish overlays deliver their traffic in a shared multipath network
infrastructure between the common source and destination. By using a game-theoretic framework, we study the impact
of selfish behaviors of overlays when multipath transfer is allowed. One of our motivations comes from the observation
that more and more users use Peer-to-peer (P2P) applications (e.g., PPLive, BitTorrent) to construct the overlay network to
realize the efficient multipath transfer. For example, PPLive maintains 4 active paths and an additional path periodically
chosen at random according to the throughput measured. In our scenario, a number of overlays compete for the capacity of
a single bottleneck link. Overlays are modeled as ‘‘players’’ in the game, where each player has infinite amounts of data to
send and is allowed to open a number of concurrent paths. The criterion of optimality is trying to maximize each player’s
utility function, which is a combination of a payoff and a cost.

We assume that the payoff received by a player is a continuous, concave and increasing function of its received data
throughput. Regarding the cost, the player is concerned with the number of its paths. This cost accounts for the cost of
maintaining the paths opened, which is specific to the overlay. In this game, a pure-strategy Nash equilibrium [5] is a vector
of the numbers of paths of all overlays, and each player cannot benefit from unilaterally deviating from this NE.

We investigate the effect of the number of TCP paths on the network performance with a focus on a game-theoretic
study of selfish player behaviors. We assume that each player uses ‘‘standard TCP’’ and is allowed to choose the number
of concurrent paths. Our result for multipath networks presented in this paper is consistent with the following conclusion
drawn in the traditional unipath networks [6]: when the users use TCP New Reno loss-recovery [7] in combination with
drop-tail queuemanagement, the equilibrium strategies of the users are quite efficient for fair resource allocation. Although
playing NE is fair, it does not guarantee that each player be given the best possible reward. When the players are non-



J. Wang et al. / Pervasive and Mobile Computing 27 (2016) 37–57 39

cooperative, playing Nash is the best-response strategy to be applied. However, if the players are cooperative, each of them
may obtain a better reward.

The contributions of this paper are summarized as follows.

(1) We introduce a Pervasive Multipath Architecture (PEMA), which combines the benefits of multihoming and overlay
routing. This overlay network architecture can be applied to build a multipath transport through the cooperation of
other relaying devices between the source and destination. Multihoming enables the availability ofmore heterogeneous
access links to enhance the diversity of end-to-end paths, and thus the user perceived quality of experience for the real-
time multimedia service can be guaranteed.

(2) To determine the path number selected in PEMA, we formulate the problem of path number selection as the multipath
selection game, and show the existence of an NE in the multipath selection game. The players of the game are the PEMA
overlays and the action of the game is that each source node selects the proper number of paths to forward its flows,
trying to reach its own best performance. We discuss the asymmetric case where all overlays have different Round Trip
Times (RTT) and different wastefulness levels, and demonstrate the existence and the uniqueness of an NE.

(3) We find that overlays differing only in their RTTs still receive proportional throughput shares and utilities at the NE.
However, if overlays differ only in their wastefulness levels, a more wasteful overlay has a larger utility and a higher
throughput (bandwidth) share than a less wasteful overlay. Since the NE in the continuous game can take non-integer
values, we further investigate an integer variant where an overlay is only allowed to open an integer number of paths.
We observe that a pure-strategy integer NE always exists in this integer game.

(4) We propose a generalized cost function where an overlay’s cost includes transferring data packets and maintaining the
connected paths. In this model, the interaction between the overlays is defined as ‘‘general game’’, and the previous
simple model is called as ‘‘special game’’ to differentiate them. We observe that overlays in ‘‘general game’’ are more
conservative. Hence, the overlay opens a smaller number of paths at the NE in ‘‘general game’’ than in ‘‘special game’’.
Even though the upper bound of ‘‘general symmetric game’’ is the same as that of ‘‘special game’’, its actual efficiency
loss is smaller than that of ‘‘special game’’.

The rest of the paper is organized as follows. Section 2 summarizes the related work. In Section 3, we introduce the
pervasive multipath architecture. Formulation of multipath selection game and network optimization problem is presented
in Section 4. In Section 5, we study the continuous and integer multipath selection respectively for the asymmetric game.
Then a general case is discussed in Section 6. We present simulation and evaluation results in Section 7. Section 8 concludes
the paper and presents the ideas for future work.

2. Related work

Nowadays Game theory is widely used as a tool for studying, modeling and analyzing the interactions between
individuals strategically. It has been used to study various communication and networking problems including routing,
service provisioning, access control and flow-rate controlling by formulating them as either cooperative [8] or non-
cooperative games [9]. An overview of using game theory to solve the network selection problem is provided in [10].
The book [11] presents a collection of fundamental issues and solutions in applying game theory in different wireless
communications and networking domains. When users do not cooperate and do not respect the protocol rules, unfair or
unstable behaviors may emerge in the system. This problem of the TCP protocol has already been addressed by using a
game-theoretic perspective. For example, Akella et al. [6] gave an excellent analysis of TCP behavior in the context of Game
Theory, which attempts to characterize the performance of TCP in the presence of selfish users.

Another interesting related congestion game is given in [12], where the authors explore the interaction between overlay
networks and traffic engineering. They use a game-theoretic framework in which infinitesimal users of a network select
the source of content, and the Traffic Engineer (TE) decides how the traffic will be routed through the network. They also
formulate a game and prove the existence of equilibria. In [13], the authors use best-reply dynamics to model the non-
cooperative interactions between the P2P overlay and the network-level TE behaviors. The interaction between selfish
overlays is also studied in several works such as [14,15], where multiple overlays compete for limited network resources.
To address the selfish behavior of the overlays, most of research [16] seeks to maximize their utility by taking into account
the actions of each other. Also some researches [17] do not take into account the actions of each other when studying
the individuals. For above both cases, Zhang et al. [18] prove the existence of Nash equilibrium among self-interested
unstructured P2P file sharing applications. A routing scheme [19] is designed to dynamically select the best available
forwarding paths by using a game-theoretic approach over a multipath routing protocol. Selecting the best radio access
technology (RAT) [20] is formulated as a non-cooperative game, where its convergence, efficiency and practicality are
studied. In our earlier works [21], we propose an openmultiplane framework for Next Generation Service Overlay Network,
in which different functional overlays can systematically be coordinated with each other.

There are also attempts to design optimal traffic controllers to optimally spread data over multiple overlay paths. With
the objective of achieving the minimum packet delay, the optimal multipath data transfer problem was studied in [22]. On
the other hand, aiming at maximizing an aggregate sending rate of a source over multiple overlay paths, the authors of [23]
develop a multipath rate controller that randomly chooses a transmission path by following a throughput proportional
selection scheme. Although different approaches have been used to address various multipath data transfer problems, none
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of them considered the problem from themultiple controller’s perspective. Therefore, these approachesmay be not suitable
for the recent advances of Internet Engineering Task Force (IETF) working group in multipath transfer, such as CMT-SCTP
[24,1] and Multipath TCP [2], where multiple congestion controllers compete for the same shared available bandwidths.
In [25], the authors extend the notion of ‘‘fairness’’ from single-path transport to multipath transport, and introduce the
relevant congestion control approaches.

In our earlier works, we propose cmpSCTP [26], in which flow control and congestion control mechanism are separated
and congestion control is performed for each path independently. We also introduce a new problem of selecting the limited
numbers of selfish paths [27] to realize the effect of path diversity in concurrent multipath transfers, but the impact
and fairness of other paths are ignored. A cooperative overlay optimization approach [28] is proposed to improve the
performance of the whole network, while considering the fairness between co-existing overlays, in which overlays can
form coalitions freely for the purpose of cooperation. For the collaborations ofmultipath selection, we discuss the symmetric
case [29] where all overlays have the same RTT and wastefulness level. In reality, overlays may not have the same utility
function. In this paper, we extend the symmetric game to the asymmetric game. For the asymmetric game, we also prove
the existence and stability of an NE when the path number is real or integer.

3. Pervasive Multipath Architecture (PEMA)

The goal of pervasive computing is to create ambient intelligence where network devices provide connectivity and
services all the time.Nowadays, the end-usermobile devices are usuallymultihomed, having several heterogeneousnetwork
interfaces allows a concurrent-connected approach to networking. In this section, we discuss the architecture of our PEMA
and demonstrate a typical instance of video delivery under this architecture.

3.1. Overlay multipath based on multihoming access

In this pervasive computing environment, we consider: (1) the multihoming ability of the mobile devices to exploit
heterogeneous network technologies and to be connected to different access points simultaneously; and (2) the cooperation
of a large number of relaying mobile devices providing multiple available routes for a mobile device. Let us consider
a scenario where the streaming content needs to be delivered for mobile users in resource-limited networks, in which
multihoming access and overlay multipath routing are used. Packet transmission is always sent to/from the central server,
without any pure peer-to-peer connection between any two arbitrary mobile nodes. The network construction uses a
lightweight unstructured mechanism, which does not impose a rigid relation between the overlay topology and the place
where resources or their indices are stored. In this manner, overlay networks are easier to implement and reconfigure
promptly even in dynamic environments. Amobile terminal can connect to several access networks simultaneously and has
multiple IP addresses. Relaying devices communicate among one another to provide multiple available paths for a mobile
device due to the rich connectivity. Overlay routing can leverage the existence of multiple, simultaneous paths in backbone
networks. Obviously, multihoming access and overlay networks can provide significant availability gains, that is, the device
can receive data through more than one (overlay) paths.

The video server can stream the data to the client simultaneously on several disjoint paths, which are the entire end-to-
end delivery path from the source to the destination. Some are direct paths, while the others traverse across cooperative
overlay routers/relays and utilize the capacity of their transfer links. These overlay routers are terminal devices which have
the corresponding forward function in the application-layer. In fact, a device may function as source/aggregator/helper and
support one or more sessions for one or more services.

Based on the concept illustrated in Fig. 1, a pervasive multipath network can be formed, in which plentiful relaying
devices cooperate to provide multiple paths for a mobile device. The overlay path between the source and destination may
contain several overlay links, which are IP layer paths between the selectedmobile devices. Nomatter the overlay node is the
cooperative device or the application-layer router, it can route packets on dynamically pre-specified paths. Hence, we also
consider overlay routing in network sidewhere some legacy nodes are replacedwith overlay nodes. Conceptually, wemodel
the controllable node as the one operating in a network overlay on top of a legacy network. Due to the rich connectivity,
PEMA can provide multiple paths for a mobile device to improve the network resources utilization.

3.2. Overlay routing layer of PEMA

These overlay nodes cooperate with each other to provide an overlay service platform [30], on top of which a variety
of application-specific overlays can be constructed, such as overlay multicast, and Peer-to-Peer file sharing, etc. As overlay
nodes are connected via IP-layer paths (overlay links), theoretically, there is an overlay link connecting each pair of overlay
nodes.

The data plane of themultipath network introduces an overlay routing layer between the application and the underlying
transport protocol. The function of the overlay routing layer is to route the traffic from the sender to the receiver over overlay
network relays. An illustration of the pervasive multipath network data plane based on Wifi/4G access is shown in Fig. 2.
Network overlays are used to realize new communication architectures in legacy networks. To accomplish this, messages



J. Wang et al. / Pervasive and Mobile Computing 27 (2016) 37–57 41

Fig. 2. Pervasive multipath network data plane.

from the new technology are encapsulated in the legacy format. Strategies for overlay routing describe the process of path
computation. The overlay routing nodes are used as a distributed database by the content looking up service, and are also
used to relay the application data. A sender host sends data packets to a receiver host via a sequence of reachable overlay
routing nodes, by specifying the receiver’s identifier instead of the receiver’s locator (i.e., IP address). The overlay routing
node will finally forward the data to the IP address correspondent to the specified identifier.

The overlay routing layer employs a source routing architecture similar to DSR (Dynamic Source Routing) [31]. The
source routing architecture can reduce the complex routing processing and enable differentiating the per-hop behaviors
for different streaming sessions. Each packet is specified the route when traveling from one overlay device to another. The
exact path that a packet should take, from one overlay router to the next, is specified before the packet leaves the source. The
routing decisions are handled by the source node, which uses source routing protocols to process the routing information
in order to discover the optimal paths to a destination. The overlay routing mechanism is on demand based, that is, it does
not require any kind of periodical message to be sent. So it eliminates the need for the periodic route advertisement and
neighbor detection packets.

The control plane of the multipath network is used to establish, replace and release a data plane path between a sender
and a receiver. The pervasive multipath network uses TCP for transporting overlay network control plane messages. Source
route discovery is initiated by a source whenever a source has a data packet to send, but does not have any routing
information to the destination. Hence, the source node obtains the necessary path when required. A path may recruit
multiple relays. During the signaling phase, the sender and the receiver can contract the relaying cooperative devices to
function as relays. The selection of relays is based on the source flooding and the route discovery. In order to reduce the
overhead generated during a route discovery phase, the ‘‘route cache’’ maintained at each node records routes the node
has learned and overheard over a time frame. Each route discovered is stored in the route cache with a unique route index.
So it is easy for us to pick multiple paths from the cache. To achieve high path independence, disjoint paths are preferred.
PEMA needs to obtain multiple source–destination routes for a given source–destination pair, which is dependent on the
node’s ID. The multipath scheduling algorithm can be deployed at the source node to optimally split the data flow sent
to a specific destination node. For delivering the real-time video streaming, we can use MPRTP (Multipath RTP) [31] in a
video streaming service, in which the MPRTP data received from different paths are merged into a single bitstream and
then decoded using a decoder. To provide reliable delivery, we can use MPTCP [2]. For simplicity, we only establish several
standard TCP connections in parallel via multiple overlay paths in the subsequent simulation section.

For a more general case, other users can also set up similar multipath applications to form other overlay networks.
These networks overlap each other and share the same underlay infrastructure resources, so their traffic may traverse the
bottleneck links. If each overlay increases the path connection number endlessly, it is bound to cause themalignant resources
occupancy. Therefore it is necessary to study how to build the multipath connections, and how to determine the number of
paths to be established.

4. Model and problem statement

In this section, we formally introduce the multipath selection game, and then discuss how to quantify the network
efficiency loss due to the behavior of selfish overlays.
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Fig. 3. Massively-multipath network model.

4.1. Model description

Suppose there are k (k ≥ 2) end-to-end paths with different RTTs Ri (∀i ∈ {1, 2, . . . , k}) competing for the capacity or
bandwidth C of a bottleneck link, as shown in Fig. 3. The situation ofmore than one bottleneck can be decomposed as several
cases of single bottleneck, which can be studied individually. The overlay routing indicates the presence of redundant routes
between a pair of hosts, which provides the ability to deliver the traffic alongmultiple paths simultaneously. Each single path
congestion window grows and shrinks according to the special control policy. Note that the overlay is not a stable network
shared by many end users, but rather a temporary self-organizing network built for once according to a user’s application
request. Each overlay adopts the principle of shortest path for each application request, thus it is ‘‘selfish’’.

We assume that there arem overlays,whose source nodes act selfishly and choose their pathswith different numbers.We
treat an individual overlay i as a player, whose strategy ni is a feasible number of paths to be concurrently used. In practice,
ni takes positive integer value. However, in order to make our analysis tractable, we first treat ni as a positive real-valued
number, and then investigate the case where ni is a positive integer number. Let Si denote the feasible strategy set of player
i, we have ni ∈ Si. In general, we assume that Si = [1, nmax

i ] (a closed and bounded real interval). In the rest of the paper,
we will explicitly state a player’s strategy set if it differs from [1, nmax

i ]. The game’s feasible strategy space is represented as
S = S1 × S2 · · · × Sm. A feasible strategy profile is an m-dimension vector n = (n1, n2, . . . , nm) ∈ S.

The purpose of usingmultipath transfer bymost overlay applications is to obtain high aggregate throughput. Let Ti denote
the per-path throughput obtained by player i. Player i receives a payoff Ωi that is a function of the aggregate throughput
niTi (share of bottleneck link capacity) from all of its paths. We assume that the payoff function Ωi(x) is an increasing and
concave function of x. We also assume that a costΦi is associatedwith all paths of player i. Note that whenm is large enough,
the throughput will not be increased significantly through adding a new path.

Note that all players must decide their choices simultaneously without communicating with each other. A best response,
taking into consideration the strategies of other players, is a strategy that gives the most favorable outcome for a player. A
NashEquilibrium [7] is a solutionwhere eachplayer plays a best response to the strategies of other players. As an assumption,
each player knows the strategies of other players, and no player can benefit from unilaterally changing its current strategy.

4.2. Utility functions

The utility Ui received by player i is a combination of its payoff and cost:

Ui(ni) = Ωi(niTi(ni)) − βiΦi(ni). (1)

Note that an important application of the game is Ωi(x) = x, where a player’s payoff equals to its received throughput
[22,23]. Here, we usewastefulness coefficientβi ∈ [0, 1] to represent player i’s degree on cost, that is, theweight of resource
consumption cost for a certain benefit. A smallerβi means fewer resources constrained ormore computation resources saved
for player i. These potential waste resources could be utilized by normal data transmission, sowe use thismetric to represent
the efficiency in terms of cost for different overlay networks. In this paper, we study the case when m players compete for
the capacity C , and the objective of player i is to maximize its utility Ui by adjusting ni.

The game’s main components are: the set of players, the set of actions and the set of payoffs. The players seek to
maximize their utilities by choosing strategies that deploy actions depending on the available information at a certain
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moment. Each player chooses strategies which can maximize its utility. The combination of best strategies for each player
is known as equilibrium. When each player cannot benefit anymore by changing its strategy, we say that the game’s
solution represents Nash Equilibrium. However, some games may not have a Nash Equilibrium or have more than one Nash
Equilibriums.

Given that all players behave in a selfishmanner, their interactionsmayormaynot lead to a stable network statewhere all
players are happywith their numbers of paths andno playerwants to unilaterally deviate from it. Such a stable state is aNash
equilibrium nne = (n∗

1, . . . , n
∗
m), formally defined as: n∗

i = argmaxni∈Si Ui(n∗

1, n
∗

2, . . . , n
∗

i , . . . , n
∗
m), ∀i ∈ {1, 2, . . . ,m}.

Similarly, we use pne to denote the network loss probability at an NE.

4.3. Throughput

In the following, we discuss the throughput and cost function. Player i’s per-path throughput Ti is the packet successful
delivery rate of one path, which is a product of per-path sending (or offered) rate Bi and network loss probability p. Namely,
we have:

Ti = Bi(1 − p). (2)

A well-known TCP sending rate model in [32] relates TCP sending rate Bi to loss probability p and RTT Ri, which is
too complicated for tractable analysis. Therefore, we consider the following simplified version (recommended in the TFRC
standard proposal [33]):

Bi = 1/

µRi

√
p + T0,iν


p3/2 + 32p7/2


(3)

where µ =
√
2b/3, ν = 3/2

√
3b/2, b = 1 or 2, and T0,i = 4Ri.

We relate throughput T to only network parameters. As all paths are expected to experience the same loss probability p
at a congested bottleneck link, a common expected window size W ∗ can be assumed for all paths [29]. Then, the per-path
throughput of player i is given by Ti = W ∗/Ri. The bottleneck principle indicates that the sum of throughputs of all paths
from all players equals to the bottleneck link capacity C , i.e.,

m
i=1

niTi = C . (4)

Then, we have W ∗
= C/

m
i=1 ni/Ri and

Ti = (C/Ri)

 m
i=1

ni/Ri. (5)

4.4. Network cost

Regarding the cost, we use the cost function to capture different player behaviors. In reality, an overlay needs to consume
end host and network resources to generate data packets, so the cost is proportional to the packet transferring rate. Recall
that for player i, the end host and network resources consumed by a single path to transfer data packets is proportional to Bi.
Therefore the cost with respect to player i can be modeled by a utility function including payoff and cost niBi. In this section,
we focus on the case where a player’s payoff equals to its total throughput. We rewrite utility function (1) as:

Ui(ni) =


C
ni

Ri


ni

Ri
+

m
k=1,k≠i

nk

Rk


− βiniBi. (6)

The aggregate sending rate of all paths (
m

i=1 niBi) drives the bottleneck link to full utilization. But not all data are
eventually sent through the bottleneck link. Data packets are dropped with probability p (bottleneck link loss probability).
Based on (2), we can rewrite (6) as:

m
i=1

niBi = C/ (1 − p) . (7)

Eq. (7) indicates that a larger bottleneck link loss probability p corresponds to a larger total sending rate, which can also
be interpreted as more network resources utilized. Thus, either p or equivalently

m
i=1 niBi can be thought of as a cost to the

network. In other words, Bi can be thought of as a ‘‘cost’’ from a system’s respective. Meanwhile, Bi can also be treated as a
cost from a player’s respective, because transferring data packets consumes end host and network resources.
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In order to achieve the highest efficiency, a network operator may want to minimize the network cost [12,13] defined in
(6) while maintaining the bottleneck link fully utilized. Therefore a system optimization problem is formulated as:

min
n

Φ = min
n

m
i=1

niBi (8)

s.t. : Bi = 1/

µRi

√
p + T0,iν


p3/2 + 32p7/2


(9)

Bi (1 − p) = (C/Ri)


m
j=1

nj/Rj


, ∀i (10)

ni ∈ [1, nmax
i ]; m ≥ 2; n = {n1, . . . , nm}. (11)

It can be shown that p is an increasing function of n, implicitly defined by (9) and (10). As the minimum p corresponds to
the minimum cost, the optimal operating point of the whole system is the one where each player opens only one path (as
shown in the following theorem). Note that in order to achieve the minimum cost, all players must be cooperative.

5. Nash equilibria of asymmetric game

In this section, we study the multipath selection game as an asymmetric selection game. After demonstrating the
existence and uniqueness of an NE, we present a procedure for computing the NE.

5.1. Asymmetric game where overlays differ in RTTs

We first study the asymmetric gamewhere overlays have different RTTs but same level ofwastefulness.We rewrite utility
function (6) as:

Ui(ni) =


C
ni

Ri


ni

Ri
+

m
k=1,k≠i

nk

Rk


− βniBi (12)

where Bi is given in (9) and (10). For this asymmetric game we have the following result. We observe that utility function
(12) is generally not concave. For example, supposewe consider a bottleneck linkwith bandwidth 10Mbps and propagation
delay 40 ms. Two overlays compete for this bottleneck link. Suppose overlay 2 has 10 paths and its average RTT is 100 ms.
We vary the number of paths opened by overlay 1 whose average RTT is 150 ms. In Fig. 4, we see that the utility received by
overlay 1 initially increases concavely as the number of paths increases, and decreases after reaching its maximum.

In the following, we show the existence and uniqueness of an NE in the game and describe a procedure for computing
the NE.
(1) Nash equilibrium

Theorem 1. A unique Nash equilibrium (NE) exists in the asymmetric game in which all players differ only in their RTTs. This NE
is an interior point in the strategy space of the game, provided that the number of players m < m0. Threshold m0 is the largest m
satisfying

m(1 − p∗)B∗

1 ≤ C (13)

where p∗ and B∗

1 are respectively loss rate and the maximum overlay sending rate at the NE. At this interior-point NE, for any two
players i and j, we have n∗

i /n
∗

j = Ri/Rj. �

The proof of the theorem is given in Appendix A. If we sort the numbers of paths in an ascending order as n∗

1, n
∗

2, . . . , n
∗
m,

then as we increase the number of players, all n∗

i will simultaneously decrease but maintain their relative proportional
relationships. Asm reaches a large enough number where n∗

1 must be less than 1, player 1 will just maintain one path. From
then on, as m continues to increase, NE will no longer be an interior point. To maintain an interior-point NE, m must be
smaller thanm0, wherem0 is the largestm satisfying (13).

We can numerically solve for p∗ and n∗

i at the NE as follows. Note that the unique NE is an asymmetric NE (each player
has different number of paths at the NE). We take the first derivative of a player’s utility function and set it to zero, we can
get p∗ and substitute it back into (10) to obtain n∗

i .
It is easy to see that at this interior-point NE, players have the same utility. And the efficiency loss of the NE is bounded.

It is interesting to note that at the interior-point NE, players have the same utility and receive the same total throughput
(the bandwidth share of the bottleneck link). This implies that the game does not favor those players with shorter RTTs (a
network advantage). A player does not receive a higher throughput if it can afford to open a larger number of paths and/or
has a smaller RTT. However, this is no longer true in another asymmetric game described in the following section.
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Fig. 4. Utility received by overlay 1 as a function of its number of paths.

Fig. 5. p∗ as a function ofm for different β .m varies from 2 to 50.

In this example, we use the same network settings as before. We set β = 0.3 and the ith player with its RTT = i×50ms.
We vary the number of playersm from 3 to 50, and all the players compete for a bottleneck link (with capacity C = 10Mbps
or 1250 pkts/s). In Fig. 5, for several different β values, we plot the loss rate p∗ at NEwhen the number of playersm increases.
For any given β , we can see that p∗ approaches to 1 − β .

(2) Loss of Efficiency at the NE
We use the loss of efficiency of NEs to quantify the network (or system) performance degradation due to the behavior

of selfish players. The strict efficiency loss of an NE is defined as the ratio of the network cost at the NE and the minimum
network cost. Theworst efficiency loss is also called as ‘‘price of anarchy’’ [34]. Since there is a unique NE, the price of anarchy
is just the efficiency loss of this unique NE. In this section, we first show that a network can perform arbitrarily badly at the
NE (stable state). Then, we discuss the network efficiency loss at the NE compared to the optimal network state where the
total system cost is the minimum.

As discussed in Section 4.3, p is an increasing function of the number of paths n. Therefore, an NE vector nne = (n∗

1,
. . . , n∗

m) corresponds to a unique pne which asymptotically approaches to 1 as ni goes to 1. Therefore p∗
→ 1 as nmax

i → 1.
The network cost at the NE is: Φne =

m
i=1 n

∗

i Bi,ne = C/(1 − Pne). Let popt denote the loss probability with respect to the
minimum network cost Φopt , which is a constant for a fixed number of players.
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Fig. 6. Loss rate as a function of number of playersmwhen β = 0.7.

Theorem 2. In an asymmetricmultipath selection game, the efficiency loss of the uniqueNE is upper bounded by (1−popt,m=2)/β ,
where popt,m=2 denotes the loss ratewhen there are two players and each player opens only one path. This upper bound is a function
of C, R1, R2, and β .

Proof. Consider that the systemcostwhen the system is atNE:Φne =
m

i=1 n
∗

i Bi,ne = C/(1−Pne), and letΦopt = C/(1−popt)
denote the minimum network cost. Then the loss of efficiency of an NE is given as: Leff = Φne/Φopt = (1 − popt)/(1 − pne).
Note that the loss of efficiency is always larger than or equal to 1. Recall that popt must satisfy (1− p)m/φ = C , and p∗ must
satisfy (1−p∗)m nne/φ

∗
= C . Thenwe have (1−p)/φ = nne(1−pne)/φ∗. Since nne ≥ 1, we have: p∗

≥ popt . Asm increases,
nne decreases. Before nne reaches 1, p∗ is strictly larger than popt . Afterwards, p∗

= popt . Then, the efficiency loss attains its
maximum when m is small, and the efficiency loss is lower and is bounded by one. Since the proof of Theorem 1 indicates
that 1 − p∗ > β and popt is an increasing function ofm, we have:

Leff = (1 − popt)/(1 − p∗) < (1 − popt,m=2)/β (14)

where popt,m=2 denotes the loss rate when there are only two players and each player opens only one path (i.e., the network
cost is the minimum based on Theorem 1 in [29]). Note that the upper bound in (14) is just a simple function of network
parameter C, R1, R2 and the player’s wastefulness coefficient β . �

By using the similar network settings as before, we look at the loss of efficiency asm increases. In this model, the player
uses the greedy path selection to deploy its traffic onto the overlay paths, whose performance has been proved to be worse
than that of the optimal selection. Yet, a Nash equilibrium point will be achieved through the sub-optimal strategy, and the
Nash equilibrium (stable state) point may not be Pareto optimal.

In Fig. 6 we plot the loss rate at the NE and system optimal points. Recall that loss rate p is an increasing function of the
number of paths n, implicitly defined by (9) and (10). Therefore, an NE vector nne = (n∗

1, . . . , n
∗
m) corresponds to a unique

pne. Let popt denote the loss rate corresponding to the optimal point. As all paths are expected to experience the same loss
rate p at a congested bottleneck link, we can assume a common throughput for all paths. A larger loss rate p corresponds to a
larger number of paths, which can also be interpreted as a higher total transfer rate. As the selfish player wishes to get high
transfer rate in nature, it uses excessive number of paths and occupies more network resources, which may deteriorate the
packet loss rate. As predicted, the loss rate at the NE is always greater than and equal to the loss rate at the system optimal
point. When m is sufficiently large, the optimal point of the entire system is the one where all players use one path at the
NE. Note that in order to achieve the minimum cost, all players must be cooperative. And the trajectory of loss rate increase
is the same as that of system optimal point.
(3) Effect of overlay wastefulness

In this section, we consider the case where all overlays have different RTTs but the same level of wastefulness (i.e., the
same β). We vary β to see how the wasteful level affects the network performance at the NE. The case where overlays have
different wastefulness is discussed in Section 4.2.

According to the definition of β , a larger β is used to characterize amorewasteful or amore resource-constrained player.
Asβ gets larger, the players are likely to bemorewasteful, whichmeans thewhole efficiency is deteriorated.Meanwhile, the
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Fig. 7. Number of paths at NE as a function of β when m = 5.

overall network resource is a fixed value, and every player is only trying to reduce the cost formaximizing (12) in equilibrium.
As the increased number of paths will increase the cost, the number of paths at the NEwill be smaller. Intuitively, the packet
loss is another waste, so the loss rate at the NE needs to be reduced to balance the efficiency of data packets. This intuition
is indeed true and can be verified by looking at the relationship between the loss rate p∗ at the NE and β .

Theoretically, each player i tries to obtain its optimal strategy n∗

i , as a response to the strategies of all other players. Thus,
there is an interior stationary point NE nne = (n∗

1, . . . , n
∗
m), and ∀i, ∂Ui/∂n∗

i = 0. Since the proof of Theorem 1 indicates
Eq. (A.9), we can derive: ∂p/∂β < 0. Hence p is a decreasing function of β . As nne is an increasing function of p, the players
connect fewer and fewer paths at the NE as β increases. Recall that a smaller p corresponds to a smaller system or network
cost, because the system cost at the NE is

m
i=1 n

∗

i B
∗

= C/(1−pne). Therefore, we also expect that the system cost decreases
as β increases. In addition, since popt is independent of β , we see that Leff = (1 − popt)/(1 − pne) is a decreasing function of
β . That is, as players becomemore resource-constrained (larger β), the NE will be less efficient from a system’s perspective.

As an example, we evaluate the performance of m = 5 players with the same β , and the ith player with its RTT =

i × 100 ms. All the players compete for a bottleneck link (with capacity C = 10 Mbps or 1250 pkts/s). We expect the loss
rate at the NE to decrease as β increases, and finally reach the system optimal point. This is indeed true, as shown in Fig. 7.
β is so large that the NE is no longer an interior point of the strategy space, and every player is so conservative and opens
just one path. Fig. 8 shows that the loss of efficiency decreases as players become less and less wasteful, as expected.

5.2. Asymmetric game where overlays differ in wastefulness

We study another asymmetric game where overlays have the same RTT but different levels of wastefulness. We show
the existence of an NE. Contrary to the previous asymmetric game, we show that a more wasteful player has a larger utility
and a larger bandwidth share of the bottleneck link than a more saving player.

We rewrite a player’s utility as follows:

Ui(ni) =


Cni


ni +

m
k=1,k≠i

nk


− βiniB. (15)

Note that in this utility function, the per-path offered rate B is the same for all players as they all have the same RTT. For
this game, we can show the existence of an NE. In order to find an NE, we need to solve the following equations:

Cφ − (1 − p)
m
j=1

nj = 0 (16)

βini − n−i(1 − p − βi)[ϕ(1 − p)/φ + 1] = 0 (17)

∀i ∈ {1, 2, . . . ,m}, where n−i =

m
j=1,j≠i

nj
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Fig. 8. Loss of efficiency at NE as a function of β when m = 5.

where (16) states that the total throughput equals to the bottleneck link capacity, and (17) can be obtained by setting the
derivatives of utility (with respect to the player’s number of paths) to zero.

From these equations, we have the following necessary condition for the existence of NE (nne, p∗):

ni =
Cφ/(1 − p)(1 − p − βi)[ϕ(1 − p)/φ + 1]

βi + (1 − p − βi)[ϕ(1 − p)/φ + 1]
. (18)

Substituting (18) back into (16) yields an equation for the loss rate p∗ at NE. Then a sufficient condition for having a valid
solution p∗ can be derived. Hence, the existence of NE can be proved. Once we obtain p∗, we can obtain nne through (18).

Then, a player’s utility at NE is given by:

Ui(ni) = Cni

 m
j=1

nj − βiniB =
Cni/(1 − p)[ϕ(1 − p)/φ + 1]

βi
(1−p−βi)2

+
ϕ(1−p)/φ+1

1−p−βi

. (19)

From (19), we can see that amore wasteful (β) player has a larger utility and a larger throughput (bandwidth) share than
a less wasteful player. In other words, more wasteful selfish TCP overlays are better off thanmore saving overlays in a stable
network state. The result is different from the one obtained in the case where overlays differ only in their RTTs in the game.

5.3. Stability of NE in best-response dynamics

In this section, we further study some dynamic aspects of Nash equilibrium. Specifically, we are interested in a dynamic
game playing process, called best-response dynamics [5]. According to this dynamics, the game starts from an initial state,
and then follows a prescribed moving sequence where players take turns making optimal moves or best responses to the
other players. An interesting question is whether this process eventually converges to an NE.

An NE is stable if it can be achieved in such a best-response dynamics. Specifically, as defined in [5], after some player
deviate from an NE in the feasible strategy set, all players adjust their responses optimally based on some fixed ordering
of moves, and if this process converges to the original NE, then we say that this NE is globally stable with respect to this
adjustment scheme. In addition, we define the local stability of an NE by restricting the domain of the deviation to the ε-
neighborhoodof theNE. Section 4.3 in [5] shows that the stability conditions ofNEs are the same regardless of the adjustment
schemes when there are only two players.

Here, we only study the stability of the NE in a two-player variant of Asymmetric Game under the best-response
dynamics. We can solve each player’s optimization problem to obtain its response or reaction function as n1(t + 1) =

f1(n2(t)) and n2(t + 1) = f2(n1(t)) where t indicates the discrete time step.
In the numerical simulations, we observe that the best response functions of both players are always concave for a large

range of network parameters. We can show that the concavity of the best response functions and the uniqueness of an NE
imply the global stability of the NE. Since this concavity property together with the uniqueness of NE indicates the global
stability of NE, we conjecture that it is very likely that themultipath selection game has a global stable NE and the best-reply
dynamics always converges to the NE.



J. Wang et al. / Pervasive and Mobile Computing 27 (2016) 37–57 49

Fig. 9. Existence of Nash equilibrium in a two player game.

Wenowuse an example to illustrate the existence of an NE and the stability of the asymmetric game in Section 5.2where
overlays have different levels of wastefulness. Suppose two players compete for a bottleneck link with 10 Mbps capacity
and both of them have the same RTT of 200 ms. Player 2 with β2 = 0.6 is less wasteful than player 1 with β1 = 0.9. A Nash
equilibrium can be identified in the best response curves in Fig. 9. Note thatwe can graphically identify anNE of a two-player
game by plotting the best response curves of both players. For example, consider that player 2 tries to find the best number
of paths f2(n1) that maximizes its utility for any given n1. We can plot player 2’s best response curve by computing f2(n1)
for a range of n1. Similarly, we can plot player 1’s best response curve f1(n2). The intersection point of these two curves
is an NE. For the simplified TCP model, we can use some optimization tools (e.g., the optimization toolbox in Matlab) to
compute the best responses. In Fig. 9, we can see that there is an NE in this game where players have different levels of
wastefulness. Player 2 is less wasteful or less resource constrained than player 1, namely, β1 > β2. The result shows that
the more wasteful player 1 has less than 7 paths, while the less wasteful player 2 has more than 10 paths at the NE. This
means the throughput achieved by player 2 is more than that of player 1.

5.4. Integer asymmetric game

We observe that the number of paths of a player at an NE in previous asymmetric games takes continuous non-integer
values. However, in practice, the numbers of paths opened by a player can only take integer values. This motivates us to
consider another interesting variant of the multipath selection game where each overlay can only choose a positive integer
number of paths. That is, each player’s strategy set is N. We assume that all players have different utility functions. We call
this the Integer Asymmetric Game.

In order to study this game, we use the results of the corresponding continuous asymmetric game derived in Section 5.
Note that if the pure-strategy NE in the continuous game is an integer vector, then it must be an NE in the corresponding
integer game. However, if the pure-strategy NE of the continuous game is a non-integer vector nne = (n∗

1, . . . , n
∗
m), we can

approximate n∗

i by taking floor n∗

if and ceiling n∗

ic of n
∗

i to obtain the 2m integer-valued vectors. Next, we demonstrate that
this integer game must have pure-strategy NE(s) at some of these integer vectors. In the following, we call such vectors
approximate Nash Equilibrium (differ from the ε-NE defined in [35]).

We can see that, at these approximate NEs, the utility deviation of each player from that in the non-integer real NE is
bounded. In other words, all approximate NEs asymptotically approach the unique NE of the continuous asymmetric game
as the number of overlays increases. Then the important question is whether these approximate NEs are real NEs in the
integer game? We demonstrate in the following theorem that some of these approximate NEs are pure-strategy NEs in the
integer game under some conditions.

Theorem 3. In an integer asymmetric multipath selection game, if the Nash Equilibrium of the corresponding continuous
asymmetric game is a non-integer vector nne = (n∗

1, . . . , n
∗
m) with n∗

if and n∗

ic respectively denoting the floor and ceiling of
n∗

i , then the integer game admits a pure-strategy integer Nash Equilibrium provided that the following condition is satisfied: the
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Fig. 10. An observed case where integer NE must exist.

best response for player i (∀i ∈ {1, 2, . . . ,m}) is always chosen from n∗

if and n∗

ic given that all other players choose either n∗

f or
n∗
c .

Proof. We can form a new game G by restricting each player to have only two strategies n∗

if and n∗

ic . That is, if the original
integer game has a positive integer strategy set N for each player, then in game G we have SG = {n∗

if , n
∗

ic} for each player.
We claim that any NE of G must be an NE of the original integer game. If we pick any NE n∗

G = (n∗

1,G, . . . , n
∗

m,G) of game
G, we know that Ui(n∗

i,G, n
∗

−i,G) ≥ Ui(ni,G, n∗

−i,G); ni,G ∈ SG where n∗

−i,G = (n∗

1, . . . , n
∗

i−1, n
∗

i+1, . . . , n
∗
m) and n∗

k,G ∈ SG, ∀k.
Based on the assumption, we immediately know that Ui(n∗

i,G, n
∗

−i,G) ≥ Ui(ni,G, n∗

−i,G) if ni ∈ N, ∀i. This implies that n∗

G must
be an NE in the original integer game. In fact, there must be an NE in any asymmetric game with each player having only
two strategies [36]. Thus, we conclude that, in the original integer game, there must be a pure-strategy NE to be achieved at
some vectors formed by n∗

if or n
∗

ic . �

Now consider an example of a two-player integer game. The simulation environment configuration is the same as
Section 5.3. The best response curves in the continuous version of the game are plotted in Fig. 9. We see that there is indeed
one unique NE (6.6, 10.7) in Fig. 10. If we restrict the strategy space to the set of positive integers, we can approximate the
continuous game NEwith the floors and ceilings of the NE vector to obtain four approximate NEs: (6, 10), (6, 11), (7, 10) and
(7, 11).

To illustrate Theorem 3, we observe that in Fig. 10 when player 2 chooses 11 as its strategy, the best integer response
of player 1 must be either 6 or 7. This is because for each strategy of player 2, player 1 has a unique best response. All
other strategies monotonically decrease the utilities as they deviate from the best response, since there is only one unique
interior-point maximum for the utility function (15). Similarly we have the following arguments: when player 2 chooses
10, the best integer response of player 1 must be either 6 or 7; and when player 1 chooses 6 or 7, the best integer response
of player 2 must be chosen from 10 and 11. This observation is exactly the condition required for Theorem 3.

It can be seen from the best response curves in Fig. 9, there is a fractional NE in the continuous game. If we assume that
the integer strategy closest to the response curve uses the integer with the highest utility among all integer strategies, then
we can see that the game has the no pure-strategy integer NE. However, we never saw this case in our simulations. Actually,
since the condition required for Theorem 3 is satisfied in all of our simulations, we conjecture that pure-strategy integer NE
always exists in the integer game.

It is interesting to note that in the integer game, amixed-strategy NE always exists if players’ strategy spaces are bounded.
Recall that amixed strategy of a player is defined as a probability distribution over the player’s pure-strategy space. Suppose
that in the integer asymmetric game, each player has a maximum allowable number of paths. As each player can only choose
an integer number of paths, the integer game is a finite game in which each player has only finite choices in its strategy
space. As proved by Nash [37], if players are allowed to use mixed strategies, then every n-player finite game admits at least
one mixed-strategy Nash Equilibrium. Hence, if we put an upper bound on each player’s strategy set, there must exist at
least one mixed-strategy Nash Equilibrium in the integer game.

6. A general case considering path cost

Recall that in Section 4 the cost of players only considers the packet transferring cost. In this section, we introduce a
cost that is specific to the paths, which accounts for the resource consumption of maintaining connected paths. Specifically,
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we use αini to represent the cost that is proportional to the number of paths connected by player i, and refer to αi as the
computation power coefficient of player i. The costαini can be thought of as the host and network resources used tomaintain
ni paths. Hence, we refer to this cost as the path cost.

We now consider a generalized cost function where a player’s total resource consumption includes both the packet
transferring cost and the path cost. We study the case where a player’s payoff equals to its total throughput and all players
have the same utility function. We can rewrite utility function (1) as:

Ui(ni) =


Cni


ni +

m
k=1,k≠i

nk


− βiniB − αni (20)

whereαi ≠ αj,∀ i ≠ j. Recall thatVi(x) is the payoff received by player iwhen it receives a throughput x.Vi(x) is a continuous,
concave and increasing function of x. Here we consider a symmetric ‘‘general game’’, and all players have the same per-path
sending rate B as they have the same RTT. We have the following theorem for this game.

Theorem 4. A symmetric ‘‘general game’’ admits a unique Nash equilibrium (NE) nne in pure strategies. At the NE, all players have
the same number of paths. The NE is an interior point of the strategy space for m < m0,α and nne = (1, 1, . . . , 1) for m > m0,α .
Note that m0,α is the largest m such that m(1 − p∗

a)/φ
∗
a 6 C, p∗

a is the loss rate at the NE, and φ∗
a is a function of p∗

a , defined
in (13) in Section 4.1.

Following a similar procedure as used in the proof of Theorem 1, we can show the existence of a unique NE nne = (n∗
α,

n∗
α, . . . , n∗

α) and obtainm0,α . See Appendix B for details.
Since at the NE, wemust have (1− p∗

a)/ϕ
∗
α = C/(m nne), and all players must have at least one path opened, i.e., nne > 1,

we must make surem 6 m0,α where m0,α is the largestm such that

m(1 − pne)/ϕ∗

α 6 C . (21)

We can use the numerical method to identify m0,α . Similar to Theorem 1, we have p∗
a < p0,α where p0,α is the solution

of 1 − p0,α = αϕ0,α + β . Thus, 1 − p∗
a > β . We know that asm increases, p∗

→ p0,α and ϕ∗
α also increases to ϕ0,α (function

of p0,α). Thus, (1 − p∗
α)/ϕ∗

α is bounded. So, whenm becomes larger and larger, eventually,m(1 − p∗
α)/ϕ∗

α will be larger than
C, which means that all players only use one path at the NE.

We observe that players in the ‘‘general game’’ are more conservative than players in ‘‘special game’’, as in ‘‘general
game’’ a player’s cost includes both packet transferring cost and path cost. Hence, we expect that at the NE of ‘‘general
game’’, players open smaller number of paths than at the NE of either asymmetric or symmetric ‘‘special game’’.

Proposition 1. The interior-point Nash equilibrium (NE) of symmetric ‘‘general game’’ yields a smaller loss rate and a smaller
number of paths than the NE of ‘‘special game’’.

Recall that the loss of efficiency of the multipath selection game is Leff = (1 − popt)/(1 − pne,α). The loss of efficiency of
the NE in symmetric ‘‘general game’’ is always larger than or equal to one, but it is upper-bounded. Compared with ‘‘special
game’’, the actual efficiency loss of symmetric ‘‘general game’’ is smaller because these players are more conservative.
For example, the loss of efficiency of NE in symmetric ‘‘general game’’ is always larger than or equal to one, but it is
upper-bounded. The proof of Theorem 4 shows that 1 − p∗ > β . Since popt is an increasing function of m, we have
Leff = (1 − popt)/(1 − p∗) < (1 − popt , m = 2)/β .

Even though this upper bound of symmetric ‘‘general game’’ is the same as that of ‘‘special game’’, we can see that the
actual efficiency loss of this game is smaller than that of ‘‘special game’’ since p∗

a < p∗. The result in this section again
indicates that we might not expect a large efficiency loss or congestion collapse in reality.

7. Simulation and evaluation results

In this section, we verify our analytical results through OPNET simulations. We consider a single bottleneck link with
capacity 10 Mbps or 1250 pkt/s and with 50 ms delay, competed by m = 10 players. These players are allowed to use
multiple paths, and the RTT of the ith player is i× 50 ms. We vary the buffer size and the number of paths for each scenario.
The bottleneck link router uses FIFO scheduling, and its buffer management is Drop-Tail. The TCP segment size is set to 500
bytes, and each sender has unlimited amount of data to send.

Note that all of our analytical results are based on the TFRCmodel. Therefore, it is important to know howwell thismodel
captures real TCP behavior when the number of paths is very large (which is the scenario in the multipath selection game).
We show respectively in Figs. 11 and 12 the loss probabilities and throughputs that are measured in OPNET simulations,
estimated by TFRC (TCP Friendly Rate Control) model [33], and estimated by TCP New Reno model [8]. Note that in order to
get the loss probability estimated by TFRC model in Fig. 11, we use the measured TCP sending rate Bi to numerically solve
for the estimated loss probability p based on the TFRC model (3). We also use Bi to solve for the estimated loss probability p
based on the TCP New Renomodel. Fig. 11 shows that the TFRCmodel always gives a better estimate of loss probability than
the TCP New Reno model. Note that the TFRC model slightly over-estimates the loss probability when the number of paths
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Fig. 11. Per-path loss probability.

Fig. 12. Per-path throughput.

is more than 15. As an over-estimated loss probability implies more conservative behaviors of players, players are likely to
have smaller numbers of paths at NEs than those obtained by our analytical results that are based on the TFRC model. But
all other analytical results still hold.

In addition, due to the global synchronization, all the paths share the resource very fairly: in the steady state they
experience the same losses and transmit the same number of packets. We can aggregate all the paths as one big path.
Fig. 12 shows that the TFRC model gives a very good estimate of the measured per-path throughput.

In Fig. 13, we use OPNET simulations to illustrate the existence of a unique Nash equilibrium in a two-player continuous
asymmetric game. Both players have the same two-way propagation delay 40 ms. The bottleneck link queue is a RED queue
with a target queuing delay 10 ms. Both players use utility function (given in (6)): player 2 has the wasteful coefficient
β2 = 0.6 and player 1 has β1 = 0.9. This means that Player 1 is more wasteful than player 2. Fig. 9shows that the predicted
NE by our analysis is very close to the one obtained from OPNET simulations in Fig. 13.

8. Conclusions

In this paper, we studied the collaboration among selfish overlays in a pervasive computing infrastructure, where each
overlay can open multiple concurrent paths to maximize its individual throughput or other utilities for the purpose of
improving its quality of experience. In order to study how the selfish overlay’s behavior impacts on the stability and
efficiency, we modeled overlays as players in a non-cooperative game competing for the capacity of a bottleneck link,
and we referred to this game as the multipath selection game with the objective of maximizing the throughput. We used
the well-known TFRC model in our analysis. Our game-theoretic analysis demonstrated the existence or uniqueness of
Nash equilibrium in this multipath selection game. Furthermore, we discussed the asymmetric case where all overlays
have different RTTs and different wastefulness levels β . We found that overlays differing only in their RTTs still receive
proportional throughput shares and utilities at the NE, and more wasteful selfish overlays are better off than more saving
overlays in a stable network state. Interestingly we found that pure-strategy integer NEs always exist when asymmetric
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Fig. 13. Nash equilibrium observed in OPNET simulation.

overlays are restricted to open only integer numbers of paths. For the general case, we found that overlays open smaller
numbers of paths than at the NE of either asymmetric or symmetric ‘‘special game’’, and the actual efficiency loss of this
game is also smaller than that of ‘‘special game’’.

The proposed PEMA can be conveniently deployed over the existing IP networks, which can reduce the impact of
information explosion on enterprise content servers in the cloud and subsequently open the door to new pervasive
multimedia services. Many interesting issues could be explored in future. For example, it would be very interesting to
study a game with more than one network bottlenecks in practice. It would also be interesting to further our study
on the asymmetric game by considering that overlays have different service requirements. Furthermore, we plan to
further explore the cooperative game model, because the SDN-like (Software-Defined Networking) centralized network
architecture provides the convenience and possibility for the unified control and judgment.
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Appendix A

The appendix provides the proof of Theorem 1. Each player i tries to solve for its optimal strategy n∗

i , as a response to
the strategies of all other players. Thus, if there is an interior point NE nne = (n∗

1, . . . , n
∗
m), then it must be true that ∀i,

∂Ui/∂n∗

i = 0, and n∗

i = Ri argmaxni∈Si Ui(n∗

1, n
∗

2, . . . , n
∗

i , . . . , n
∗
m). If we denote zi = ni/Ri, utility function (6) is rewrited as:

Ui(zi) =


Czi


zi +

m
k=1,k≠i

zk


− βziBi. (A.1)

In the following, we first introduce a fact indicating that the stationary point satisfying ∂Ui/∂zi = 0 is actually the
maximum point if it is in [1, ∞). Then we show that there is a unique nne satisfying ∂Ui/∂z∗

i = 0, ∀i.
First, we need to seek all vectors nne satisfying a set ofm equations

∂Ui/∂zi = 0, ∀i ∈ [1, 2, 3, . . . ,m]. (A.2)

We first prove that if nne exists, n∗

i /n
∗

j = Ri/Rj, ∀i, j. Then, we show that nne is actually unique by proving that there is
only one p∗ such that n∗

i /n
∗

j = Ri/Rj, ∀i, j.
To simplify calculation formula, first we need to set φ̄ = µ

√
p + 4ν


p3/2 + 32p7/2


, thus Bi = 1/Riφ̄, φi = Riφ̄ and

ϕi = Riϕ. As Bi = C/Ri (1 − p)
m

i=1 ni/Ri, we haveC φ̄ = (1 − p)
m

i=1 ni/Ri, and utility function Eq. (A.1) is further rewrited
as:

Ui(ni) = [Czi/(zi + z−i)] − βizi/φ̄ = [Czi/(zi + z−i)] − Cβizi/ (1 − p) (zi + z−i).
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For an arbitrary player i, we have:

∂Ui

∂zi
=

Cz−i

(zi + z−i)2
−

β

φ̄
+

βni
∂φ̄

∂p

φ̄2

∂p
∂zi

=
Cz−i

(zi + z−i)2
−

β

φ̄
−

βziCϕ

(zi + z−i)2[(p − 1)ϕ − φ̄]
(A.3)

where φ̄ = φi/Ri = µ
√
p + 4ν


p3/2 + 32p7/2


= 1/RiBi

ϕ = ϕi/Ri =
µR
2
√
p

+ T0ν

3
2
√
p + 112p5/2


.

And z−i =
m

k=1,k≠i zk and ϕ = dφ̄/dp, µ =
√
2b/3, ν = 3/2

√
3b/2, b = 1 or 2, and T0,i = 4Ri.

Fact 1. Best response of a player is unique, which is the stationary point if the stationary point is in [1, ∞). First we
need to show that for any given z−i, there is only one uniquemaximal point forUi. In fact, player i needs to solve the following
equations to get a candidate for a maximal point zmi :

0 = βzi − z−i(1 − p − β)[ϕ(1 − p)/φ̄ + 1] (A.4)

0 = C φ̄ − (zi + z−i)(1 − p) (A.5)

where Eq. (A.4) is a simplification of ∂Ui/∂zi = 0. We can regard zmi and p as the implicit functions of z−i. Note that for
any given z−i, there exists a unique pair of (zmi , p) as the solution to Eq. (A.4) and Eq. (A.5). In fact, the unique stationary
point zmi obtained from this implicit function is indeed a maximal point. We can enlarge the domain of Ui to be (0, ∞), and
notice that zmi is also a unique stationary point for this enlarged domain. Since Ui(0, z−i) = 0 and limzi→∞ Ui = −∞, the
values of two end points are not larger than Ui(zmi , z−i) given that zmi is indeed an interior point. Then we can conclude zmi is
indeed a maximal point in domain (0, ∞). If zmi is still a stationary interior point in [1, ∞), then it also must be a maximal
point. We can show that zmi = fi(z−i) and p = fp(z−i) are continuous functions on domain z−i ∈ (0, ∞), in which fi(z−i) is
referred to as the best response function. In addition, from implicit function theorem, we know that they are continuously
differentiable.

Now, we go on to prove the existence and uniqueness of NE. Consider two arbitrary players i and j, and let δizi =m
k=1,k≠i zk; δjzj =

m
k=1,k≠j zk.

When ∂Ui/∂zi = ∂Uj/∂zj = 0, we have:

(1 − p)[δi + βϕ/((1 − p)ϕ + φ̄)]/(1 + δi) − β = 0 (A.6)

(1 − p)[δj + βϕ/((1 − p)ϕ + φ̄)]/(1 + δj) − β = 0. (A.7)

Let ∆ = βϕ/((1 − p)ϕ + φ̄), then combining Eq. (A.6) and Eq. (A.7) leads to

(δi/(1 + δi) − δj/(1 + δj)) + ∆(1/(1 + δi) − 1/(1 + δj)) = 0. (A.8)

For Eq. (A.8) to be true, we need either ∆ = 1 or δi = δj. We can show that ∆ = 1 cannot be true. We prove this by
contradiction. Assume that it is true, then we can substitute it into Eq. (A.6), and get β = 1− p. Substituting β = 1− p into
∆ = 1, we get ϕ = 0. We know that ϕ = 0 is impossible given that p ∈ (0, 1), thus ∆ ≠ 1. Thus, the only possible solution
is δi = δj, ∀i, j. This implies that z∗

i = z∗

j , i.e., n
∗

i /n
∗

j = Ri/Rj at NE nne if it exists.
In the following, we prove that, when n∗

i /n
∗

j = Ri/Rj, there exists a unique solution p∗ for Eq. (A.2). Thenwe can conclude
that there is one unique nne.

Since at NE all players have the same number of paths, from Eq. (A.3), we obtain:

(m − 1)/β − m/(1 − p) + ϕ/((1 − p)ϕ + φ̄) = 0. (A.9)

Let F(p) denote the left-hand-side of Eq. (A.9). Ideally, solving equation Eq. (A.9) with p as unknown, we can get the loss
rate at NE p∗. Then, substituting p∗ back into Eq. (A.9), we can get nne as the number of paths of all players at NE. However,
Eq. (A.9) contains several powers of p such as 7/2 and 5/2, thus it is impossible to get an algebraic solution of p. Thus, in the
following, we examine several properties of F(p), from which we make an inference about the behavior of NE. For an exact
value of p∗ and nne when given a network setting, we can use Matlab to numerically solve for them.

First, we prove that Eq. (A.9) has only one solution for p in (0, 1). Note that F(p) is a continuous function, and the domain
of F(p) is p ∈ (0, 1), and limp→0 F(p) > 0 and limp→1 F(p) < 0. We claim that F(p) is a strictly monotonic decreasing
function. If this claim is true, then there must be a single solution p∗ for F(p) = 0. In the following, we prove this claim.

Consider the derivative
∂F
∂p

=
−m

(1 − p)2
+

ϕ′φ̄

[(1 − p)ϕ + φ̄]2
<

−1
(1 − p)2

+
ϕ′φ̄

[(1 − p)ϕ + φ̄]2

=
−φ

2
− 2(1 − p)ϕφ − (1 − p)2(ϕ2

− ϕ′φ)

(1 − p)2[(1 − p)ϕ + φ]2
. (A.10)
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Thus, to prove that ∂F/∂p < 0, we only need to prove that ϕ2 > ϕ′φ. This can be easily proved.
Then, substituting p∗ back into Eq. (A.9), we can get n∗

i as the number of paths of the ith player at NE. Therefore, we
conclude that there is only one NE for this game and it is symmetric. That is, z∗

i = argmaxni∈Si Ui(z∗

1 , z
∗

2 , . . . , z
∗

i , . . . , z
∗
m)

and z∗

i = z∗

j , thus n
∗

i /n
∗

j = Ri/Rj, ∀i at NE nne if it exists.
Therefore, F(p,m) is a monotonic decreasing function of p, and F(p∗,m) = 0. Since F(p0,m) < 0, p∗ must be smaller

than p0. When p < p0, we get dF/dm = 1/β − 1/(1 − p) = 1/(1 − p0) − 1/(1 − p) > 0. Thus, as m increases, F(p,m) is
strictlymonotonic increasing. Since F(p,m) is amonotonic decreasing function of p, we see that asm increases, for any given
F(p), p will be strictly increasing towards p0. Then, it must be also true that for F(p∗) = 0, as m increases, p approaches to
p0.

Recall that at NE, we must have (1 − p∗)/Riφ̄
∗

= C/(mn∗

i ). Since all players must have at least one path, i.e., n∗

i ≥ 1, we
must make sure that m(1 − p∗)/Riφ̄

∗
≤ C . We know that as m increases, p∗

→ p0 = 1 − β , then Riφ̄
∗ (as a function of p∗)

also increases to Riφ̄
∗

0 (function of p0). Thus, (1− p∗)/Riφ̄
∗ is bounded below by (1− p0)/Riφ̄

∗

0 . So, asm becomes larger and
larger, eventually,m(1− p∗)/Riφ̄

∗ will be larger than C , and NE is no longer an interior point. Supposing R1 is the minimum
RTT, and m(1 − p∗)/R1φ̄

∗ is the largest value for all m(1 − p∗)/Riφ̄
∗, ∀i. Let m0 denote this threshold, then it is the largest

m satisfyingm(1− p∗)/R1φ̄
∗

= m(1− p∗)B∗

1 ≤ C . Since it is difficult to obtain an explicit expression of p as a function ofm,
we rely on the numerical method to identifym0.

Appendix B

The appendix provides the proof of Theorem 4. Theorem 4 is restated as follows: There is a unique Nash Equilibrium (NE)
nne in the continuous symmetric multipath selection game. At this NE, all players have the same number of paths. This NE is
an interior point of the strategy space form < m0,α and nne = (1, 1, . . . , 1) form ≥ m0,α , wherem0,α is given in Eq. (B.8).

Proof. Following a similar procedure in the proof of Theorem 1, we take derivative of utility function of player iwith respect
to its number of paths ni:

∂Ui

∂ni
=

C
m

k=1,k≠i
nk

ni +
m

k=1,k≠i
nk

2 −
β

φ
−

βniCϕ
ni +

m
k=1,k≠i

nk

2

[(p − 1)ϕ − φ]

− αφ (B.1)

where φ = 1/B = µR
√
p + T0ν


p3/2 + 32p7/2


(B.2)

ϕ = dφ/dp =
µR
2
√
p

+ T0ν

3
2
√
p + 112p5/2


. (B.3)

Let δini =
m

k=1,k≠i nk, then we get:

1 − p
1 − δi


δi +

βϕ

(1 − p)ϕ + φ


− β − αφ = 0. (B.4)

Similarly, we can prove that δi = δj, ∀i, j, which means that at NE, all players have the same number of paths. Thus, Eq.
(B.1) can be rewritten as:

m − 1
β

−
m

1 − p
+

ϕ

(1 − p)ϕ + φ
−

αmφ

β(1 − p)
= 0. (B.5)

Let F(p) denote the left-hand-side of this equation, we have:

(1) as p → 0, F(p) →
m−1

β
− (m − 1) > 0.

(2) as p → 1, F(p) →
m−1

β
− ∞ +

ϕ1
φ1

−
α
β
∞ < 0.

As in Theorem 1, we have dF
dp < 0. Thus, as F(p) is a decreasing function, there must be unique p∗

a such that F(p∗) = 0.

Solve Eq. (B.5) for p∗
a and substitute it into ∂Ui

∂ni
, we can get a unique nne = (n∗

α, n∗
α, . . . , n∗

α), namely, the unique NE.
We also can show that ifm gets very large, this unique NEwill no longer be an interior point of the strategy space. Instead,

it will be nne = {1, 1, . . . , 1}. Recall Eq. (B.5), and let

F(p,m) = m

1
β

−
1

1 − p
−

αφ

β(1 − p)


−

1
β

+
ϕ

(1 − p)ϕ + φ
. (B.6)
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Similarly as in the proof of Theorem 1, given a value ofm, we can plot a curve for F(p,m) with p as x-axis and F(p,m) as
y-axis. It can be easily verified that these curves (with different m values) all meet at a single common point (p0, F(p0,m))
with p0 as a solution to 1 − p = αφ + β .

Recall that F(p,m) is a monotonic decreasing function of p, and F(p∗
a, m) = 0. Since F(p0, m) < 0, pne must be smaller

than p0.
When p < p0, we have:

dF
dm

=
1
β

−
1

1 − p
−

αφ

β(1 − p)
> 0. (B.7)

Combined with the result that F(p,m) is a monotonic decreasing function of p, then p is an increasing function ofm, and
for F(pne) = 0, as m increases, p approaches to p0.

Since in NE, we must have B∗
α · (1− pne) = C/(m · nne), and since all players must have at least one path, i.e., nne ≥ 1, we

must make sure thatm ≤ m0 wherem0 is the solution of

m(1 − p∗

α)/φ∗

α = C . (B.8)

Similarly as in the proof of Theorem1,we know that asm increases, p∗
→ p0,α , thenφ∗

α (as a function of p∗
a) also increases

to φ0,α (function of p0,α). Thus, (1 − pne)/φ∗
α is bounded. So, asm becomes larger and larger, eventually,m(1 − pne)/φ∗

α will
be larger than C , which means that all players only use one path at NE. When this happens, the NE is no longer an interior
point. After that, as m keeps increasing, p∗ is larger than p0 and eventually approaches to 1. Let m0,α denote this threshold
value, then we also need to rely on the numerical method to identifym0,α .
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