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Abstract: Existing rateless codes have a very low intermediate symbol recovery rate. Therefore, a new analysis method
named iterative and small degree first (I-SDF) is presented for the design of optimised partial recovery Luby transform
codes (PR-LTC) in this study. On the basis of I-SDF, the required number of encoded symbols with degree d in each
decoding step is calculated by an iterative optimisation algorithm. Under the proposed design, R(R < k) input symbols
can be recovered from as few encoded symbols as possible in PR-LTC with message length k. Furthermore, multiple
PR-LTC (M-PR-LTC) is proposed to recover several partial recovery point (PRPs) efficiently. The analysis process is
divided into multiple stages, and the required number of encoded symbols with degree d in each decoding step is
calculated by a cross-stage iterative optimisation algorithm. In addition, the interaction of each stage is adjusted by
introducing a weight for each PRP. The PR-LTC and M-PR-LTC are evaluated and compared with the existing schemes.
The simulation results demonstrate that PR-LTC and M-PR-LTC outperform other existing schemes in terms of average
overhead, average degree of encoded symbols, memory usage, bit error rate and energy consumption.
1 Introduction

Rateless codes proposed in [1] provide reliable and efficient
information delivery without any knowledge of channel state
information at transmitter. Luby transform (LT) codes were the
first practical rateless codes [2], in which successful decoding is
possible when m = (1 + ɛ)k encoded symbols have been received,
where ɛ approaches zero for increasing message length k. Rateless
codes such as LT codes and Raptor codes [3] are capacity-
achieving, however in intermediate ranges, i.e. m < (1 + ɛ)k, input
symbols are barely recovered because most of the received encoded
symbols are buffered for the later decoding. Therefore, these rateless
codes have a low intermediate symbol recovery rate (ISRR).
However, in some applications such as multimedia content
delivery, partial recovery of the input symbols is still useful, which
thus motivates researchers to design rateless codes with high ISRR.

Several works have tried to improve the intermediate performance
of rateless codes by using feedback. In [4], the encoder gradually
increases the degree of encoded symbols to maximise the
instantaneous recovery probability of each arriving encoded
symbol according to the number of recovered input symbols. In
[5], shifted LT (SLT) codes based on feedback are designed,
where the degree distribution is shifted to decrease the overhead
and increase the ISRR. Lei et al. [6] extends the work in [5],
where degree values are diversified. Contrary to [5, 6], the design
proposed in [7] considers any feedback opportunity. In [8],
iLTC-DRS-F (improved LT codes with decreasing ripple size and
feedback) based on the generalised degree distribution algorithm
are presented, where the accurate ripple size is evolved. However,
they only increase the ISRR at the end of transmission since the
degree distribution is dynamically adjusted according to the
number of recovered input symbols and only a few input symbols
are recovered at the beginning.

Growth codes are proposed in [9], which are originally designed
for wireless sensor networks to maximise the data persistence by
increasing the ISRR. The work in [10] is an extension of that
presented in [9], where the asymptotic performance of growth
codes is investigated by using the Wormald method. In growth
codes, the perfect source setting, where the receiver receives
encoded symbols exactly fitting a certain desired degree
distribution, is not practical in unreliable transmission channels. A
new design of rateless codes, which divides the intermediate range
into three regions ([0, 1/2], (1/2, 2/3] and (2/3, 1]) for achieving
the upper bound on the ISRR is studied in [11]. The optimum
degree distributions are obtained by a random hyper-graphs
analysis method. The codes designed in [11] are asymptotically
optimal and may not be employed when k is finite. In [12], three
overheads (0.5, 0.75, 1) are chosen and a multi-objective genetic
algorithm is employed to design a near optimal degree
distribution. However, the overhead is larger than 1 in some
applications, hence it is not always feasible. The performance of
LT codes has been improved in [13] to achieve the intermediate
decoding performance, by following the evolutionary approaches.
However, the parameters used in the optimisation process should
be tuned for each specific scenario.

The contribution of this work is two-fold. First, we propose a
novel analysis method named iterative and small degree first
(I-SDF) to analyse the belief propagation BP) decoding process
accurately. Second, we propose the design of an optimised partial
recovery LT codes (PR-LTC) by using I-SDF. In I-SDF, only one
input symbol is released in each step, and encoded symbols are
processed in an ascending order with respect to their degrees since
encoded symbols with small degrees have a higher release
probability. The release probability of each encoded symbol and
the required number of encoded symbols in each step are analysed
by employing an iterative optimisation algorithm. In our optimised
PR-LTC, number R(R ≤ k) is assigned a priori. R input symbols
can be recovered when R(1 + ɛ) encoded symbols are received.
The degree distribution is calculated by normalising the required
number of encoded symbols, which is similar to [14].
Furthermore, an optimised multi PR-LTC (M-PR-LTC) is
proposed to obtain high ISRRs in several pre-specified partial
recovery points (PRPs). To adjust the interaction of each PRP, a
weighted M-PR-LTC is proposed. By using an optimum degree
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distribution, our codes perform better in terms of average overhead,
average degree of encoded symbols, memory usage, BER (bit error
rate) and energy consumption. This is verified through numerical
evaluations and comparisons with state-of-the-art solutions.

The rest of the paper is organised as follows. In Section 2, the
review of LT codes and analysis methods of BP decoding is
given. In Section 3, optimised PR-LTC is presented after some
preliminaries are demonstrated. In Section 4, optimised
M-PR-LTC is presented. The performance of M-PR-LTC is
analysed in Section 5. In Section 6, our experimental design
is outlined, and the efficiency of PR-LTC and M-PR-LTC is
illustrated by our experiment results. Finally, our work is
summarised.
Fig. 1 Required number of encoded symbols with degree d in step l and in
each step, degree d and Δmd,l are calculated iteratively

a I-SDF
b Delay tolerant network
2 Review of LT codes and analysis methods of BP
decoding

2.1 LT codes

Suppose that bulk data comprising of k input symbols need to be
transmitted from transmitter to receiver. Let Ω(1), …, Ω(k) be the
degree distribution, such that Ω(d ) denotes the probability that
degree d is chosen. An encoded symbol is generated as follows:

i. a degree (d ) is chosen at random according to the distribution
Ω(1), …, Ω(k);

ii. d distinct input symbols are chosen uniformly at random from k
input symbols;

iii. an encoded symbol is generated by performing bitwise XOR
operations on the selected d input symbols.

Any selected d input symbol is called neighbour of this encoded
symbol. The BP decoding is widely used for rateless codes, which
is performed through the reverse bitwise XOR operations. In the
following, we describe two analysis methods of BP decoding: the
And–Or tree and evolution of the ripple size (ERS).

2.2 And–or tree

An And–Or tree Tl is defined as follows. Let Tl be a tree of depth 2 l.
The root of the tree is at depth 0, its children are at depth 1, and so
forth. Each node at 0, 2, 4, …, 2l− 2 is called an OR-node, and
each node at depth 1, 3, 5, …, 2l− 1 is called an AND-node.
Suppose that each OR-node independently chooses to have i
children with probability δi, where

∑
i di = 1. Similarly, each

AND-node chooses to have i children with probability βi, where∑
i bi = 1. OR-nodes with no children are assumed to have a value

0, whereas AND-nodes with no children are assumed to have a
value 1. Let vl denote the probability that an input symbol is not
recovered after l decoding iterations, thus we have vl = exp(−αω
(1− vl−1)), in which v0 = 1, ω(y) = β

′(y)/β ′(1), and α = δ ′(1) [15].
Let mz denote the number of released input symbols when mr

encoded symbols have been received. Two quantities z =mz/k and r
=mr/k are defined to analyse the asymptotic performance of rateless
codes. In [12], overhead is divided into three regions of r∈ [0, 0.5),
r∈ [0.5, 0.75) and r∈ (0.75, 1]. Let z0.5,V, z0.75,V and z1,V denote
the value of z at three selected points representing three objective
functions that aim to concurrently maximise and realise high ISRRs.
Let Vr denote the probability that an input symbol is not recovered
after r decoding iterations, hence zr = 1− Vr. Therefore, an optimal
degree distribution is obtained by employing a multi-objective
genetic algorithm. However, overhead r is larger than 1 in some
applications, hence it is not always feasible.

2.3 Evolution of the ripple size

In ERS analysis method, initially all input symbols are unrecovered.
All encoded symbols with degree one are first released to recover
their unique neighbours. All recovered input symbols that have not
been processed are called ripple. Symbols in the ripple are
1054
processed one by one until all input symbols are recovered. The
processing of an input symbol in ripple is as follows:
i. it is removed from the ripple;
ii. it is removed as a neighbour from all encoded symbols that have it

as a neighbour;
iii. for each encoded symbol with exactly one remaining neighbour,

its remaining neighbour is released; this operation is called a
symbol release; for each encoded symbol with zero remaining
neighbour, its neighbours have been released before; this
operation is called a symbol sink;

iv. new released input symbols previously unrecovered are added
into the ripple.
Decoding is successful when all input symbols have been
recovered. If the ripple size equals zero before the successful
decoding, decoding fails. This hints that the well performing LT
codes should ensure a high ripple size during the decoding
process. However, when an encoded symbol is released, there is a
risk that the neighbouring input symbol is already in the ripple, in
which case the encoded symbol is redundant. Hence, to minimise
the risk of redundancy, the ripple size should be kept low. This
trade-off is the main argument for the design goal in ERS analysis
method [2, 8, 14]. Luby sets forth a design goal where the
constant ripple size should be above one at a reasonable level [2].
The work presented in [8, 14] is an extension of that in [2], which
argues that the ripple size should decrease during the decoding
process. The expected ripple size evolution can be achieved by
Definition 2 in [8] or Formula (6) in [14]. Both [8, 14] assume
that all releases in a single step are unique. This assumption is
valid, since the expected number of releases in a single step is
small. However, in the partial recovery decoding, the number of
releases in a single step is more than that in the entire recovery
decoding. For example, to recover fewer than 0.5k input symbols
[11], all input symbols are released in the first step since all
encoded symbols have degree one. Thus, in the partial recovery
decoding, more encoded symbols are sunk in each step because
there are more encoded symbols with small degrees compared
with the entire recovery decoding. In addition, there is no suitable
IET Commun., 2016, Vol. 10, Iss. 9, pp. 1053–1062
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algorithm to calculate the degree distribution of M-PR-LTC when
ERS analysis method is employed.
3 Design of optimised partial recovery LT codes

Lemma 2 in [14] expresses the redundancy probability between
ripple and the released input symbols in each step. However, it
does not take into account the redundancy probability between
released input symbols, i.e. the achieved input symbols are not
unique. To solve this problem, a new analysis method named
I-SDF is proposed in this paper, where only one input symbol is
recovered in each step. Let l denote the number of input symbols
that have been recovered. At the beginning of decoding, l is set as
0, and l is increased by one in each step. Thus, l also denotes the
decoding step. Let R(R ≤ k) denote the number of input symbols
required to be recovered in PR-LTC. We first provide a brief
introduction to I-SDF by an example with k = 5 and R = 4. Let
Δmd,l denote the required number of encoded symbols with degree
d in step l. In each step, degree d and Δmd,l are calculated
iteratively. As shown in Fig. 1a, d = 1, Dm1,0 = 1 in step 0,
d = 2, Dm2,1 = 3 in step 1, d = 3, Dm3,2 = 1 in step 2, and
Dmd,3 = 0 in step 3.

To calculate degree d and Δmd,l in each step, the release
probability of encoded symbols should be analysed. Since the
neighbours of an encoded symbol are selected from k input
symbols in both entire recovery and partial recovery, we first
analyse the decoding of entire recovery.

Lemma 1 (ideal release probability): If the interaction of release
probability between encoded symbols is ignored, the ideal release
probability of an encoded symbol with degree d in step l is shown
as follows

Id,l =
1, d = 1, l = 0

(Cd−1
l − Cd−1

l−1 )C
1
k−l

Cd
k

, (1 ,d ≤ k, d − 1 , l)

0, others

⎧⎪⎪⎨
⎪⎪⎩ (1)

Proof: The rateless process is a novel generalisation of the classical
process of throwing balls randomly into bins. Since an encoded
symbol chooses its neighbours independently of all other encoded
symbols, the probability that this encoded symbol is released in
step l is independent of the probability that any other encoded
symbol is released. A well-known analysis of this classic process
shows that (Cd−1

l − Cd−1
l−1 )C

1
k−l combinations of encoded symbols

are exactly released in each step l, and the total combinatorial
number is Cd

k . Hence, Lemma 1 holds up. □

With a degree distributionΩ1,Ω2,…,Ωk, we assume thatm encoded
symbols are sufficient to recover k input symbols. Let md =m ×Ωd

denote the number of encoded symbols with degree d. If∑k
d=1 md × Id,l = 1 for all l, the number of encoded symbols

released in each step l is perfect and no encoded symbol is
redundant. An ideal degree distribution can be achieved by
formula (2), where m acts as the normalisation factor.

m×
I1,0 I2,0 . . . Ik,0
I1,1 I2,1 . . . Ik,1
. . . . . . . . . . . .

I1,k−1 I2,k−1 . . . Ik,k−1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

V1

V2

. . .

Vk

⎡
⎢⎢⎣

⎤
⎥⎥⎦ =

1
1
. . .

1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (2)

md(R < d≤ k) is set as 0, since the encoded symbol with degree
greater than R is a redundancy symbol. Furthermore, m1, m2, …,
mR should be adjusted to minimise the risk of redundancy, since∑R−1

l=0 Id,l ≤
∑k−1

l=0 Id,l =1. If
∑R

d=1 md × Id,l , 1, the decoding

process fails in step l. Therefore,
∑R

d=1 md × Id,l ≥ 1 should be

satisfied. However, if
∑R

d=1 md × Id,l . 1, it breaks the assumption
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that only one input symbol is released in each step. It is difficult to
guarantee that

∑R
d=1 md × Id,l = 1. To meet the above assumption,

we use the term ‘actual release probability’ ad,l(ad,l≤ Id,l), which
satisfies

∑R
d=1 md × ad,l = 1 in each step. The release of other

recoverable symbols is delayed if an input symbol has been
released in step l. Thus, optimal m1, m2, …, mR is the solution to
the following optimisation problem

min
∑R
d=1

md

s.t.
∑R
d=1

md × ad,l = 1, for l [ [0, R− 1]

(3)

The problem stated in formula (3) is not linear since ad,l depends on
md. It is difficult to calculate ad,l directly, because ad,l and md

interacts with each other. However, we can easily convert formula
(3) into a new optimisation problem defined in formula (4). In
formula (4),

∑R
d=1

∑R−1
l=0 md × ad,l is the number of input symbols

released by
∑R

d=1 md encoded symbols. Clearly,∑R
d=1

∑R−1
l=0 md × ad,l/

∑R
d=1 md denotes the efficiency of our codes.

max

∑R
d=1

∑R−1
l=0 md × ad,l∑R
d=1 md

s.t.
∑R
d=1

md × ad,l = 1, for l [ [0, R− 1]

(4)

Let md,l =
∑l−1

j=0 Dmd,j, which denotes the total required number of
encoded symbols with degree d in the previous l-1 steps. It is
obvious that

∑R
d=1 md,R encoded symbols are sufficient to recover

R input symbols. Thus, md is calculated as follows

md = md,R =
∑R−1

l=0

Dmd,l (5)

Unfortunately, the problem stated in formula (4) is not linear either.
Therefore, we propose an iterative optimisation algorithm. We
calculate Δmd,l step by step, which is derived by means of
mathematical induction. In step 0, Δm1,0 = 1, i.e. one input symbol
is released by an encoded symbol with degree one. In step l,∑R

d=1 md,l encoded symbols have been calculated to recover l
input symbols in the previous l-1 steps. To calculate Δmd,l in step
l, the actual release probability ad,l of the encoded symbols with
degree d in each step j(0 ≤ j ≤ R− 1) is calculated in the
intermediate decoding process of LT codes, which will be
introduced in detail.
3.1 Intermediate decoding of partial recovery LT codes

We analyse the intermediate decoding process when
∑R

d=1 md,l

encoded symbols have been received in step l. In each
intermediate decoding step j, if j < l, one input symbol is released
in this step; if j≥ l, some input symbols will be released by those
encoded symbols in this step when the decoder receives more
encoded symbols. Let 1− cj denote the number of input symbols
that would be released by

∑R
d=1 md,l encoded symbols in each step

j. As shown in Fig. 2a, cj and ad,j are calculated step by step.
We assume that encoded symbols with small degrees are released

first. This is a reasonable assumption, because encoded symbols with
small degrees have a higher release probability. By using this
assumption, we can express the maximum number of input
symbols released by the encoded symbols with degree d, and we
have Lemma 2.

Lemma 2: In the intermediate decoding process of PR-LTC, the
maximum number of input symbols that can be released by
1055



Fig. 2 cj and ad,j are calculated step by step

a Intermediate decoding process of PR-LTC
b Incremental decoding process of PR-LTC
encoded symbols with degree d in step j is shown as

cmax
d,j

= 1−
∑d−1

i=1

mi,l × ai,j (6)

Proof: As we employ I-SDF analysis method, encoded symbols with
small degrees are released first. In addition, we stipulate that only one
input symbol be released in each step. Hence, Lemma 2 holds up.□

In Lemma 2, we assume that ai,j is known. However, ai,j interacts
with cmax

d,j
, thus it cannot be calculated directly. In the following,

we calculate it with a recursive solution. If Ii,j > ai,j, the encoded
symbols that should be released in step j can be postponed to be
released in the following steps, which increases the release
probability of these encoded symbols in the following steps. In
I-SDF, cmax

1,0
is defined as 1, we show the actual release probability

in Lemma 3.

Lemma 3 (actual release probability): In the intermediate decoding
process of PR-LTC, the actual release probability of an encoded
symbol with degree d in step j is shown as

ad,j = min
cmax
d,j

md,l
,
Cd−1
j C1

k−j

Cd
k

−
∑j−1

i=0

ad,i

( )
(7)

Proof: If an encoded symbol with degree d has not been processed
until step j, the release probability of this encoded symbol is
Cd−1
j C1

k−j/C
d
k . If this encoded symbol has been partially processed

in the previous steps, the release probability of this encoded
symbol is Cd−1

j C1
k−j/C

d
k −

∑ j−1
i=0 ad,i. From Lemma 2, the

maximum number of input symbols released by encoded symbols
with degree d in step j is cmax

d,j
. Thus, the maximum release

probability of this encoded symbol is cmax
d,j

/md,l . Hence, Lemma 3
holds up. □

Lemma 4: In the intermediate decoding process of PR-LTC, the
number of input symbols remaining unreleased in step j is shown as

cj = 1−
∑l

d=1

md,l × ad,j (8)

Proof: As we stipulate that only one input symbol be released in each
step, Lemma 4 holds up. □
1056
3.2 Incremental decoding of partial recovery LT codes

On the basis of the intermediate decoding of
∑R

d=1 md,l encoded
symbols, let Δad,l denote the actual release probability of the
incremental encoded symbols (Δmd,l) with degree d in step l. As
shown in Fig. 2b, input symbols remaining unreleased in step l
will be released by

∑R
d=1 Dmd,l encoded symbols.

Lemma 5 (actual release probability): In the incremental decoding
process of PR-LTC, the actual release probability of an encoded
symbol with degree d in step l is shown as follows

Dad,l =
Cd−1
l C1

k−l

Cd
k

(9)

Proof: Since the incremental encoded symbols are new, they are not
released in steps before l. Thus, Lemma 5 holds up. □

In the incremental decoding process, the number of input symbols
remaining unreleased in each step can be obtained from Lemma
4. It is obvious that Δad,j should be calculated step by step since it
depends on Δm1,l, Δm2,l, …, ΔmR,l. The maximum number of
symbols that can be released by the encoded symbols with degree
d in step j is shown in formula (10). In addition, the actual release
probability of encoded symbols with degree d in step j is shown in
formula (11).

Dcmax
d,j

= cj −
∑d−1

i=1

Dmi,l × Dai,l (10)

Dad,j = min
Dcmax

d,j

Dmd,l
,
Cd−1
j C1

k−j

Cd
k

−
∑j−1

i=l

Dad,i

( )
(11)

It is obvious that Δm1,l, Δm2,l, …, ΔmR,l is the solution to the
following optimisation problem

max

∑R
d=1

∑R−1
j=l Dmd,l × Dad,j∑R
d=1 Dmd,l

s.t.
∑R
d=1

Dmd,l × Dad,l = cl

(12)
IET Commun., 2016, Vol. 10, Iss. 9, pp. 1053–1062
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Fig. 3 Multiple partial recovery LT codes
It is assumed that cl input symbols are only released by encoded
symbols with specified degree t in each step. This is a valid
assumption, since cl is small and decreases as l increases. Thus,
the above optimisation problem is converted into the following
new one

max

∑R−1
j=l Dmt,l × Dat,j

Dmt,j

s.t. Dmt,l × Dat,l = cl

(13)

The problem stated in formula (13) is linear since the constraint is
linear. With the above lemma, we can obtain the specific degree t
and Δmt,l in step l.
3.3 Partial recovery LT codes

Initially, l is set as 0. In step 0, Δm1,0 = 1 is calculated, and then l is
set as 1. In step 1, the intermediate decoding of

∑R
d=1

∑0
j=0 Dmd,j

encoded symbols and the incremental decoding of Δm1,1, Δm2,1,
…, Δmd,1 encoded symbols are analysed. Then, Δm1,1, Δm2,1, …,
Δmd,1 is calculated, and l is set as 2. This process repeats until l is R.

Finally, m1,R, m2,R, …, mR,R are calculated. The achieved degree
distribution is shown in the following Definition 1.

Definition 1: The degree distribution of PR-LTC is shown as

Vd =
md,R∑R

i=1 mi,R, d [ [1, R]
(14)
Fig. 4 Number of encoded symbols cached in memory as a function of the numb

a Number of encoded symbols in memory as a function of the number of encoded symbols re
b BER as a function of overhead
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4 Design of optimised multiple partial recovery LT
codes

In this section, we design a degree distribution of M-PR-LTC by
employing multi-objective optimisation algorithms. To obtain high
ISRR, the degree distribution should be tuned by considering all
PRPs. In PR-LTC, an optimum degree distribution Ω has been
proposed to minimise the number of encoded symbols required to
recover partial input symbols. Let R1, R2, …, Rn denote the
number of input symbols required to be recovered in each PRP.
Without loss of generality, let us assume that R1 < R2 <… < Rn so
that PRPs can be analysed step by step. Based on the desired
PR-LTC, several optimum degree distributions Ω1, Ω2, …, Ωn

have been selected for PRP R1, R2, …, Rn, respectively. However,
these degree distributions conflict with each other. Let
FR1

(Dmt,l), FR2
(Dmt,l), . . . , FRn

(Dmt,l) denote the conflicting
objective functions in step l. The optimal FRi

(Dmt,l) is the solution
to the following optimisation problem

max

∑Ri−1
j=l Dmt,l × Dat,j

Dmt,j

s.t. Dmt,l × Dat,l = cl

(15)

The problem is to find the decision vectors that maximise all
objective functions. In the simple case with a single objective
function, the problem is the conventional maximise problem.
However, in the problem with multi-objective functions, we have
to deal with multiple optimum answers called Pareto optimal.
er of encoded symbols received

ceived
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Fig. 5 Ratio of the encoded symbols as a function of the ratio of input symbols at

a k = 100
b k = 1000
c k = 10000; Average degree of encoded symbols as a function of the ratio of input symbols at
d k = 100
e k = 1000
f k = 10000
Therefore, we propose small partial recovery point first (SPRPF) to
improve the ISRR of small PRPs. As shown in Fig. 3, in each step
l, l [ 0, R1

[ )
, specific degree t and Δmt,l are calculated by

FR1
(Dmt,l), and in each step l, l [ R1, R2

[ )
, specific degree t and

Δmt,l are calculated by FR2
(Dmt,l), and so forth.

In SPRPF, the required number of encoded symbols in step
l, l [ Ri, Ri+1

[ )
impacts the recovery of the following PRPs. To

adjust the impact between each PRP, we assign a weight to each
PRP. Let w1, w2, …, wn denote the weight of each PRP R1, R2,
…, Rn, respectively.

Lemma 6 (weighted M-PR-LTC): The weighted optimisation
problem is shown as

max

∑n
i=1 wi

∑Ri
j=l Dmt,l × Dat,j

( )
Dmt,j

s.t. Dmt,l × Dat,l = cl

(16)
1058
Proof: In step l, l [ Ri, Ri+1

[ )
, Δmt,L contributes to the recovery of

Ri, Ri+1,…, Rn. The assigned weights adjust the objective function of
the optimisation problem, i.e. they adjust the recovery of each PRP.
Hence, Lemma 6 holds up. □

We evaluate the weighted M-PR-LTC and choose the degree with
the highest weighted efficiency in each step l. The appropriate
degree distribution for specific situation can be found by setting
the appropriate weights.
5 Analysis of optimised multiple partial recovery
LT codes

In this section, we theoretically analyse the properties of optimised
M-PR-LTC. By using I-SDF, the required number of encoded
symbols in each step is analysed accurately. Thus, an optimum
degree distribution is calculated, which approximates to the ideal
degree distribution. The following proposition shows that the
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Fig. 6 Proposed design exhibits a superior performance by using partial recovery

a Number of encoded symbols in memory as a function of the number of encoded symbols received; BER as a function of overhead at
b z = 0.5
c z = 2/3
d z = 1
decoder requires only Ei encoded symbols to release Ri input symbols,
and the average degree of encoded symbols is relatively low.

Lemma 7: A decoder requires Ei encoded symbols to release Ri input
symbols.

E = max

∑Rn
i=1 mi,Rn

× md,Ri

( )
md,Rn

, d [ [1, Ri]

⎧⎨
⎩

⎫⎬
⎭ (17)

Proof: To recover Ri input symbols, md,Ri
encoded symbols are

required for each degree d∈ [1, Ri]. The sum of encoded symbols
with degree d is md,Rn

, and the sum of all encoded symbols is∑Rn
i=1 mi,Rn

. Thus,
∑Rn

i=1 mi,Rn
× md,Ri

( )
/md,Rn

encoded symbols

are adequate to contain md,Ri
encoded symbols for each degree

d∈ [1, Ri]. By choosing the maximum one, we yield the statement
of Lemma 7. □

Lemma 8: The average degree of an encoded symbol under the
proposed degree distribution of M-PRP-LTC is given as

d =
∑Rn

d=1 d × md,Rn

( )
∑Rn

d=1 md,Rn

(18)

Proof: The proof is obtained from the definition, as shown in (19).
By substituting formula (14), we yield the statement of Lemma 8.□

d =
∑Rn
d=1

d ×Vd (19)
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An encoded symbol that is not released in step l may be a
redundancy symbol in the following steps, if it should be released
in step l. We can see that Cd−1

l C1
k−l/C

d
k

( )+ Cd
l /C

d
k

( ) = ∑l
j=0(

Cd−1
j − Cd−1

j−1

)
C1
k−j/C

d
k

( )
, which means that the sunk probability

of an encoded symbol is Cd
l /C

d
k

( )
if it does not contribute to

release input symbols in steps before l.
6 Numerical results

We have presented our PR-LTC and M-PR-LTC, and outlined its
properties for the practical implementation. In this section, we
evaluate its performance by comparing intermediate performance
LT codes (IP-LTC) [11], SLT and iLTC-DRS-F with our PR-LTC,
and comparing ISRR-SDC (ISRR of selected designed codes),
SLT and iLTC-DRS-F with our M-PR-LTC through simulations.
ISRR-SDC is constructed without rateless symbol sorting algorithm.
6.1 Comparison of PR-LTC, IP-LTC, SLT and iLTC-DRS-F

We compare PR-LTC against IP-LTC, SLT and iLTC-DRS-F in a
single unicast stream. In each round of simulation, an encoded
symbol is generated and transmitted, until R input symbols have
been recovered by receiver. We assume that the channel between
transmitter and receiver is an erasure one, and loss rate r = 0.1.

Fig. 4 shows two comparison at k = 128 and R = 100. Fig. 4a
shows the number of encoded symbols cached in memory as a
function of the number of encoded symbols received. We can see
that both IP-LTC and PR-LTC outperform other methods since the
degree distributions of IP-LTC and PR-LTC are designed for
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Fig. 7 Ratio of the encoded symbols as a function of the ratio of input symbols when

a k = 100
b k = 1000; Average degree of encoded symbols as a function of the ratio of input symbols when
c k = 100
d k = 1000
partial recovery. We can see that PR-LTC needs less memory than
IP-LTC. This is due to the more accurate degree distribution used
for finite k, which releases the encoded symbol with high
probability. Fig. 4b shows the BER as a function of the overhead.
The result shows that both IP-LTC and PR-LTC outperform other
methods at a lower overhead. However all LT-like codes have an
error floor, which is a well-known drawback.

The ratio of the encoded symbols as a function of the ratio of input
symbols (z∈ [0.7, 1.0]) is shown in Figs. 5a–c at k = 100, k = 1000,
and k = 10,000, respectively. We can see that PR-LTC and IP-LTC
require fewer encoded symbols than other schemes when z is
small since the degree distributions of IP-LTC and PR-LTC are
specially designed for each z. Due to the introduction of feedback,
SLT and iLTC-DRS-F require fewer encoded symbols than other
schemes when z = 1. Since degree distributions of IP-LTC are
formulated for k→∞, as the number of input symbols decreases,
performance of PR-LTC is better than IP-LTC. Figs. 5d–f show
the average degree of encoded symbols as a function of the ratio
of input symbols at k = 100, k = 1000, and k = 10,000, respectively.
Note that the average degree of encoded symbols for PR-LTC
increases more slowly than IP-LTC. This is due to the strategy of
small degree first, which generates encoded symbols with small
degrees as many as possible.

6.2 Comparison of M-PR-LTC, ISRR-SDC, SLT and
iLTC-DRS-F

In this subsection, we compare M-PR-LTC against ISRR-SDC, SLT
and iLTC-DRS-F in a single unicast stream. In each round of
simulation an encoded symbol is generated and transmitted, until
1060
all input symbols are recovered by receiver. In the scheme with
multiple PRPs, there is a weight for each PRP, following the
configuration in a related literature [12]. As shown in Fig. 6a, we
can see that there are three PRPs in ISRR-SDC and M-PR-LTC
with W(1,1,1). ISRR-SDC and M-PR-LTC outperform other
methods except at the end of the encoding since ISRR-SDC and
M-PR-LTC improve the partial recovery performance at the
expense of the entire recovery. Figs. 6b–d show the BER as a
function of the overhead at z = 0.5, z = 2/3 and z = 1, respectively.
We can see that the proposed design exhibits a superior
performance by using partial recovery.

The ratio of encoded symbols as a function of the ratio of input
symbols is shown in Figs. 7a and b at k = 100 and k = 1000,
respectively. We can see that the M-PR-LTC outperforms
ISRR-SDC in both W(1,1,1) and W(0,0,1). In W(0,0,1), the partial
performance of both M-PR-LTC and ISRR-SDC is poorer,
because both of them are constructed for recovering all input
symbols. In W(1,1,1), M-PR-LTC needs fewer encoded symbols
than ISRR-SDC in each PRP. This is because the number of
encoded symbols required for each step is calculated accurately by
an optimisation algorithm, which releases the encoded symbols
with high probability in each PRP. In addition, we can see that the
difference between M-PR-LTC and ISRR-SDC decreases as k
increases. Figs. 7c and d show the average degree of encoded
symbols as a function of the ratio of input symbols at k = 100 and
k = 1000, respectively. Note that the average degree of encoded
symbols for M-PR-LTC increases more slowly than ISRR-SDC.
This is due to the optimum degree distribution formulated by the
iterative optimisation algorithm, which approximates to the ideal
degree distribution in each region.
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Fig. 8 Average transmission time for different symbol losses in channel C2 and energy consumption of different schemes by varying loss rates

a Average transmission time as a function of symbol loss in channel C2

b Total energy used by all nodes as a function of symbol loss in channel C2
6.3 Communication of broadcast

In this subsection, we study the communication cost in the delay
tolerant network (DTN). As shown in Fig. 1b, our experiment
consists of four sensor nodes, in which one node named S serves
as the broadcaster, two nodes named RN1, RN2 serve as relay
nodes and one node named D serves as receiver. The loss rate of
channel C1 from S to the RN1 is set as 0.05, and the loss rate of
channel C2 from S to the RN2 is varied from 0.05 to 0.15. The
loss rate of channel C3, C4 from RN1, RN2 to D are set as 0.05.
First, S broadcasts encoded symbols to RN1, RN2 until one of
RN1, RN2 has recovered all input symbols. The other one may
only recover partial input symbols. Second, RN1, RN2 transmit
encoded symbols to D until D has recovered all input symbols. As
RN1, RN2 require partial recovery and the PRP is unknown, we
employ three PRPs by following the configuration in a related
literature [12]. As there is no much difference between the loss
rate of channel C1 and that of channel C2, we design codes with
weights W(0,1,1). We compare M-PR-LTC against iLTC-DRS
since it is difficult to use feedback in the DTN.

Fig. 8a shows the average transmission time for different symbol
losses in channel C2. It is obvious that the average transmission time
of M-PR-LTC increases more slowly as the loss rate increases,
compared with other two codes. However, iLTC-DRS performs
better when the loss rate of channel C2 is set as 0.05 and 0.06
since the number of encoded symbols received by RN1 is almost
similar to that received by RN2. Fig. 8b shows the energy
consumption of different schemes by varying loss rates. The
energy consumption is measured by using the PowerTOSSIM
simulator. Obviously, M-PR-LTC requires less energy than other
two codes when loss rate of channel C2 is set as more than 0.07.
This is because iLTC-DRS need more energy to recover all input
symbols in two relay nodes. Compared with M-PR-LTC,
ISRR-SDC needs more encoded symbols to recover the same
number of input symbols in relay nodes.
7 Conclusions

In this paper, we first propose optimised PR-LTC, in which a new
degree distribution is designed based on I-SDF analysis method.
When multiple PRPs are introduced, we note that the optimised
degree distributions of different PRPs conflict with each other,
which means that the multi-objective problem must be solved.
After analysing how the required number of encoded symbols in
each PRPs impacts the degree of encoded symbols, we propose a
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new degree distribution with weights to balance the impact of
different PRPs.

Through simulations, we demonstrate that optimised PR-LTC
outperforms IP-LTC, SLT and iLTC-DRS-F in terms of memory
usage, BER, average overhead and average degree of encoded
symbols for specified PRP. This is because optimised PR-LTC
uses a new optimum degree distribution, which minimises the
number of sunk symbols in each decoding step to reduce the
redundancy of entire encoded symbols. We also note that
optimised M-PR-LTC outperforms other methods in terms of
memory usage, BER, average overhead, average degree of
encoded symbols and energy consumption. Note that optimised
PR-LTC can achieve arbitrary partial recovery in LT codes. Hence,
different types of LT codes can be constructed for different
scenarios. Our future work plans to apply this technology to the
broadcast communication in wireless relay networks more
accurately.
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