
Comput Syst Sci & Eng (2015) 3: 243–251
© 2015 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

Set agreement and the loneliness
failure detector in crash-recovery
systems

Sergio Arévalo1, Ernesto Jiménez1, Jian Tang2 and Rommel Torres3

1Universidad Politécnica de Madrid, 28031 Madrid, Spain. E-mail: {sergio.arevalo,ernes}@eui.upm.es
2Distributed System Laboratory (LSD), Universidad Politécnica de Madrid, 28031 Madrid, Spain. E-mail: tjapply@gmail.com
3Universidad Técnica Particular de Loja (UTPL), Ecuador. E-mail: rovitor@utpl.edu.ec

The set agreement problem requires that from n proposed values at most n− 1 can be decided. Traditionally, this problem is solved using a failure detector
in asynchronous systems where processes may crash but not recover, where processes have different identities, and where all processes initially know the
membership. In this paper we study the set agreement problem, and the weakest failure detector L used to solve it, in asynchronous message passing
systems where processes may crash and recover, with homonyms (i.e., processes may have equal identities), and without a complete initial knowledge of
the membership.

1. INTRODUCTION

The k-set agreement problem [9] guarantees that from n pro-
posed values at most k are decided. Two cases of this problem
have received special attention: consensus (when k = 1), and
set agreement (when k = n− 1). The k-set agreement problem
that is trivial to solve when the maximum number of processes
that may crash (denoted by t) is less than k, or the maximum
number of different proposed values (denoted by d) is equal or
less than k (i.e., t < k or d ≤ k), becomes impossible to solve
in an asynchronous system where processes may crash when
t ≥ k and d > k ([6], [15], [22]). To circumvent this impos-
sibility result, many works can be found in the literature where
the asynchronous system is augmented with a failure detector
to achieve k-set agreement ([20], [21]). A failure detector [7]
is a distributed tool that each process can invoke to obtain some
information about process failures. There are many classes of
failure detectors depending on the quality and type of the re-
turned information (�P , �, FS∗, ψ , . . .).

A very important issue to solve k-set agreement is to identify
the information needed about process failures. We say that a

failure detector classX is the weakest [7] to achieve k-set agree-
ment if the information returned by any failure detectorD of this
class X is necessary and sufficient to solve k-set agreement. In
other words, with the failure information output by any failure
detector D′ of any class Y that solves k-set agreement, a failure
detector D ∈ X can be built on any asynchronous system aug-
mented with a failure detector D′ ∈ Y . We say that a class X
is strictly weaker than Y (denoted by X ≺ Y) if a failure detec-
tor D ∈ X can be obtained from a system augmented with any
failure detector D ∈ Y , and the opposite is not possible.

In message passing systems,� is the weakest failure detector
to solve consensus (i.e., 1-set agreement) when a majority of
processes do not crash [8], and L [13] is the weakest failure
detector to solve set agreement (i.e., (n-1)-set agreement). For
all 2 ≤ k ≤ n−2, to find the weakest failure detector to achieve
k-set agreement is an open question.

New assumptions have been studied trying to solve k-set
agreement in a more realistic message passing system. In [1]
consensus and failures detectors are presented in an extension
of the crash-stop model where processes can crash and recover
(called crash-recovery model, and, by extension, the systems

vol 30 no 3 March 2015 243

SET AGREEMENT AND THE LONELINESS FAILURE DETECTOR IN CRASH-RECOVERY SYSTEMS

with this failure model are called crash-recovery systems). It
is easy to see that these systems are generalizations of systems
where processes fail by crash-stop. A typical definition of a sys-
tem [7] defines links between processes as reliable (i.e., each
sent message is delivered to all alive processes without errors
and only once). For the sake of extending traditional system
assumptions, consensus and failure detectors are studied when
fair-lossy links are used [1] (i.e., messages can be lost, but if a
process sends permanently a message m to the same alive pro-
cess, message m is also received permanently).

Sometimes the assumption of knowing the membership in
advance is not possible when a run starts (e.g., in a p2p network
where servers working as seeds are unknown a priori, and they
are possibly different in several runs, or even in the same run).
This assumption is relevant because, for instance, even though
� is implementable when the membership is unknown, none of
the original eight classes of failure detectors proposed in [7] (P ,
�P , S, …) are implementable if each process does not know
initially the identity of all processes [17]. Note that any failure
detector implementation for a system S with the assumption of
unknown membership initially also works in any system S′ with
the same assumptions except that the membership is known (we
say that S is a generalization of S′).

Finally, homonymy is a novel assumption included in current
systems where privacy is an important issue [12]. Homonymy al-
lows to assign the same identity to more than one process (all pro-
cesses with the same identity are homonymous). Note that a clas-
sical system of n processes with a different identity per process
is a particular case of an homonymous system (there are n sets
of homonymous processes of size 1). Similarly, anonymity [5]
can be considered as a particular case of homonymy (there is
a unique set of homonymous processes of size n, or, in other
words, all processes are homonymous).

Related work As we said previously, new assumptions have
been studied trying to solve k-set agreement in a more realistic
way. Consensus and failure detectors were presented in asyn-
chronous systems where processes may crash and recover [1]. In
addition to processes that do not crash in a run (permanently-up)
and processes that crash and stop forever (permanently-down),
new classes of processes may appear in a run of a crash-recovery
system: processes that crash and recover several times but after
a time are always up (eventually-up), processes that crash and re-
cover several times but after a time are always down (eventually-
down), and processes that are permanently crashing and recover-
ing (unstable). In these crash-recovery systems a process is said
to be correct in a run if it is either permanently-up or eventually-
up. On the other hand, an incorrect process in a run is either a
permanently-down, eventually-down or unstable process. In [1]
it is proven that it is impossible to solve consensus with the fail-
ure detector �P [7] if the number of permanently-up processes
in a run can be less than or equal to the number of incorrect
processes. There are in the literature several implementations
of consensus and� for crash-recovery message passing systems
([1], [16], [18]).

Even though the initial knowledge of the membership is not
always possible, different grades of knowledge are also possible.
For example, � is implementable if each process initially only
knows its own identity [17], or if each process also knows n (i.e.,
the number of processes of the system) [3].

In [2] new classes of failure detectors are introduced to work
in homonymous systems. In that paper consensus is also imple-
mented with the counterparts of the weakest failure detectors in
classical message passing systems with unique processes’identi-
ties: � [8] when a majority of processes are correct (its counter-
part is called H�), and 〈�,�〉 [11] when a majority of processes
can crash (its counterpart is called 〈H�,H�〉).

Regarding set agreement in message passing systems, in the
literature we find only two works using the weakest failure de-
tector L in crash-stop asynchronous systems ([13], [4]). In [13] a
total order of process identifiers and the initial knowledge of the
membership is necessary. In [4] set agreement is implemented
in systems where the knowledge of n is required.

The failure detector L is defined and implemented for crash-
stop message passing systems in [4] and [19]. L is a failure
detector defined for crash-stop systems in such a way that it al-
ways returns the boolean value false in some process pi and,
if there is only one correct process pj , eventually pj returns
true permanently. Nevertheless, in both implementations the
algorithms always output false in all processes in runs where
all processes are correct (i.e., in fail-free runs), which are most
frequent in practice. This behaviour is relevant because the com-
plexity of all algorithms that implement set agreement with L
(our algorithm presented in this paper included) is improved if
the number of processes that return true increases.
Our work Trying to generalize the results to the maximum pos-
sible number of systems, this paper is devoted to study set-
agreement in message passing systems with the weakest fail-
ure detector L in crash-recovery asynchronous systems with
homonyms and without a complete initial knowledge of the
membership. In our crash-recovery system model the maxi-
mum number of different processes that may crash and recover
is so weak (t = n) that set-agreement can be solved but con-
sensus can not [1]. An algorithm that implements set-agreement
for crash-recovery systems using L with homonyms and without
initial knowledge of membership is presented in this paper.

We also show in this paper that it is not possible to implement
L even in synchronous crash-recovery systems when t = n, or in
partially-synchronous crash-recovery systems when t = n− 1.
We introduce an algorithm that implements L in synchronous
crash-recovery systems when t = n− 1. This algorithm works
when a subset of processes’identities are known by all processes.

Note that, to our knowledge, both algorithms presented in this
paper are the first that implement set agreement and L in crash-
recovery systems. These are also the first algorithms that work
with homonyms and without initial knowledge of membership
in crash-stop systems.

This paper is organized as follows. The crash-recovery model
is presented in Section 2. Definitions of set agreement and failure
detector L are included in Section 3. In Section 4 we have an
implementation of set agreement. The implementability of L
is studied in Section 5. An implementation of L is presented in
Section 6. We finish our paper with the conclusions in Section 7.

2. SYSTEM MODEL

Processes The message passing system is formed by a set � of
processes, such that the size n of � is greater than 1. We use
id(i) to denote the identity of the process pi ∈ �.

244 computer systems science & engineering

S. ARÉVALO ET AL

Homonymy There could be homonymous processes [2], that is,
different processes can have the same identity. More formally,
let ID be the set of different identities of all processes in �.
Then, 1 ≤ |ID| ≤ n. So, in this system, id(i) can be equal
to id(j) and pi be different of pj (we say in this case that pi
and pj are homonymous). Note that anonymous processes [5]
are a particular case of homonymy where all processes have the
same identity, that is, id(i) = id(j), for all pi and pj of� (i.e.,
|ID| = 1).

Unknown knowledge of membership Every process pi ∈ �
initially knows its own identity id(i), but pi does not know the
identity of any subset of processes, or the size of any subset of�,
different of their trivial values. That is, process pi only knows
initially that id(i) ∈ ID and |�| > 1.

Time Processes are asynchronous, but, for analysis, let us con-
sider that time advances at discrete steps. We assume a global
clock whose values are the positive natural numbers, but pro-
cesses cannot access it.

Failures Our system uses basically the failure model of crash-
recovery proposed in [1]. In this model processes can fail by
crashing (i.e., stop taking steps), but crashed processes may have
a recovery if they restart their execution (i.e., they may recover).
A process is down while it is crashed, otherwise it is up. Let us
define a run as the sequence of steps taken by processes while
they are up. So, in every run, each process pi ∈ � belongs to
one of these five classes:

• Permanently-up: Process pi is always alive, i.e., pi never
crashes.

• Eventually-up: Process pi crashes and recovers repeatedly
a finite number of times (at least once), but eventually pi ,
after a recovery, never crashes again, remaining alive for-
ever.

• Permanently-down: Process pi is alive until it crashes, and
it never recovers again.

• Eventually-down: Process pi crashes and recovers repeat-
edly a finite number of times (at least once), but eventually
pi , after a crash, never recovers again, remaining crashed
forever.

• Unstable: Process pi crashes and recovers repeatedly an
infinite number of times.

In a run, a permanently-down, eventually-down or unstable
process is said to be incorrect. On the other hand, a permanently-
up or eventually-up process in a run is said to be correct. The
set of incorrect processes in a run is denoted by Incorrect ⊆ �.
The set of correct processes in a run is denoted by Correct ⊆ �.
Hence, Incorrect ∪ Correct = �.

Unless otherwise said, we will assume that there is no limi-
tation in the number of correct (or incorrect) processes in each
run, that is, t = n (being t the maximum number of different
processes that can crash and recover).

Features and use of the network The processes can invoke the
primitive broadcast(m) to send a message m to all processes
of the system (except itself). This communication primitive is
modeled in the following way. The network is assumed to have

a directed link from process pi to process pj for each pair of
processes pi, pj ∈ � (i �= j). Then, broadcast(m) invoked at
processpi sends one copy of messagem along the link frompi to
pj , for each pj �=i ∈ �. If a process crashes while broadcasting
a message, the message is received by an arbitrary subset of
processes.

Unless otherwise said, links are asynchronous and fair-
lossy [1]. A link is fair-lossy if it can lose messages, but if
a process pi sends a message m permanently (i.e., an infinite
number of times) to a correct process pj , process pj receives
m permanently (i.e., infinitely often). A fair-lossy link [1] does
not duplicate or corrupt messages permanently, nor generates
spurious messages.

Process status after recovery Following the same model of [1],
when a process pi recovers, it has lost all values stored in its
regular variables previously to the crash, and it has also lost all
previous received messages. A special case are stable storage
variables. All values stored in this type of variables will remain
available after a crash and recovery. Note that stable storage
variables have their cost (in terms of operation latencies), and
the algorithms have to reduce their use as far as possible.

Unless otherwise stated, we consider, like in [1], that when
a process pi crashes executing an algorithm A, if process pi
recovers, it knows this fact, that is, pi starts executing from a
established line of A different from line 1.

Nomenclature The asynchronous system with homonymy and
with unknown membership previously defined in this section is
notated by HASf [∅,∅, n].

We denote by HASf [X, Y, t] the system HASf [∅,∅, n] aug-
mented with the failure detector X (∅ means no failure detec-
tor), and where all processes initially know the identities of pro-
cesses of Y (∅ means unknown membership). The third pa-
rameter t indicates the maximum number of different processes
that can crash and recover (n means that all processes can crash
and recover). The sub-index f in the notation is used to de-
note that links are fair-lossy. For example, HASf [L,�, n] de-
notes the asynchronous system with homonymous processes and
fair-lossy links, enriched with the failure detector L, where all
processes initially know the identity of the members of �, and
where all processes can crash and recover. The classical defi-
nition of asynchronous systems found in the literature could be
denoted by ASr [∅,�, t]. That is, an asynchronous system with-
out homonymy, with reliable links (i.e., where each sent message
is delivered to all alive processes without errors and only once),
where at most t processes can crash, and where all processes
initially know the identity of the members of �.

We will use HAS to denote a homonymous asynchronous sys-
tem where the parameters are not relevant. Similarly, we use AS
instead of HAS to indicate that it is a classical system where each
process has a different identity.

3. DEFINITIONS

First, we formalize the set agreement problem [9].

Definition 1 (Set agreement). In each run, every process of the
system proposes a value, and has to decide a value satisfying
the following three properties:

vol 30 no 3 March 2015 245

SET AGREEMENT AND THE LONELINESS FAILURE DETECTOR IN CRASH-RECOVERY SYSTEMS

1. Validity: Every decided value has to be proposed by some
process of the system.
2. Termination: Every correct process of the system eventually
has to decide some value.
3. Agreement: The number of different decided values can be
at most n− 1.

It is easy to see that if t = n and there are no stable storage
variables, if all processes crash before deciding, and they recover
later, all proposed values will be lost forever. Then, the Validity
Property can not be preserved, and, hence, set agreement can not
be solved. Thus, any algorithm that implements set agreement
needs to use stable storage variables.

As in [1], we consider that a process pi proposes a value v
when process pi writes v into a predetermined stable storage
variable. Similarly, a process pi decides a value v when process
pi writes v into another predetermined stable storage variable.
Hence, after a recovery, a processpi , reading these variables, can
know easily if a value has already been proposed and/or decided.

The set agreement problem can not be solved in asynchronous
systems where any number of processes can crash and not re-
cover ([6], [15], [22]). To circumvent this impossibility result,
we use a failure detector [7].

The failure detector L [13] was defined for asynchronous sys-
tems with the crash-stop failure model. We adapt here the defi-
nition of L to asynchronous systems where processes can crash
and recover. Let us consider that each process pi has a local
boolean variable outputi . We denote by outputτi this variable at
time τ . Let us assume that the value in outputi is false while
process pi is crashed (i.e, outputτi = false, at all time τ at which
pi is down). In each run, a failure detector of class L satisfies
the following two properties:
1. Some process pi always returns in its variable outputi the
value false, and
2. If pi is the unique correct process, then there is a time after
which pi always returns in its variable outputi the value true.

More formally, the definition of L for crash-recovery systems
is the following.

Definition 2 (Failure detector L). For every process pi ∈ �
and runR, outputτi = false if process pi is down at time τ in run
R. Furthermore, the variable outputi of every process pi ∈ �
must satisfy in each run R:
1. ∃pi : ∀τ , outputτi = false, and

2. (Correct = {pi}) =⇒ ∃τ : ∀τ ′ ≥ τ, outputτ
′
i = true

To solve set agreement, we augment our asynchronous system
HASf [∅,∅, n] with the loneliness failure detector L, which is
the weakest failure detector to achieve set agreement in classical
asynchronous message passing systems AS with the crash-stop
failure model [13]. As we said previously, we denote this system
enhanced with L as HASf [L,∅, n].

4. IMPLEMENTING SET AGREEMENT IN
THE CRASH-RECOVERY MODEL

In this section we present the algorithm Aset (see Figure 1) that
implements set agreement in homonymous asynchronous sys-

tems with unknown membership and with the failure detector L,
that is, in HASf [L,∅, n].

Differently from Aset, all algorithms presented in the literature
to solve set agreement with L ([4] and [13]) work in crash-stop
asynchronous systems and need to know the system membership.

4.1 Description of Aset

Aset is the algorithm of Figure 1 executed in HASf [L,∅, n]
to solve set agreement. Recall that id(i) is the identifier of
process pi . These identifiers are totally ordered which allows
to compare them. Also recall that several identifiers can be the
same (homonymous processes).

A process pi proposes a value v (that is, proposei (v) is in-
voked) by writing v into a stable storage variable PROPi. Sim-
ilarly, a process pi decides a value v (that is, decidei(v) is in-
voked) by writing v into another stable storage variable DECi.
We assume that both variables have the value ⊥ before any in-
vocation. If a process pi recovers, it can see easily if it has
already proposed or decided a value (that is, if proposei (v) or
decidei (v) were invoked) reading these stable storage variables
and checking if their values are different from ⊥.

The variable vi is used by process pi to keep the current es-
timate of its decision value (lines 9 and 16). This variable vi
contains initially the value v proposed by process pi when it
invokes proposei (v) (line 1). In order to remember, in case of
recovering, the changes in vi before crashing, a process pi uses
the stable storage variables PROPi and DECi (lines 33 and
36).

proposei (v) starts task 1. This task is a loop that executes lines
6-25 each η time until a decision is taken (and, hence, variable
endi = true).

Each process pi in phase 0 broadcasts a message
(PH0, id(i), vi) with a proposal vi (initially vi is pi’s pro-
posal v, line 1) to the rest of processes of the system. Af-
ter that, process pi can decide a proposed value if a message
(PH0, id(k), vk) is received. This value vk is only decided if
the condition 〈id(k), vk〉 ≤ 〈id(i), vi〉 happens. This condi-
tion is a shortcut for (id(k) < id(i)) ∨ [(id(k) = id(i)) ∧
(vk ≤ vi)]. That is, process pi decides vk if process pk has
a lower identifier or, if they have the same identifier, vk is less
than or equal to vi . When a process decides, it moves to phase
1. If process pi has not decided in phase 0, it can decide a value
already decided by another process if a message (PH1, vk) is
received. If, after that, phase 1 process pi has not decided yet, it
can decide its value vi if the failure detector L returns true (i.e.,
L.outputi = true). Note that at most n − 1 processes can get
true in this variable outputi (from Condition 1 of Definition 2).

Finally, if process pi decided in phase 0, phase 1, or locally
because L.outputi = true, the loop of lines 4–26 finishes, and
task 2 starts. As links are not reliable (but fair-lossy) and pro-
cesses may crash and recover, with task 2 process pi guarantees
the propagation of any decided value vi to the rest of processes.
This value is broadcast in a message (PH1, vi). The propaga-
tion is preserved by repeating forever this broadcast invocation
(lines 28–30).

If a process pi crashes and recovers while running the al-
gorithm, it always executes, after the recovery, lines 31-39. If

246 computer systems science & engineering

S. ARÉVALO ET AL

proposei (v): % by writing v into PROP i
(1) vi ← v;
(2) start task 1

task 1:
(3) endi ← false;
(4) repeat each η time
(5) % Phase 0
(6) broadcast (PH0, id(i), vi);
(7) if (PH0, id(k), vk) is received then
(8) if (〈id(k), vk〉 ≤ 〈id(i), vi 〉) then
(9) vi ← vk ;
(10) decidei (vk); % by writing vk into DECi
(11) endi ← true
(12) end if
(13) else
(14) % Phase 1
(15) if (PH1, vk) is received then
(16) vi ← vk ;
(17) decidei (vk); % by writing vk into DECi
(18) endi ← true
(19) else
(20) if (L.outputi=true) then % returned by L
(21) decidei (vi); % by writing vi into DECi
(22) endi ← true
(23) end if
(24) end if
(25) end if
(26) until endi ;
(27) start task 2

task 2:
(28) repeat forever each η time
(29) broadcast (PH1, vi);
(30) end repeat

when process pi recovers:
% by checking PROPi

(31) if (proposei () was invoked) then
% by checking DECi

(32) if (decidei () was invoked) then
(33) vi ← DECi ;
(34) start task 2
(35) else
(36) vi ← PROPi ;
(37) start task 1
(38) end if
(39) end if

Figure 1 The algorithm Aset for set agreement in HASf [L,∅, n].

process pi proposed a value v but it crashed before writing any
decision value in DECi , then pi will get the proposed value
from the stable storage variable PROPi (line 36). Otherwise, vi
will obtain its decided value from stable storage variableDECi
(line 33). If it has already proposed and decided a value, process
pi starts task 2 to propagate this decided value (line 34). If pro-
cess pi has proposed a value but it has not decided yet, it starts
task 1 to look for a value to decide (line 37).

4.2 Proofs of Aset in HASf [L,∅, n]
Lemma 1 (Validity) For each run, if a process pi of the system
HASf [L,∅, n] decides a value v′, then v′ has to be proposed by
some process of the system HASf [L,∅, n].

Proof: The variable vi has initially, when pi starts for the
first time, the value v proposed by process pi when it invokes
proposei (v) (line 1). Note that if process pi recovers after
proposing a value v but before writing any value inDECi , then
vi = v (line 36). Thus, vi = v is broadcast in (PH0, vi) mes-
sages permanently (line 6 of pi). So, this value vi = v only
changes if:

Case 1: (PH0, id(k), v′) is received from some process pk
such that 〈id(k), v′〉 ≤ 〈id(i), v〉 (lines 7-12 of pi). Then,
vi = v′ and DECi = v′, being v′ the initial value proposed
by process pk .

Case 2: (PH1, v′) is received (lines 15–18 of pi). We have
three subcases:

Case 2.1: (PH1, v′) was broadcast by some process pj
after receiving (PH0, id(k), v′) of pk (pk �= pj) such that
〈id(k), v′〉 ≤ 〈id(j), v〉 (lines 7-12 and task 2 of pj). Then,

vi = v′ and DECi = v′, being v′ the initial value proposed by
process pk .

Case 2.2: (PH1, v′) was broadcast by some process pj
after receiving (PH1, v′) of other process px (lines 15–18 and
task 2 of pj). Note that this (PH1, v′) is broadcast, like in Case
2.1, when process px receives (PH0, id(k), v′) of some pro-
cess pk such that 〈id(k), v′〉 ≤ 〈id(x), v〉. Then, vi = v′ and
DECi = v′, being v′ the initial value proposed by process pk .

Case 2.3: (PH1, v′) was broadcast by process pk when
outputk = true (lines 20–23 and task 2 of pk). Then, vi = v′
and DECi = v′, being v′ the initial value proposed by process
pk .

Therefore, for each run, if a process pi of the system decides
a value v′, then v′ has to be proposed by some process of the
system.

Lemma 2 (Agreement) For each run, the number of different
decided values in the system HASf [L,∅, n] is at most n− 1.

Proof: Let us suppose, by the way of contradiction, that there
is a run R such that the number of different decided values is
n. From Lemma 1, each decided value in R has to be one of
the proposed values. Hence, if we find in this run R a proposed
value which is not decided, we reach a contradiction.

Note that if in run R there are two processes pi and pj such
that pi proposes vi , and pi proposes vj being vi = vj , then the
statement of this lemma is trivial. So, we consider that vi �= vj ,
for all pi and pj of the system.

Let us denote byG the set of processes that decide in this run
R not executing lines 20–23. Note that G �= ∅ from Condition
1 of Definition 2. Also note that this implies that every process
pj /∈ G decides its own proposed value.

vol 30 no 3 March 2015 247

SET AGREEMENT AND THE LONELINESS FAILURE DETECTOR IN CRASH-RECOVERY SYSTEMS

Let us assume that pi ∈ G is the process with the greatest
pair 〈id(i), v〉 among processes in G. Let us also assume that
pi proposes vi . So, if contradiction holds, vi has to be decided
by pi or by another different process pj . We now analyze both
cases and we will see that it is impossible that some process de-
cides this value vi in run R. Hence, we reach a contradiction.

Case 1: Process pi decides vi . As pi , by definition, has the
greatest pair 〈id(i), v〉 among processes in G, it did not receive
any (PH1, vi) message from any process in G. Due to the fact
that every process pj /∈ G decides its own proposed value vj
(being vj �= vi), process pi did not receive any (PH1, vi)mes-
sage from any process pj . Then, it is impossible that process pi
decides its own proposed value vi .

Case 2: Process pj decides vi , being j �= i. As every process
pk /∈ G decides its own proposed value vk (being vk �= vi), then
process pj ∈ G. Hence, if process pj decides vi , which is a
different value of its own proposed value vj , it is because pj
receives a (PH0, id(l), vi) or (PH1, vi) message from some
process pl ∈ G. This is impossible because, by definition,
pi has the greatest pair 〈id(i), vi〉 among processes in G, and
〈id(i), vi〉 ≤ 〈id(x), vx〉 is always false for all px ∈ G (line 8).

Therefore, we reach a contradiction, and, for each run, the
number of different decided values is at most n− 1.

Lemma 3 (Termination) For each run, every process pi ∈
Correct of the system HASf [L,∅, n] eventually decides some
value.

Proof: Let us suppose, by the way of contradiction, that there is
a run R such that a correct process pi never decides. Hence, if
process pi ∈ Correct never decides in run R it is because lines
10, 17 and 21 are never executed.

Let us prove that this situation is impossible. If line 21 is
never executed, then L.outputi = false permanently. If this
is so, it is because there is at least another process pk that is
correct (from Condition 2 of Definition 2). Note that pi , after
its last recovery (if any), will be permanently broadcasting
(PH0, id(i), vi) messages, being vi the proposed value of pi
(line 6 of pi). Hence, if process pi never receives (PH1,−)
messages (lines 15–18 of pi) it is because all processes pl
(included pk) that receive the messages of pi have a lower pair
〈id(l), vl〉 than 〈id(i), vi〉 (line 8 of pl). Nevertheless, process
pi will receive (PH0, id(k), vk) messages of pk because
links are fair-lossy, and correct process pk also broadcasts
(PH0, id(k), vk) messages permanently (line 6 of pk). Then,
pi will execute line 10 because 〈id(k), vk〉 < 〈id(i), vi〉.
Hence, process pi will decide vk in run R. Therefore, we reach
a contradiction, and, for each run, every process pi ∈ Correct
eventually decides some value.

Theorem 1 The algorithm of Figure 1 implements set agreement
in the system HASf [L,∅, n].

Proof: From Lemma 1, Lemma 2 and Lemma 3, the validity,
agreement and termination properties (respectively) are satis-
fied in every run. Hence, the algorithm of Figure 1 solves set
agreement in the system HASf [L,∅, n].

5. ON THE IMPLEMENTABILITY OF L IN
THE CRASH-RECOVERY MODEL

In this section we prove that the failure detector L can not be
implemented, even in a synchronous system where the mem-
bership is known, if up to n different processes can crash and
recover; that is, L is not realistic [10]. We also prove in this
section that the failure detector L can not be implemented in a
partially synchronous system, even if the membership is known
and up to n− 1 different processes can crash and recover.

Let SSr [∅,�, n] be a system like ASr [∅,�, n] but syn-
chronous, that is, the maximum time to execute a step is bounded
and known by every process, and the time to deliver a message
is also known by all processes. Hence, SSr [∅,�, n] is a syn-
chronous system where all processes have different identities,
links are reliable, the membership is known, and the maximum
number of processes that can crash and recover is t = n. Simi-
larly, let PSSr [∅,�, n]be a system like SSr [∅,�, n]but partially
synchronous [14], that is, the maximum time to execute a step
by each process pi is bounded, but unknown by every process
different of pi , and the time to deliver a message is bounded but
unknown.

Lemma 4 For every run, if in SSr [∅,�, t] or PSSr [∅,�, t]
when t ≥ n−1 a process pi ∈ Correct stops receiving messages
from the rest of processes at some time τ , there is a time τ ′ ≥ τ
where outputτ

′
i = true.

Proof: Let us assume, by the way of contradiction, that there is
a runR where some correct process pi stops receiving messages
from the rest of processes at some time τ , but for all time τ ′ ≥ τ
it has outputτ

′
i = false.

Let us consider another run R′ behaving exactly like R until
time τ , and at this time τ all alive processes crash permanently
except pi . From Condition 2 of Definition 2 of L, there is a
time τ ′ where outputi = true. Note that each process only
knows that in a run the rest of processes can crash, but it does
not know a priori how many processes will crash or who they
will be. Then, R and R′ are indistinguishable until time τ ′ for
pi , and, hence, there is a time τ ′ where outputi = true in R,
which is a contradiction.

The following theorem shows that failure detector L can not
be implemented in SSr [∅,�, n].
Theorem 2 There is no algorithm A that implements the failure
detector L in every run of a system SSr [∅,�, n], even if there is
not any unstable process.

Proof: Let us assume, by the way of contradiction, that there is
an algorithm A that implements the failure detector L in every
run of a system SSr [∅,�, n], even if there is not any unstable
process.

For simplicity, let us consider that � = {p1, p2, . . . , pn},
and that all these n processes of � are eventually-up (hence,
correct). Let us construct a valid run R of A as follows. For
each process pi , at time τi all processes crash except process pi .
From lemma 4, there is a time τ ′i ≥ τi where outputi = true.
Now, all crashed processes recover at this time τ ′i . Let τ1=0,
and τ ′i < τi+1, i = 1, . . . , n. Finally, after time τ ′n all processes
keep alive in R (i.e., there is no unstable processes). Then, at

248 computer systems science & engineering

S. ARÉVALO ET AL

time τ ′n all processes have had output = true at some time,
which violates Condition 1 of Definition 2. Hence, we reach a
contradiction.

Therefore, there is no algorithm A that implements the failure
detector L in every run of a system SSr [∅,�, n], even if there
is not any unstable process.

The following theorem shows that failure detector L can not
be implemented in PSSr [∅,�, n− 1].

Theorem 3 There is no algorithm A that implements the failure
detector L in every run of a system PSSr [∅,�, n − 1], even if
there is not any unstable process.

Proof: From Lemma 4, there is a time τi after which each
process pi ∈ Correct sets outputi = true if it stops receiving
messages from the rest of processes. Let us consider that every
process pi in a run R is permanenly-up (hence, correct) and
takes a step after a time τ which is greater than the maximum
time τi , for every process pi ∈ �. Note that processes do not
know a priori the time needed by other processes to take a step
in runR, nor the number of other processes that are correct inR.
Hence, there is a time τ ′ ≥ τ after which every process pi has
outputi = true, which violates the Condition 1 of Definition 2
of L. Therefore, there is no algorithm A that implements the
failure detector L in every run of a system PSSr [∅,�, n − 1],
even if there is not any unstable process.

6. IMPLEMENTING L IN THE CRASH-
RECOVERY MODEL

From Section 5, we know that the failure detector L can not
be implemented in a synchronous system when up to t = n

processes can crash and recover; that is, L is not realistic [10].
From Section 5, we also know that L can not be implemented in
a partially synchronous system when t = n−1. Now, we enrich
here the system with a property such that we can circumvent
these impossibility results. This property reduces to t = n − 1
the number of processes that can crash and recover in a syn-
chronous system. Note that all algorithms found in the literature
that implement the loneliness failure detector L ([4], [19]) work
in systems where processes can crash but not recover, where up
to t = n − 1 processes can crash, and where the membership
is totally known. Therefore, we present in this section an im-
plementation of L (denote it by AL) for a synchronous system
with homonymous processes, a partial knowledge of the mem-
bership, and where up to t = n−1 different processes can crash
and recover.

6.1 Model

Let HSS be a system like HAS but synchronous. By synchronous
we mean that processes start their execution at the same time, the
time to execute a step is bounded and known by every process,
the time to deliver a message sent through a link is at most �
units of time, and this time is also known by all processes. For

simplicity, we consider that the local execution time is negligi-
ble with respect to � (i.e., the execution time of a line of the
algorithm is zero).

6.2 Algorithm AL

We show in this section that the algorithm AL of Figure 2 imple-
ments the failure detector L in HSSr [∅, Y, n− 1] when |Y | ≥ 2
and there are two processes of Y that have different and known
identities.

For each process pi , outputi is initially false (line 3). Pro-
cess pi uses the boolean value of the stable storage variable
restartedi to communicate to the other processes if it has ever
crashed (initially the value of this variable is false, line 1). If
process pi recovers, it will execute lines 19-20, and restartedi
will be true (line 19). By definition of the system HSS used to
execute AL, process pi knows at least two processes’ identifiers
with different values. These two known identifiers of Y with dif-
ferent value are IDENT1 and IDENT2 in Figure 2. Then, each
process pi whose identifier is neither IDENT1 nor IDENT2
changes outputi to true (lines 4–6). Repeatedly, each process
pi broadcasts heartbeats with messages (alive, restartedi) that
arrive synchronously (at most� units of time later) to the rest of
the processes of the system (line 8). Note that we select a value
η greater than� to allow that messages broadcast in line 8 arrive
to processes on time in each iteration of line 9.

After � units of time, process pi analyzes the messages re-
ceived (reci) to see if it has to set outputi to true (lines 11–17).
Note that once outputi = true, process pi never changes it to
false again while it is running. Only if process pi crashes and
recovers, line 3 is executed again and outputi is false again, but
restartedi will be true in this case. The variable counti counts
the number of heartbeats received by pi from processes that are
up, and that have never crashed (lines 12–14). If this number of
messages is 0, then pi sets outputi = true (lines 15–17).

Note that in all algorithms in the literature that implement
set agreement with L (our algorithm Aset included), the perfor-
mance is improved if processes obtain true from L as soon as
possible. This happens because a process of set agreement can
decide locally (without waiting to receive any message) if true is
returned by L. For that reason, our algorithm AL with a partial
knowledge of the membership immediately sets output = true
permanently in n− 2 processes (lines 4–6 of Figure 2).

Lemma 5 For each run, there is a process pi of system
HSSr [∅, Y, n − 1] where |Y | ≥ 2 and two processes of Y have
different identities, such that outputi = false at all times of the
run.

Proof: Note that in this system HSSr [∅, Y, n−1], being |Y | ≥ 2,
there are two different identifiers id(j) and id(k), beingpj , pk ∈
Y , which are known by all processes of the system (denoted
by IDENT1 and IDENT2 in the code of Figure 2). Then,
processes pj and pk initially set outputj = false and outputk =
false (lines 3-6).

Let pup be a permanently-up process. Note that in a system
HSSr [∅, Y, n−1] at most n−1 processes can crash, hence, there
must be at least a process permanently-up. Note that pup always
has restartedup = false because it never crashes, and, therefore,

vol 30 no 3 March 2015 249

SET AGREEMENT AND THE LONELINESS FAILURE DETECTOR IN CRASH-RECOVERY SYSTEMS

init:
(1) restartedi ← false; % stable storage variable
(2) start task 1

task 1:
(3) outputi ← f alse;

% IDENT1 and IDENT2 are two
% identifiers known by all processes

(4) if ((id(i) �= IDENT1) ∧ (id(i) �= IDENT2)) then
(5) outputi ← true
(6) end if
(7) repeat forever
(8) broadcast (alive, restartedi);
(9) wait � time;
(10) let reci be the set of messages (alive, restarted) received;
(11) counti ← 0;
(12) for_each ((alive, restarted) ∈ reci such that restarted = false) do
(13) counti ← counti + 1
(14) end for_each
(15) if (counti = 0) then
(16) outputi ← true
(17) end if
(18) end repeat

when process pi recovers:
(19) restartedi ← true; % stable storage variable
(20) start task 1

Figure 2 Algorithm AL for process pi to implement L

it never executes line 19. So, due to fact that the system is syn-
chronous with reliable links, each message (alive,restartedup)

with restartedup = false sent by pup arrives to every process
(other than pup) in at most � units of time later. Hence, if
pup �= pk (or pup �= pj), process pk (or pj) always receives on
time these messages when it is up.

We have two cases to study:
Case 1: pup = pj or pup = pk . Let us suppose, without loss of
generality, that pup = pj . Then, we have two subcases:

Case 1.1: process pk is up. As at least a message
(alive,restartedup)with restartedup = false is received, the vari-
able countk is countk ≥ 1, and pk never executes line 16.

Case 1.2: process pk is down. From Definition 2, outputk =
false all the time that pk is down.
Case 2: pup �= pj and pup �= pk . Then, we also have two sub-
cases:

Case 2.1: process pk (or pj) is up. As at least a message
(alive,restartedup) with restartedup = false is received, variable
countk (or countj) is greater than 1, and pk (or pj) never exe-
cutes line 16.

Case 2.2: process pk (or pj) is down. From Definition 2,
outputk = false (or outputj = false) all the time that process pk
(or pj) is down.

Therefore, from two previous cases, we can observe
that at least a process (pj or pk) always has its variable
output = false. Hence, for each run, there is a process pi of
system HSSr [∅, Y, n− 1], where |Y | ≥ 2 and two processes of
Y have different identities, such that outputi = false at all times
of the run.

Lemma 6 For each run, if Correct = {pi} in a system
HSSr [∅, Y, n−1]where |Y | ≥ 2 and two processes ofY have dif-
ferent identities, then there is a time after which outputi = true
permanently.

Proof: If Correct = {pi} then process pj ∈ Incorrect, for all pj
such that j �= i. So, each pj is permanently-down, eventually-
down, or unstable. Due to the fact that in the system up to n− 1
processes can crash, then process pi has to be permanently-up.
Hence, there is a time τ after which pi : (a) stops receiving mes-
sages from pj (if pj is permanently-down or eventually-down),
or (b) all received messages (alive,restartedj) from pj will have
restartedj = true (if pj is unstable or eventually-up). Hence,
eventually counti = 0 because there will not be messages
(alive,restarted) received by process pi with restarted = false
(lines 12–14), and process pi will execute line 16. Therefore,
process pi eventually has outputi = true permanently.

Theorem 4 The algorithm AL implements the failure detector
L in a system HSSr [∅, Y, n− 1]when |Y | ≥ 2 and two processes
of Y have different identities.

Proof: From Lemma 5 and Lemma 6, Conditions 1 and 2 of
Definition 2 are satisfied in every run. Hence, the algorithm
of Figure 2 implements the failure detector L in a system
HSSr [∅, Y, n − 1] where |Y | ≥ 2 and two processes of Y have
different identities.

7. CONCLUSIONS

We study the set agreement problem in message passing sys-
tems with the weakest failure detector L in crash-recovery asyn-
chronous systems, with homonymous processes, and without a
complete initial knowledge of the membership.

250 computer systems science & engineering

S. ARÉVALO ET AL

Acknowledgements

This work has been partially funded by PROMETEO-Escuela
Politénica Nacional, Ecuador, the Spanish Research Council
(MICCIN) under project TIN2010-19077, by the Madrid Re-
search Foundation (CAM) under project S2009/TIC-1692 (co-
funded by ERDF & ESF), by CEDIA, Ecuador, under project
CEPRAVII-2013-05, and by Universidad Politecnica de Madrid,
Spain, under project AL14-PID-30.

REFERENCES

1. M. K. Aguilera, W. Chen and S. Toueg. Failure Detection and
Consensus in the Crash-Recovery Model. Distributed Computing
vol. 13(2), pp. 99–125, 2000.

2. S. Arévalo, A. Fernández Anta, D. Imbs, E. Jiménez and M. Ray-
nal, Failure Detectors in Homonymous Distributed Systems (with
an Application to Consensus). Proc. IEEE 32nd IEEE Int. Conf.
on Distributed Computing Systems (ICDCS), pp. 275–284, 2012.

3. S. Arévalo, E. Jiménez, M. Larrea and L. Mengual.
Communication-efficient and crash-quiescent Omega with un-
known membership. Information Processing Letters 111 (4),
pp. 194–199, 2011.

4. M. Biely, P. Robinson and U. Schmid U. Weak Synchrony Models
and Failure Detectors for Message Passing (k-)Set Agreement.
Proc. 11th International Conference on Principles of Distributed
Systems (OPODIS’09), SpringerVerlag LNCS 5923, pp. 285-299,
2009.

5. F. Bonnet and M. Raynal. Anonymous Asynchronous Systems:
The Case of Failure Detectors. Distributed Computing, in press.
DOI 10.1007/s00446-012-0169-5, 2013.

6. E. Borowsky and E. Gafni. Generalized FLP impossibility result
for t-resilient asynchronous computations. STOC 1993: Proceed-
ings of the twenty-fifth annual ACM symposium on Theory of
computing, pp. 91–100. ACM, New York (1993)

7. T. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable
Distributed Systems. Journal of the ACM, 43(2), pp. 225–267,
1996.

8. Chandra T., Hadzilacos V. and Toueg S. The Weakest Failure De-
tector for Solving Consensus. Journal of theACM, 43(4), pp. 685–
722, 1996.

9. S. Chaudhuri. More Choices Allow More Faults: Set Consen-
sus Problems in Totally Asynchronous Systems. Information and
Computation, vol. 105, pp. 132–158, 1993.

10. C. Delporte-Gallet, H. Fauconnier and R. Guerraoui. A Realistic
Look At Failure Detectors. Proc. 42th International IEEE Confer-
ence on Dependable Systems and Networks (DSN’02), pp. 345-
353, 2002.

11. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos,
P. Kuznetsov and S. Toueg. The Weakest Failure Detectors to
Solve Certain Fundamental Problems in Distributed Computing.
Proceedings of 23th ACM Symp. on Principles of Distrib. Comp.
(PODC), pp. 338–346, 2004.

12. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui , A. .M. Ker-
marrec, E. Ruppert and H. Tran. The Byzantine agreement with
homonymous. Proceedings of 30th ACM Symp. on Principles of
Distrib. Comp. (PODC), pp. 21–30, 2011.

13. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui and A. Tiel-
mann. The Weakest Failure Detector for Message Passing Set-
Agreement. Lecture Notes in Computer Science(LNCS), ISBN:
978-3-540-87778-3, vol. 5218, pp. 109–120, 2008.

14. D. Dolev, C. Dwork and L. Stockmeyer. On the minimal synchro-
nism needed for distributed systems. Journal of the ACM 34(1),
pp. 77–97, 1987.

15. M. Herlihy and N. Shavit. The topological structure of asyn-
chronous computability. Journal of the ACM 46(6), pp. 858–923,
1999.

16. M. Hurfin, A. Mostefaoui, and M. Raynal. Consensus in asyn-
chronous systems where processes can crash and recover. In Pro-
ceedings of the 17th IEEE Symposium on Reliable Distributed
Systems (SRDS’98), pp. 280–286, 1998.

17. E. Jiménez, S. Arévalo, A. Fernández. Implementing unreliable
failure detectors with unknown membership. Information Pro-
cessing Letters 100 (2), pp. 60–63, 2006.

18. C. Martín, M. Larrea and E. Jiménez. Implementing the Omega
Failure Detector in the Crash-recovery Failure Model. Journal of
Computer and System Sciences, 75(3), pp. 178–189, 2009.

19. A. Mostefaoui, M. Raynal and J. Stainer. Relations Linking Failure
Detectors Associated with k-Set Agreement in Message-Passing
Systems. In Proceedings of the 13th International Symposium
(SSS 2011), LNCS vol. 6976, pp. 341–355, 2011.

20. M. Raynal. Communication and Agreement Abstractions for
Fault-Tolerant Asynchronous Distributed Systems. Morgan &
Claypool Publishers, 250 pages, 2010.

21. M. Raynal. Failure Detectors to Solve Asynchronous k-set Agree-
ment: a Glimpse of Recent Results. Bulletin of the EATCS 103,
pp 74-95, 2011.

22. M. Saks and F. Zaharoglou. Wait-free k-set agreement is im-
possible: The topology of public knowledge. SIAM Journal on
Computing, 29(5), pp. 1449-1483, 2000.

vol 30 no 3 March 2015 251

