
Reliable Spreading of Messages in not
Eponymous Systems

Sergio Arévalo Carlos Herrera
Dept. Sistemas Informáticos Dept. de DETRI

Universidad Politécnica de Madrid Escuela Politécnica Nacional
Madrid, Spain Quito, Ecuador

sergio.arevalo@eui.upm.es carlos.herrera@epn.edu.ec

Ernesto Jiménez Jian Tang
Prometeo Researcher Distributed System Laboratory (LSD)

Escuela Politécnica Nacional Universidad Politécnica de Madrid
and Madrid, Spain

Dept. Sistemas Informáticos tjapply@gmail.com

Universidad Politécnica de Madrid
Madrid, Spain

ernes@eui.upm.es

Rommel Torres
Dept. de C.C. y Electr.

Universidad Técnica Particular de Loja
Loja, Ecuador

rovitor@utpl.edu.ec

Abstract

The broadcast service spreads a message m among all processes
of the system, such that each process eventually delivers m. A ba-
sic broadcast service does not impose any delivery guarantee in a sys-
tem with failures. Fault-tolerant broadcast is a fundamental problem

This work has been partially funded by Prometeo Project of Secretaria de Educación Su-
perior, Ciencia, Tecnologı́a e Innovación de la República del Ecuador, by CEDIA, Ecuador,
under project CEPRAVII-2013-05, and by Universidad Politecnica de Madrid, Spain, under
project AL14-PID-30.

1

in distributed systems that adds certainty in the delivery of messages
when crashes can happen in the system. Traditionally, the fault-tolerant
broadcast service has been studied in classical distributed systems when
each process has a unique identity (eponymous system).

In this paper we study the fault-tolerant broadcast service in anony-
mous systems, that is, in systems where all processes are indistinguish-
able.

1. Introduction

One of the most important communication abstractions for distributed systems
is the broadcast service. This facility sends a message to all the processes of
the system. However, it does not impose any fault-tolerant property. So, if a
sender process crashes while it is broadcasting a message m, the delivery of
m is not known a priori. To avoid this indeterminism in the delivery when
processes may crash, the reliable broadcast (RB) service was introduced.

RB is another fundamental problem in fault-tolerant distributed computing
that imposes delivery guarantees. In short, RB is a broadcast service that
requires that all correct processes deliver the same set of messages, and that all
messages sent by correct processes must be delivered to all correct processes
[7].

All works that study the fault-tolerant broadcast service rely on distributed
systems where processes are distinguishable because each one of them has a
unique identity (called eponymous systems). In this paper we base our study
in anonymous systems. In an anonymous system processes are not identifiable
because all of them are coded identically (i.e, processes have no identity, and
there is no a way to distinguish among them).

Anonymous processes are common in some practical distributed systems,
such as sensor networks where a unique identity is not possible to be included
in each device (due, for example, to small storage capacity, reduced compu-
tational capacity, or a huge number of elements to be identified) [1]. Another
practical issue where anonymous processes are used is related with privacy
(for example, to hide the user identity in a system) [5].

Our work Up to now, the fault-tolerant broadcast service has been studied in
classical distributed systems when each process has a different identity. How-
ever, this is the first paper, to our knowledge, that is devoted to the broadcast
service with fault-tolerant guarantees in anonymous systems.

2

In this paper we present an algorithm that implements fault-tolerant broad-
cast service in anonymous systems. We would like to remark that the aim of
our algorithm is to prove that it is possible to implement them in anonymous
systems instead of achieving an efficient solution.

This paper is organized as follows. The system model is presented in
Section 2. Definitions are included in Section 3. In Section 4 we include an
implementation of reliable broadcast. We finish our paper with the conclusion
in Section 5.

2. The Anonymous System

The anonymous asynchronous system (denoted AAS [∅]) is formed by a set of
processes Π = {pi}i=1,...,n such that its size |Π| is n, and i is the index of
each process pi, 1 ≤ i ≤ n.

Processes are anonymous [3]. Hence, they have no identity, and there is no
a way to differentiate between any two processes of the system (i,e., processes
have no identifier, and execute the same code). So, anonymity implies that
process indexes are fictitious in the sense that each process pi ∈ Π does not
know its index i. We only use process indexes from an observer point of view,
and with the purpose of simplifying the notation.

A run R is formed by the set of steps taken by each process pi ∈ Π.
We assume that time advances at discrete steps in each run R, and there is a
global clock T whose values are the positive natural numbers. Note that T
is an auxiliary concept that we only use it for notation, but processes can not
check or modify it. Processes are asynchronous , that is, the time to execute a
step by a process in a run R is unbounded.

A process crashes when it stops taking steps. We assume that a crashed
process never recovers. A process pi ∈ Π is correct if it does not crash,
and faulty if it crashes. Let Correct be the set of correct processes, and let
Faulty be the set of faulty processes. We denote by f the maximum number
of processes that may crash. Unless otherwise is stated, we consider that this
maximum number is n− 1 (i.e., f ≤ n− 1).

In AAS [∅] processes communicate among them sending and receiving
messages through links. Each pair of processes is connected by a link. We
assume that links neither duplicate nor create spurious messages. We consider
that links are reliable. A link l is reliable if it is guaranteed that every message
sent using l is eventually received as long as sender and receiver are correct

3

processes. Note that messages can be lost in a reliable link if either sender or
receiver is a faulty process. Unless otherwise is stated, links do not enforce any
restriction with respect to the order in which messages are sent or received1.

The system AAS [∅] has two primitives to send and receive messages:
bcast(m) and del(m). We say that a process pi broadcasts a message m when
it invokes bcasti(m). Similarly, a process pi delivers a message m when it
invokes deli(m). We omit the index i in these primitives when the process pi
that invokes these primitives is not important.

With bcasti(m) process pi sends a copy of message m to each process
pk ∈ Π, and deli(m) reports to the invoking process pi that m is the received
message which is delivered. To preserve the anonymity of the system, we also
consider that delivering processes can not identify the link through which a
broadcast message is received.

In the literature is traditionally considered that broadcast and delivered
messages are unique. It is assumed that every broadcast message m includes
the different sender’s process identity as part of the content of m to distinguish
it [2, 9, 6, 7]. Since in AAS [∅] processes are anonymous, we have to consider
that messages are not unique. Let Bi be the multiset of all messages broadcast
by process pi, and let Di be the multiset of all messages delivered by pro-
cess pi. Let B be the multiset of all messages broadcast in the system, i.e.,
B =

⋃
pi∈Π

Bi. Similarly, D =
⋃
pi∈Π

Di is the multiset formed by all messages

delivered in the system. Hence, for instance, if we have the following five
primitves with the same message: bcasti(m), bcastj (m), deli(m), delj (m),
and delk (m), then the multiset B has two instances of m, and D have three
instances.

We assume that broadcast and deliver primitives of AAS [∅] dont not give
any fault-tolerant guarantees if a process crashes. Specifically, if a process
crashes while it is executing bcast(m), a copy of the message m can be re-
ceived by any subset of processes, and, hence, del(m) only can be invoked
by this subset of processes. Therefore, the system AAS [∅], with these two
communication primitives, offers an unreliable broadcast service.

1This assumption happens, for example, if we consider that a link has, for each
sender/receiver process, a internal buffer that stores sent/received messages not satisfying FIFO
order.

4

3. Definitions

Now, we define broadcast services that include fault-tolerance.
Three properties have to be satisfied by the broadcast and deliver primi-

tives to provide a reliable broadcast (RB) service:

• Integrity: All instances of all messages delivered by any process have
to be broadcast.
• Validity: All instances of all messages broadcast by correct processes

have to be delivered by each correct process.
• Agreement: All correct processes deliver the same number of instances

of each message.

Let us define the RB service more formally.

Definition 1 The RB service has to preserve the following two properties:

1. Integrity: ∀pi ∈ Π, Di ⊆ B.
2. Validity: ∀pi ∈ Correct,

⋃
pj∈Correct

Bj ⊆ Di.

3. Agreement: ∀pi, pj ∈ Correct, Di = Dj .

4. Implementing RB in AAS [∅].

We show in this section that the algorithm of Figure 1 implements the RB
service in an anonymous asynchronous system AAS [∅] independently of the
number of faulty processes.

Description of the algorithm. We say that process pi RB-broadcasts a mes-
sage m, if it invokes RB bcasti(m) (line 3). Similarly, we say that process pi
RB-delivers a message m, if it invokes RB deli(m) (line 15). When process
pi invokes RB bcasti(m), it sends (m, seqi[m]) to every process of the system
AAS [∅], such that m is the message to spread, and seqi[m] is the pi’s num-
ber of sequence of this message m (line 5). The variable seqi[m] allows each
process pj to distinguish among several identical messages m RB-broadcast
by process pi (initially, seqi[m] is 0, line 1).

When process pi delivers (m, s), that is, message m with number of se-
quence s (line 6), it uses count msgi[m, s] to increase the number of mes-
sages m with the same number of sequence s delivered by process pi. Then, it

5

sends (ACK,m, s, count msgi[m, s]) to every process of the system AAS [∅]
(line 8).

When process pi delivers (ACK,m, s, c) for first time, that is, message
m with number of sequence s and counter c of messages (m, s) (line 9), it
relays this message (ACK,m, s, c) (line 10) to spread this message even if
the sender process of (ACK,m, s, c) crashes. To avoid relaying a same mes-
sage indefinitely, lines 9-11 are executed only the first time that a message is
delivered (line 9).

To RB-deliver message m as many times as processes RB-broadcast a
message m with a number of sequence s, process pi uses execi[m, s] and
the function apply msg(m, s, c). The variable execi[m, s] remembers the
number of times that process pi executed RB deli(m) due to the reception
of (ACK,m, s,−) (initially execi[m, s] is 0, line 1). The func-
tion apply msg(m, s, c) allows process pi to execute RB deli(m) from next
time, indicated by execi[m, s]+1, to c (line 14). To avoid to RB-deliver mes-
sages due to outdated delivery of (ACK,m, s, c), c has to be greater than
execi[m, s] (line 13).

Correctness of the algorithm.
Lemma 1 Integrity: ∀pi ∈ Π, Di ⊆ B.

Proof: Let us consider, by the way of contradiction, that the claim is not true.
Then, there is a process pi such that Di ⊃ B. Following the contradiction, we
have that RB bcast(m) is executed x times, and RB deli(m) is executed y >
x times. Note that in one extreme case x processes can execute RB bcast(m)
once, and, in the other, a same process can execute RB bcast(m) x times.

A process pk increments its local number of instance s of m by one (line
4) previously to execute bcast(m, s) (line 5). Then, for each process pk, the
values of s for m that are broadcast are 1, 2, 3, So, in this case, these
values of s for m that are broadcast by any process will be in the range from
1, 2, 3, . . . up to x. On the other hand, each time that a process pk delivers a
number of instance s of m executing delk(m, s) (line 6), it counts this num-
ber of instances incrementing count msgk[m, s] by one (line 7). Hence, be-
cause links are reliable and neither duplicate nor create spurious messages,

6

(1) Init
(2) arrays seqi, execi and count msgi have 0 in all positions;

(3) when RB bcasti(m) is executed:
(4) seqi[m]← seqi[m] + 1;
(5) bcasti(m, seqi[m])

(6) when deli(m, s) is executed:
(7) count msgi[m, s]← count msgi[m, s] + 1;
(8) bcasti(ACK,m, s, count msgi[m, s])

(9) when deli(ACK,m, s, c) is executed for first time:
(10) bcasti(ACK,m, s, c);
(11) apply msg(m, s, c)

(12) function apply msg(m, s, c):
(13) if (execi[m, s] < c) then
(14) for (j = execi[m, s] + 1 to c) do
(15) RB deli(m)
(16) end for;
(17) execi[m, s]← c
(18) end if.

Figure 1: RB service in AAS [∅] (process pi’ code).

7

if r ≤ x processes executes bcat(m, s), then every process pk broadcast
the sequence of messages bcastk(ACK,m, s, 1), bcastk(ACK,m, s, 2), . . .
bcastk(ACK,m, s, c), such that c ≤ r. Thus, because links are reliable and
neither duplicate nor create spurious messages, process pi eventually receives
the messages of these broadcast primitives, and executes their corresponding
deli(ACK,m,−,−). Note that, because links do not force any delivery order,
these executions may not be in the same order than their respective broadcast
primitives were issued.

We can observe that process pi stores in execi[m, s] the number of invo-
cations of RB deli(m) for each instance s of m when deli(ACK,m, s, c) is
executed (lines 14-17). We can also observe that process pi only delivers the
instance s of m, executing RB deli(m), when deli(ACK,m, s, c) is also ex-
ecuted, but if it has not been applied yet (line 13). Hence, if RB bcast(m) is
executed x times, then RB deli(m) is executed at most x times. So, we reach
a contradiction, and, hence, ∀pi ∈ Π, Di ⊆ B.

Lemma 2 Validity: ∀pi ∈ Correct,
⋃

pj∈Correct

Bj ⊆ Di.

Proof: A correct process pj increments its local number of instance s of m by
one (line 4) previously to execute bcast(m, s) (line 5). So, its values of s for
m that are broadcast are 1, 2, 3,

On the other hand, each time that a correct process pj delivers a num-
ber of instance s of m executing delj(m, s) (line 6), it counts this number
of instances incrementing count msgj [m, s] by one (line 7). Hence, because
links are reliable and neither duplicate nor create spurious messages, if c cor-
rect processes executes bcat(m, s), then every correct process pj broadcast
the sequence of messages bcastj(ACK,m, s, 1), bcastj(ACK,m, s, 2), . . .
bcastj(ACK,m, s, c). Thus, because links are reliable and neither duplicate
nor create spurious messages, every correct process pi eventually receives
the messages of these broadcast primitives, and executes their corresponding
deli(ACK,m,−,−).

We can observe that any correct process pi stores in execi[m, s] the num-
ber of invocations of RB deli(m) for each instance s of m when deli(ACK,m, s, c)
is executed (lines 14-17). We can also observe that process pi only delivers the
instance s of m, executing RB deli(m), when deli(ACK,m, s, c) is also ex-
ecuted, but if it has not been applied yet (line 13). Hence, if RB bcast(m) is

8

executed x times, such that c of them are correct processes, then RB deli(m)
is executed at least c times.

Lemma 3 Agreement: ∀pi, pj ∈ Correct, Di = Dj .

Proof: Let us consider, by the way of contradiction, that the claim is not
true. Following the contradiction, let us consider, w.l.o.g., that a correct
process pi delivers s instances of a message m, and a correct process pj
delivers x < s instances of this message m. If correct process pi deliv-
ers s instances, it also executes s times deli(ACK,m,−,−) and, hence,
bcasti(ACK,m,−,−) (lines 9-11). Thus, because links are reliable, all these
messages (ACK,m,−,−) will be received by correct process pj . Hence,
process pj eventually has to deliver from x to s instances of m (lines 14-17).
Therefore, we reach a contradiction, and ∀pi, pj ∈ Correct, Di = Dj .

5. Conclusion

Fault-tolerant broadcast is a fundamental problem in distributed systems that
includes several guarantees in the delivery of messages when crashes can hap-
pen in the system. Traditionally, the fault-tolerant broadcast service has been
studied in classical distributed systems where each process has a unique iden-
tity (eponymous systems).

In this paper we have studied the fault-tolerant broadcast service in anony-
mous systems.

References

[1] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing,
18 (4), pp. 235–253, 2006.

[2] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations,
and Advanced Topics. Wiley, 2004.

[3] F. Bonnet and M. Raynal. Anonymous Asynchronous Systems: The Case of
Failure Detectors. Distributed Computing, 26 (3), pp. 141–158, 2013.

[4] T. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed
Systems. Journal of the ACM, 43(2), pp. 225–267, 1996.

[5] T. Chothia and K. Chatzikokolaris. A survey of anonymous peer-to-peer file-
sharing. In Proceedings Workshops on Embedded and Ubiquitous Computing
(EUC), LNCS 3823, pp. 744–755, Springer, 2005.

9

[6] X. Défago, A. Schipe, and P. Urbán. Total order broadcast and multicast algo-
rithms: Taxonomy and survey. ACM Computing Surveys, 36(4), pp. 372–421,
2004.

[7] V. Hadzilacos and S. Toueg. A Modular Approach to Fault-Tolerant Broad-
casts and Related Problems. Technical Report of 94–1425, 83 pages, Cornell
University, Ithaca (USA), 1994.

[8] A. Mostéfaoui, S. Rajsbaum, M. Raynal, and C. Travers. On the computability
power and the robustness of set agreement-oriented failure detector classes.
Distributed Computing, 21 (3), pp. 201–222, 2008.

[9] M. Raynal. Communication and Agreement Abstractions for Fault-Tolerant
Asynchronous Distributed Systems Morgan & Claypool, 2010.

10

