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a b s t r a c t

The Session Initiation Protocol (SIP) has been adopted by the IETF as the control protocol for creating,
modifying and terminating multimedia sessions. Overload occurs in SIP networks when SIP servers have
insufficient resources to handle received messages. Under overload, SIP networks may suffer from
congestion collapse due to current ineffective SIP overload control mechanisms. This paper introduces a
probe-based end-to-end overload control (PEOC) mechanism, which is deployed at the edge servers of
SIP networks and is easy to implement. By probing the SIP network with SIP messages, PEOC estimates
the network load and controls the traffic admitted to the network according to the estimated load.
Theoretic analysis and extensive simulations verify that PEOC can keep high throughput for SIP networks
even when the offered load exceeds the capacity of the network. Besides, it can respond quickly to the
sudden variations of the offered load and achieve good fairness.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Session Initiation Protocol (SIP) (Rosenberg et al., 2002) is
an IETF-defined application-layer control protocol widely used for
creating, modifying and terminating multimedia sessions. Typical
SIP applications include Voice over IP (VoIP), multimedia distribu-
tions, video conferencing, instant messaging and presence service
(Liao et al., 2011). The SIP has been adopted by the 3GPP as the
basis for the IP Multimedia Subsystem (IMS) architecture.

SIP is a request/response-based protocol. Each end user is
represented by a user agent (UA), which takes the role of a user
agent client (UAC) or a user agent server (UAS) for a request/
response pair. A UAC creates a SIP request and sends it to a UAS.
The request traverses through one or more SIP servers (also called
SIP proxies) in a SIP network. The main purpose of a SIP server is to
route a request to its destination. The response traces back the
path the request has taken. Fig. 1 shows an example of SIP call
flow. A SIP call is initialized by an INVITE request and terminated
by a BYE request. SIP is call-oriented and the SIP server can only
reject/drop the INVITE requests if it is unwilling or unable to
forward requests. There is no reason to reject/drop messages of an
on-going call such as 200 response, ACK request and BYE request.
Two typical SIP networks consisting of edge servers and core

servers are shown in Fig. 2. Each UA is connected to the network
via an edge server located closest to it. When a SIP call between
two UAs goes through the network, the first server the call (i.e., the
INVITE request of the call) arrives at is denoted as the ingress
server, and the last server the call arrives at is denoted as the
target server. Clearly, both ingress server and target server are
edge servers.

The widespread popularity of SIP has raised attention to its
readiness of handling overload (Rosenberg, 2008). Overload of a
SIP server occurs if the message arrival rate to the server exceeds
its message processing capacity. A SIP server can be overloaded for
many reasons, such as emergency-induced call volume, flash
crowds generated by the popular TV show, simultaneous registra-
tions of many users due to recovery after a large power outage, or
even denial of service attacks. Under overload, the throughput of a
SIP server can drop significantly and can even reach zero. Besides,
the call setup delay becomes unacceptable for a real-time media
call. Furthermore, a number of retransmission timers are defined
in SIP to cope with message losses, especially when the unreliable
UDP transport is used. Thus, both the SIP server and the UA
retransmit a request if a response has not been received in time.
Under overload, the SIP server becomes significantly less respon-
sive, which causes a large number of requests to be retransmitted
by its neighbors. This aspect not only aggravates the load on the
overloaded server, but also leads to overload in its neighbors. In
this way, overload can spread in a network of SIP servers and
eventually bring down the entire network.

Several design approaches have been proposed in the litera-
tures (Hilt and Widjaja, 2008; Hilt et al., 2011; Gurbani et al., 2013)
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in order to manage the overload in the SIP networks, which can be
classified into local, hop-by-hop and end-to-end overload control.
In local overload control, the SIP server monitors its load and starts

to reject requests locally by using 503 (Service Unavailable)
responses (Rosenberg, 2008; Hilt and Widjaja, 2008) when it
detects overload. In hop-by-hop overload control, the overloaded
SIP server can provide feedback to its direct upstream neighbors,
which then adjust the amount of traffic forwarded to this SIP
server to eliminate overload. The feedback can be conveyed in a
SIP response header (Gurbani et al., 2013). In end-to-end overload
control, the edge servers, which are considered as the closest
servers to the sources of traffic in a SIP network, are responsible
for adjusting the amount of traffic forwarded to the overloaded
server to eliminate overload. The research in Hilt and Widjaja
(2008) indicates that end-to-end overload control achieves the
best performance although it is the most complex among all types
of overload control approaches.

In this paper, we propose and design PEOC, a probe-based end-
to-end overload control mechanism, which is deployed at edge
servers and is easy to implement. By probing the SIP network with
SIP messages, PEOC estimates the network load and controls the
traffic admitted to the network based on the estimated load. The
remainder of this paper is organized as follows: Section 2 surveys
related work. Section 3 proposes the design of PEOC and Section 4
analyzes the Probe-based Rate Adaption (PRA) algorithm, which
can dynamically adjust the rate of calls admitted according to the
overload feedback received from the network and the estimated
network load obtained by probing the network. In Section 5, theFig. 1. Sample SIP call flow.

Fig. 2. Typical SIP network topologies. (a) Topology 1 and (b) topology 2.
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probing mechanism in PEOC is discussed in detail. Section 6
describes the simulation models and presents the performance
results. Finally, conclusions and possible future work are presented
in Section 7.

2. Related work

The research on SIP overload control has attracted much
attention recently. In (Rosenberg, 2008; Hilt and Widjaja, 2008;
Hong et al., 2010), the overload problem of SIP and the ineffec-
tiveness of its built-in overload control mechanisms are studied in
detail. In Hilt and Widjaja (2008), Ohta (2006a,b), Cyr et al. (1990),
Kasera et al. (2001), and Garroppo et al. (2009), several local
overload control mechanisms have been proposed. Furthermore,
recent research focuses on studying hop-by-hop overload control
mechanisms to handle overload more effectively, which are
classified into receiver-based and sender-based overload control.
In receiver-based control, the overloaded server calculates restric-
tions on its offered load according to current load and distributes
these restrictions to its direct upstream neighbors as the feedback.
Its direct upstream neighbors only follow the received restrictions
to throttle traffic forwarded to the overloaded server. This type of
overload control is adopted by Hilt and Widjaja (2008), Noel and
Johnson (2007), Shen et al. (2008), and Garroppo et al. (2011).
On the other hand, in sender-based control, the overloaded server
only implements local overload control which rejects requests by
using 503 responses. Based on the received 503 responses, its
direct upstream neighbors calculate and then follow the restric-
tions on the traffic forwarded to the overloaded server. Abdelal
and Matragi (2010) and Azhari et al. (2012) are typical implemen-
tations of sender-based overload control. Note that receiver-based
control is more complex than sender-based control as receiver-
based control adds extra burden on the overloaded server to
calculate restrictions and then distribute these restrictions to its
direct upstream neighbors.

Similar to hop-by-hop overload control, end-to-end overload
control can also be classified into receiver-based and sender-based
overload control. In receiver-based control, the SIP server sends
its overload/restriction to the upstream neighbors, which then
forward the overload/restriction to their upstream neighbors. In
this way, the overload/restriction is eventually propagated to all
ingress servers. The ingress server adjusts the amount of traffic
forwarded to the overloaded server based on the received over-
load/restriction. Hilt and Widjaja (2008) and Wang (2010) belong
to this type of overload control.

Note that in receiver-based hop-by-hop overload control, the
overload/restriction is propagated just through one hop and only
the overloaded server takes charge of propagating. However, in
receiver-based end-to-end overload control, it is propagated
through multiple hops and SIP servers located between the edge
server and the overloaded server are all involved in propagating,
which needs the complex cooperation among them. Thus,
receiver-based end-to-end overload control is even more complex
than receiver-based hop-by-hop overload control. On the other
hand, sender-based end-to-end overload control is simple and
practical. In Liao et al. (2012), our previous work proposed a
distributed end-to-end overload control (DEOC) mechanism,
which is a sender-based overload control, where the core servers
only implement local overload control that rejects requests by
using 503 responses. Based on the received 503 responses, the
edge servers calculate and then follow the restrictions on the
traffic admitted to the SIP network. Simulation result shows that
this approach can keep high throughput for SIP networks even
when the offered load exceeds the capacity of the network and can
respond quickly to the sudden variations of the offered load.

DEOC is a reactive mechanism, because the edge servers in
DEOC calculate restrictions only based on a simple binary overload
feedback received from the network (i.e., whether or not 503
responses are received), indicating whether the network is cur-
rently overloaded or underutilized. In order to further improve the
throughput for SIP networks and respond more quickly to the
sudden variations of the offered load, in this paper we propose a
probe-based end-to-end overload control (PEOC) mechanism.
PEOC is also a sender-based overload control. Besides, it is a
proactive mechanism because the edge servers in PEOC firstly
estimate the network load by probing the SIP network with SIP
messages and then calculate restrictions based on both the
estimated load and the binary overload feedback received from
the network.

3. Probe-based end-to-end overload control1

In this section we develop PEOC, a probe-based end-to-end
overload control mechanism for SIP networks. In PEOC, the core
servers only implement local overload control that rejects requests
by using 503 responses. When receiving a 503 response from a
downstream neighbor, the server forwards this response to the
upstream neighbor, from which the INVITE request related to this
response has been received. In this way, the 503 response will
finally be forwarded to the edge server. The edge servers estimate
the network load by probing the SIP network with SIP messages.
Based on the received 503 responses and the estimated load, they
calculate and then follow the restrictions on the traffic admitted to
the SIP network.

We deploy a set of PEOCs at each ingress server to control
overload for the SIP network. At an ingress server, each PEOC is
related to a specific target server and controls the arriving calls
from UAs that take this ingress server as first-hop and the target
server as last-hop in the network. Thus, the load of the network is
controlled by PEOCs at all ingress servers. Note that our approach
is completely distributed: there is no centralized entity to control
PEOCs and each PEOC is functionally identical and operates
independently. Besides, there is no communication between
PEOCs. Finally, our approach can be deployed incrementally, by
installing PEOCs on ingress servers, with no need to alter other
servers in the SIP network. Therefore, our approach is easy to
implement.

The task of a PEOC can be split into four separate parts:
measurement, restriction, probing and control decision. Fig. 3
shows the functional modules in PEOC. The solid line and dashed
line represent the data flow and the control flow, respectively.
The arriving call at the PEOC firstly goes through measurer
module, which is used to measure the inter-arrival time of calls.
Afterwards, it goes through restrictor module, which determines
whether or not to throttle the received calls in order to avoid
overload in network.

3.1. Measurement and restriction

In the measurer module, the inter-arrival time of calls is
measured and a standard EWMA (exponentially-weighted moving
average) filter is applied to smooth out short-term fluctuations

1 This section presents the architecture of PEOC. Since PEOC is based on DEOC
(Liao et al., 2012) and further adopts a proactive control mechanism to achieve a
more efficient overload control, the basic functional modules (Measurer and
Restrictor) and the state machine of Controller are the same as those in Liao
et al. (2012). We introduce these functional modules in this paper in order to make
the paper more readable.

J. Wang et al. / Journal of Network and Computer Applications 41 (2014) 114–125116



as follows:

ΔIavg ¼ ð1�wÞ � ΔIavgþw� Δi; 0owr1 ð1Þ
where ΔIavg is the average inter-arrival time of calls, Δi is the
measured inter-arrival time of calls, and w is the EWMA smooth-
ing weight. We define call arrival rate λ as the number of arriving
calls at the PEOC per unit time and it is calculated as λ¼ 1=ΔIavg .

The controller module calculates the call admission rate
(denoted as r) periodically and the calculation interval is T.
At the end of each interval T, the controller module obtains from
the measurer module the current call arrival rate λt, which denotes
the call arrival rate at time t (in T). Note that the time t is measured
in T since r is calculated periodically. Then the controller module
obtains from the prober module the current application-layer
round trip time RTTt, which represents the SIP network load at
time t (in T). Finally the controller module calculates the call
admission rate rtþ1 for the next T and sends it to the restrictor
module to throttle arriving calls according to this threshold.

The prober module periodically probes the SIP network with
SIP messages and passes the measured application-layer RTT to the
controller module. We will detail the probing mechanism of the
prober module in Section 5.

In the restrictor module, we adopt call gapping (Berger, 1991)
to throttle arriving calls. Once admitting a call, the restrictor starts
a timer of duration τ, which is the gap interval. Then it rejects all
subsequent calls arriving before the timer expires. Every time the
restrictor module receives rtþ1 from the controller module, it
obtains λt from the measurer module and then calculates the gap
interval in the next T. Suppose that the arrival process of calls
conforms to Poisson distribution. Referring to Berger (1991), the
gap interval τtþ1 adopted in the next T is calculated as

τtþ1 ¼ maxð0;1=rtþ1�1=λtÞ ð2Þ
When the gap interval is 0, the restrictor module does not

throttle arriving calls and all arriving calls are admitted to the
network.

3.2. Control decision

The main function of PEOC is to calculate r. In the following, we
design a Probe-based Rate Adaption (PRA) algorithm that can
dynamically adjust the call admission rate r. The PRA consists of an
increasing rule and a decreasing rule. When there is no overload
feedback, PRA increases r according to the increasing rule. When
receiving the overload feedback, PRA decreases r according to the
decreasing rule. Besides, PRA uses the estimated network load,
which is obtained from the prober module, to design the increas-
ing rule. We will elaborate on PRA in Section 4.

The controller module periodically executes PRA (with interval T)
and takes the number of received 503 responses during each T as the
overload feedback to PRA. The controller module is implemented

based on a finite state machine. The state machine is executed at
the end of each T, which takes λt and the number of received 503
responses in the current T as input and outputs rtþ1 to control
admitted calls in the next T. Note that the state machine only uses
a binary overload feedback. That is, it only needs the information
about whether 503 responses are received in each T. The binary
overload feedback indicates whether the network is currently
overloaded or underutilized. A very good reason for adopting a
binary feedback is that it makes the PEOC as simple and practical
as possible. Besides, it also minimizes the overhead of generating
the feedback in the network. We omit the introduction of the finite
state machine in this paper, which is similar to that in Liao et al.
(2012). The detailed description of the finite state machine can be
found in our previous work (Liao et al., 2012).

4. Probe-based Rate Adaption (PRA) design

In this section we design PRA. The overload of the SIP network
is managed by a lot of PEOCs located on the edge of the network.
These PEOCs are distributed and each PEOC executes PRA to
calculate the call admission rate based on the overload feedback
received from the network. The feedback should be designed to be
as simple as possible in order to make PEOC simple and practical.
Considering that these features are similar to those of the TCP
congestion avoidance (Allman et al., 2009), the design of PRA can
be inspired by the TCP congestion avoidance. The basic TCP
congestion avoidance algorithm, which is proposed by Chiu and
Jain (1989) and Jacobson (1988) and is based on a simple binary
overload feedback received from the network, is applied by Liao
et al. (2012) to the SIP overload control as follows:

increasing : rtþ1 ¼ rtþα; α40 ð3Þ

decreasing : rtþ1 ¼ rt�βrt ; 0oβo1 ð4Þ
where rt is the call admission rate at time t (in T). α and β are
constant factors. The algorithm is periodically executed (the period
is T). If no call rejection is received in the current period, the call
admission rate in the next period is increased additively. Other-
wise, it is decreased multiplicatively. Therefore, this algorithm is
called as AIMD (additive increase and multiplicative decrease)
(Chiu and Jain, 1989).

4.1. Aggressiveness, responsiveness and throughput

Before presenting the PRA, we first consider the important
properties of call admission rate control algorithms in SIP net-
works including aggressiveness, responsiveness and throughput
(Liao et al., 2012). The network is underutilized when the call
admission rate is below the capacity of the network. In this case, a
good call admission rate control algorithm needs to increase the
call admission rate as fast as possible in order to make full use of
network resources and avoid unnecessary call rejections. Aggres-
siveness measures how fast a call admission rate control algorithm
makes use of network resources as they are available. We define
aggressiveness as the inverse of the time needed for the call
admission rate control algorithm to achieve the increment of a
certain amount of call admission rate, in response to: (1) a step
increase of available network resources or (2) a step increase of
call arrival rate when there are available resources in the network.
Obviously, high aggressiveness, implying potentially high utiliza-
tion, is desirable.

The network is overloaded when the call admission rate
exceeds the capacity of the network. In this case, a good call
admission rate control algorithm needs to decrease the call
admission rate as fast as possible in order to eliminate overload.

Fig. 3. The functional modules in PEOC.
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Responsiveness measures how fast a call admission rate control
algorithm decreases the call admission rate in response to over-
load. We define responsiveness as the inverse of the time needed
for the call admission rate control algorithm to achieve the
decrement of a certain amount of call admission rate, in response
to a step increase of network overload. Obviously, high respon-
siveness, which allows call admission rate control algorithm to
decrease the call admission rate quickly when overload occurs, is
desirable.

The network is fully utilized when the call admission rate is
close to the capacity of the network. In this case, since the
feedback is binary, the call admission rate oscillates around the
network capacity over time and the throughput of the network is
determined by the call admission rate control algorithm. The
throughput in SIP overload control is determined by effective rate
and stable duration. We define effective rate as the average call
admission rate during one increasing phase. The increasing phase
consists of a sequence of consecutive call admission rate increases,
which is followed by call admission rate decreases. High effective
rate, which implies high throughput of the SIP network, is
desirable. We define stable duration as the number of periods in
one increasing phase. A shorter stable duration leads to the
occurrence of overload being more frequent. As the network's
throughput can be reduced by the occurrence of overload, short
stable duration is not desirable.

Based on these properties, Liao et al. (2012) analyzes the
performance of AIMD. As for the increasing rule, due to the
constant increasing rate of call admission rate, the aggressiveness
is low when α is small, which leads to rejecting a lot of arriving
calls unnecessarily when the network is underutilized. On the
other hand, the stable duration is short when α is large, which
causes frequent decrease of call admission rate and thus results in
low throughput of SIP network. Therefore, the constant increasing
rate cannot satisfy the requirements for SIP overload control.
On the other hand, the decreasing rule seems to be suitable for
SIP overload control. Since the decreasing is multiplicative, it is
possible to achieve high responsiveness even by using a small β,
which can keep high throughput of the SIP network.

4.2. Proactive vs. reactive algorithm

Note that the AIMD is reactive. That is, this algorithm calculates
the call admission rate only based on the binary overload feedback
received from the network, which can be used to decide whether
the increasing rule or the decreasing rule is adopted. During the
increasing phase, this reactive algorithm only adopts a predefined
increasing rule. However, the aggressiveness is low if the call
admission rate is increased too slowly (i.e., α is small) and the
throughput is low if the call admission rate is increased too fast
(i.e., α is large). Thus the increasing rule (3) cannot achieve high
aggressiveness and high throughput simultaneously. The research
(Liao et al., 2012) further extends the linear increasing rule (3) to
the non-linear one in order to achieve a better tradeoff between
aggressiveness and throughput. However, it is still a reactive algo-
rithm and cannot achieve high aggressiveness and high throughput
simultaneously.

Therefore, in order to achieve high aggressiveness as well as
high throughput, we should design a call admission rate control
algorithm to adopt different increasing rules adaptively based on
the different network load during the increasing phase. That is,
when the current network load is low, since the network will not
be overloaded, the call admission rate should be increased
aggressively in order to achieve high aggressiveness. On the other
hand, when the current network load is high, since the network tends
to be overloaded, the call admission rate should be increased con-
servatively in order to avoid overload and achieve high throughput.

The current network load can be obtained by probing the SIP network.
Obviously, this algorithm is proactive, which can achieve both high
aggressiveness and high throughput and thus is more suitable for SIP
overload control than the reactive algorithm.

4.3. The increasing rule of the Probe-Based rate Adaption (PRA)

Motivated by the conclusion that the proactive algorithm is
more effective than the reactive algorithm, in this paper we
propose a probe-based call admission rate adaption algorithm
(PRA). PRA also uses the binary overload feedback received from
the network to decide whether the increasing rule or the decreas-
ing rule is adopted. Besides, it obtains the estimated network load
from the prober module, which probes the SIP network with SIP
messages. During the increasing phase, PRA adopts different
increasing rules adaptively based on the different network load
in order to achieve high aggressiveness as well as high throughput.
Thus PRA is proactive and can control the overload of the network
efficiently and in a timely manner. Note that the probing mechan-
ism is important to PRA because the PRA uses it to obtain the
network load. We will detail the probing mechanism in Section 5.

PRA takes the application-layer RTT as the indicator of the
network load. At the end of each T (at time t), the controller
module obtains the current RTTt from the prober module, which
represents the network load at time t. Based on the current
network load RTTt, PRA adopts different increasing rules during
the increasing phase. We compare RTTt with a predefined thresh-
old Tth and consider that the network load is low if RTTtoTth and is
high if RTTtZTth. When the network load is low, since the network
will not be overloaded, the call admission rate should be increased
more aggressively in order to achieve high aggressiveness. Thus in
this case, we choose the multiplicative increasing rule to achieve
the high increasing rate of call admission rate. On the other hand,
when the network load is high, since the network tends to be
overloaded, the call admission rate should be increased more
conservatively in order to avoid overload and achieve high
throughput. Thus in this case, we choose the additive increasing
rule to achieve the low increasing rate of call admission rate.
To sum up, the increasing rule in PRA is as follows:

increasing :
rtþ1 ¼ rtþδrt ; 0oδo1; if RTTtoTth

rtþ1 ¼ rtþθ; θ40; if RTTtZTth

(
ð5Þ

where δ and θ are constant factors (we set 0oδo1 to prevent the
call admission rate from increasing too aggressively). That is, when
the network load is low, the call admission rate is increased
multiplicatively. Otherwise, it is increased additively. Besides,
PRA adopts the decreasing rule (4) as its decreasing rule since
(4) is suitable for SIP overload control.

According to (5), when the network load is low, the call
admission rate is increased multiplicatively and δ determines its
increasing rate. A larger δ leads to a much higher increasing rate.
Obviously, a higher increasing rate achieves higher aggressiveness.
On the other hand, it leads to lower throughput because the
network tends to be overloaded more frequently when the call
admission rate is increased too fast. Since a small δ can achieve
high aggressiveness, δ should be set as a small value in order to
keep high throughput.

On the other hand, when the network load is high, the call
admission rate is increased additively and θ determines its
increasing rate. The increasing rate increases as θ increases, thus
larger θ leads to higher aggressiveness and lower throughput.
Since θ is the increasing step size of call admission rate when the
network load is high, θ should be set as a small value in order to
avoid overload and achieve a better tradeoff between aggressive-
ness and throughput.
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Note that Tth is the predefined threshold value, which can
determine whether the network load is high or low. Obviously, a
larger Tth leads to a larger proportion of multiplicative increase,
which results in higher aggressiveness and lower throughput as
multiplicative increase enables the call admission rate to increase
very fast. On the other hand, a smaller Tth leads to a larger
proportion of additive increase and thus results in lower aggres-
siveness and higher throughput. In the real circumstance, the
value of Tth can be defined according to our requirements of
aggressiveness and throughput.

5. Probing mechanism

5.1. Probing mechanism and prediction of application-layer RTT

PEOC uses the prober module to probe the SIP network with
SIP messages. We define a Probing header and insert it into the
MESSAGE request for probing. The probing flow is shown in Fig. 4.
At the end of each T, PEOC sends a MESSAGE request with a
Probing header to its target server. The MESSAGE request traverses
through one or more core servers and finally arrives at the target
server. When a target server receives a MESSAGE request with a
Probing header, it replies a 200 OK response immediately and the
200 OK response traces back the path the MESSAGE request has
taken. After receiving the 200 OK response, PEOC calculates the
elapsed time between sending the MESSAGE request and receiving
the 200 OK response, and takes it as the measured application-
layer RTT.

When receiving a probing message (request/response), the core
server inserts it into the processing queue. If the load of the core
server is higher, more time is spent on forwarding the received
probing message. Thus the time spent on forwarding the probing
message can indicate the core server's load. Similarly, the target
server also inserts the probing request into the processing queue
and the time spent on replying the 200 OK can indicate its load.
Since the application-layer RTT includes the forwarding time in the
core servers and the replying time in the target server, the increase
of load either in core servers or target server can lead to the
increase of application-layer RTT. Thus application-layer RTT is a
good indicator of the SIP network load.

The prober module probes the SIP network periodically. At time
t (at the end of each T), it sends a MESSAGE request with a Probing
header in order to probe the SIP network and measure the current
RTT. In the meanwhile, the prober module passes RTTt to the
controller module, which is the RTT at time t and reflects the
current network load. However, due to the delay between sending
the MESSAGE request and receiving its 200 OK response, the

measured RTT is not available at the prober module at time t.
Therefore, we should design a prediction algorithm in the prober
module in order to predict RTTt based on the historical measure-
ments of RTT.

5.2. Prediction algorithm

The time series prediction is well investigated and many
predictors have been proposed in control systems (Garroppo
et al., 2011; Hayes, 1996; Haykin, 1991; Mishra et al., 1996; Adas,
1998; Garroppo et al., 2008). Among these predictors, the linear
predictors can provide low complexity as well as high accuracy
and responsiveness (Garroppo et al., 2008). Therefore, we adopt a
linear predictor in PEOC.

The k-step linear predictor is concerned with the predication of
ztþk using a linear combination of the current and previous values
of zt (Hayes, 1996). A pth-order linear predictor has the form

ẑtþk ¼ ∑
p�1

l ¼ 0
wlzt� l ð6Þ

where wl (for l¼0, 1, …, p�1) are the prediction filter coefficients.
Let

w ¼ ½w0;w1;…;wp�1�T

zt ¼ ½zt ; zt�1;…; zt�pþ1�T

et ¼ ztþk� ẑtþk ð7Þ
From (6) and (7),

et ¼ ztþk�wTzt ð8Þ
The filter coefficients can be determined according to arbitrary

optimality criteria. One of the most famous and widely adopted
prediction algorithms is the Linear Minimum Mean Square Error
(LMMSE) predictor (Hayes, 1996; Haykin, 1991), in which the filter
coefficients are derived by minimizing the Mean Square Error of
prediction:

Minimize : Ε½e2t � ð9Þ
The problem of this predictor is that the derivation of the

LMMSE filter coefficients requires the knowledge of the autocor-
relation of zt and the inversion of a p� p matrix. These facts make
LMMSE unsuitable for being used as an on-line technique for
predicting (Adas, 1998). In order to solve this problem, we consider
the Normalized Least Mean Square (NLMS) predictor (Hayes, 1996;
Haykin, 1991), which is based on an adaptive approach. It does not
require prior knowledge of the autocorrelation structure of a
sequence (Haykin, 1991; Adas, 1998). Therefore, it can be used as
an on-line technique for predicting.

Fig. 4. Sample probing flow.
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The operation of the NLMS predictor is shown in Fig. 5. The
filter coefficients wt are time-varying. The errors et are fed back
and used to adapt the filter coefficients in order to decrease the
mean square error. The NLMS operates as follows:

● Initialize the filter coefficients w0 ¼ 0.
● For each new data (error et), update the filter coefficients wt

according to the following recursive equation:

wtþ1 ¼wtþω
etzt
‖zt‖2

ð10Þ

where jjzt jj2 ¼ zTt zt and ω is a constant factor called step size.
According to Haykin (1991), NLMS converges in the mean to
LMMSE predictor if 0oωo2.

Note that at time t, the value of ztþk is not available to compute
et. Thus et�k is used instead (Adas, 1998), and the one-step NLMS
predictor update equation becomes:

wtþ1 ¼wtþ
ωet�1zt�1

‖zt�1‖2
ð11Þ

In PEOC, we adopt this one-step NLMS predictor to predict RTTt
based on the historical measurements of RTT, in which we set the
predictor step size ω and the predictor order p to 0.8 and 20,
respectively (Garroppo et al., 2011). Let wt ¼ ½wt;0;wt;1;…;wt;19�T
and RTTt ¼ ½RTTt ;RTTt�1;…;RTTt�19�T . Assume that RTT t denotes
the predicted RTT at time t. We have the following formulas:

RTT t ¼ ∑
19

l ¼ 0
wt;lRTTt�1� l ¼wT

t RTTt�1 ð12Þ

et�2 ¼ RTTt�1�RTTt�1 ¼ RTTt�1�wT
t�1RTTt�2 ð13Þ

wt ¼wt�1þ0:8
et�2RTT t�2

‖RTT t�2‖2
ð14Þ

The pseudo-algorithm for predicting RTT in PEOC is shown in
Algorithm 1. We elaborate it as follows: during an interval T (e.g.,
the time interval between t�1 and t), when receiving the 200 OK
response of the probing MESSAGE request sent at time t�1, we
measure RTTt�1 and use (13) to calculate et�2 based on the
measured RTTt�1 and RTT t�1. According to (14), we then calculate
the predictor filter coefficients wt in order to predict RTT t . Finally
by using (12), we predict RTT t based on the calculated wt and
RTTt�1 . At the end of the interval T (at time t), the prober module
passes the predicted value RTT t to the controller module.

Algorithm 1. The pseudo-algorithm for predicting RTT.

1. Receive a 200 OK (e.g., at time interval between t�1 and t);
2. RTTt�1’current time-MESSAGE sending time;
3. et�2’RTTt�1�RTTt�1 ¼ RTTt�1�wT

t�1RTTt�2

4. wt’wt�1 þ0:8
et�2RTTt�2

‖RTTt�2‖2
5. RTTt�1’combine RTTt�1 and RTTt�2

6. RTTt’wT
t RTTt�1

6. Performance evaluation

6.1. Simulation environment

The simulation platform used is the NS-2 simulator (NS-2
Network Simulator). The proposed PEOC is implemented based
on Prior's NS-2 SIP module (Prior). Two SIP network topologies
shown in Fig. 2 are adopted in our simulations. These topologies
are representatives of the topologies proposed in standards (e.g.,
the IMS architecture; 3rd Generation Partnership). Besides, they
are commonly used in recent research (Hilt and Widjaja, 2008;
Wang, 2010; Liao et al., 2012). A typical example of SIP call flow
shown in Fig. 1 is adopted, and all SIP servers have the same
processing capacities, which can process 200 messages per second,
i.e., �32 calls per second (cps). They use a round-robin (RR)
scheme to balance the load whenever there are multiple next-hop
servers available. Both edge servers and core servers receive a
large number of calls from different UAs, and may be overloaded.
Since a core server receives the traffic from multiple edge servers,
it bears more load than edge server and is more likely to be
overloaded.

The SIP servers are set to operate in transaction stateful mode
(Rosenberg et al., 2002). UAs and SIP servers transmit messages via
UDP, thus the reliability of message transmission is achieved by SIP
retransmissions. Servers are set to record route, which causes all
SIP messages exchanged between two UAs to traverse through
these servers. The processing time of SIP servers spent on
forwarding a probing message is set as 0.5 ms. We use 503
responses without Retry-After header recommended by Hilt
et al. (2011) and Gurbani et al. (2013) to reject INVITE requests
when a server's load gets close to its capacity limit. Considering
that rejecting INVITE requests by sending 503 responses consumes
processing resources, we set the processing time of SIP servers
spent on sending a 503 response to be equal to that spent on
processing any other message (except probing message). Besides,
we adopt the early rejection method in SIP servers as suggested by
Hilt and Widjaja (2008) to speed up the rejection process, in which
INVITE requests are rejected before queuing them in the message
buffer. Thus, in SIP servers, the INVITE request to be rejected and
its 503 response are processed with high priority. All other SIP
messages are served in a FIFO fashion.

Our experiment uses an infinite number of UAs and each new
call is generated by a new UA instance. The calls arrive at each
edge server according to Poisson process, and the destination of a
call is randomly picked among the other edge servers according to
uniform distribution. The holding time for an established call is
assumed to be exponentially distributed with an average of 30 s.
The offered load to the network is the total number of calls
per second initiated by all UAs. In the following results, we use
the goodput and call setup delay as performance metrics. The
goodput is defined as the number of calls per second successfully
established. A call is successfully established if the UA receives a
200 response within 10 s after the INVITE request is sent. The call
setup delay is defined as the time between sending the initial
INVITE request and receiving a 200 response.

Similar to previous end-to-end overload control research (Hilt
and Widjaja, 2008; Wang, 2010; Liao et al., 2012), we compare the
performance of PEOC with no overload control (No Control), local
occupancy-based control (OCC-Local) and hop-by-hop occupancy-
based control (OCC-Hop). Besides, the performance of PEOC is
compared with DEOC proposed in Liao et al. (2012), which adopts
a reactive algorithm to control overload for SIP networks. In No
Control, the SIP server just drops messages if its buffer is full (i.e.,
drop-tail), and the buffer size is set to 100. In OCC-Local, each SIP
server monitors its processor occupancy and calculates the accep-
tance probability, and then probabilistically rejects arriving calls

Fig. 5. NLMS algorithm scheme.
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based on the acceptance probability, which is described in Cyr
et al. (1990). The parameters of the OCC algorithms are set the
same as those in Hilt and Widjaja (2008). OCC-Hop is extended
from OCC-Local, in which each server still monitors its processor
occupancy and calculates the acceptance probability. However, the
overloaded server sends the acceptance probability as the feed-
back to its direct upstream neighbors as specified in Gurbani et al.
(2013). The direct upstream neighbors then execute the rejection
in place of the overloaded server. In PEOC, we adopt OCC-Local as
the local overload control on each server. The EWMA smoothing
weight w is set to 0.1. The decreasing parameter β is set to 1/8 as
used by Jain and Ramakrishnan (1988). The multiplicative increas-
ing parameter δ is set to 0.1, the additive increasing parameter θ is
set to 0.1 and the threshold Tth is set to 50 ms unless otherwise
specified. The overload control mechanism is terminated if there is
no call rejection received within 100 s and is restarted as soon as
the call rejection is received. The execution periods of all controls
including OCC-Local, OCC-Hop and PEOC are set to 1 s, i.e., T in
PEOC is 1 s. The parameters of DEOC except the increasing
parameters, which are set to the default values as suggested by
Liao et al. (2012), have similar values as those of PEOC. The
following experiments are performed in topology 2 of Fig. 2 unless
otherwise specified. Each experimental value is averaged over 10
independent runs and the 95% confidence interval is calculated
unless otherwise specified.

6.2. Performance results

In this section, we evaluate PEOC's performance in terms of
goodput, aggressiveness, responsiveness and fairness. The experiment

results prove that PEOC can keep high throughput even when the
offered load exceeds the capacity of the network. Besides, it responds
quickly to the sudden variations of the offered load and achieves good
fairness.

6.2.1. Goodput and call setup delay
In this section, we evaluate the goodput and the call setup

delay obtained from different overload control mechanisms under
two network topologies. The network topology 1 and 2 are used in
our first and second experiment, respectively and the results in
both experiments are similar. The results of goodput and call setup
delay in our first experiment are shown in Figs. 6 and 7,
respectively and those in the second experiment are shown in
Figs. 8 and 9, respectively.

As Figs. 6 and 8 show, when the offered load is within the
capacity of the network, all mechanisms achieve comparable
goodput. When the offered load goes beyond the capacity of the
network, PEOC and DEOC outperform other mechanisms. Besides,
PEOC achieves better performance than DEOC. We detail it as
follows: (1) in No Control, the goodput rapidly drops to zero with a
severe congestion collapse. It is because the simple drop-tail
cannot relieve overload. Requests will be retransmitted if they
are dropped, which amplifies the load on the overloaded server
and eventually leads to congestion collapse of the network. (2) In
OCC-Local, the goodput degrades approximately linearly as the
offered load increases, which is explained as follows: the over-
loaded server rejects incoming calls by itself. Since the rejection
also consumes the processing resources, the overloaded server
spends more and more resources on rejecting incoming calls and
thus fewer resources are left for serving calls as the offered load
increases. (3) OCC-Hop performs better than OCC-Local under
overload, because the task of rejection is shifted to upstream
neighbors. Thus the overloaded server would not waste its
resources on rejecting calls. However, this approach is still sub-
optimal. This is because overload is resolved near the overloaded
server rather than close to the source of traffic, thus a lot of
resources in SIP networks are wasted on processing a request that
will finally be rejected. (4) DEOC and PEOC outperform other
mechanisms. This is because the end-to-end overload controls
throttle traffic at the edge of the network, thus minimum
resources of SIP networks are wasted on processing a request that
will finally be rejected. Besides, PEOC achieves better performance
than DEOC. The reason is explained as follows: the DEOC is a
reactive mechanism, which controls the overload only based on a
binary overload feedback received from the network. On the other
hand, the PEOC is a proactive mechanism, which controls the
overload not only based on the received binary overload feedback,

Fig. 6. Goodput comparison with varying offered load among different overload
control mechanisms based on topology 1.

Fig. 7. Delay comparison with varying offered load among different overload
control mechanisms based on topology 1.

Fig. 8. Goodput comparison with varying offered load among different overload
control mechanisms based on topology 2.
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but also by probing the SIP network proactively. Thus PEOC can
infer the network load more accurately and perform the overload
control more efficiently.

Figs. 7 and 9 show the results of call setup delay. Note that for
No Control case, the delay is plotted only up to 50 cps in the first
experiment and 60 cps in the second experiment as no call can get
through the network under overload. When the offered load is
under the capacity of the network, all mechanisms ensure the
same call setup delays. When the offered load increases above the
capacity of the network, PEOC and DEOC perform up to an order of
magnitude better than other mechanisms. Besides, their call setup
delays are always at a low value (i.e., 0.1 s). In this case, the call
setup delays do not increase significantly even when the network
is under heavy offered load and thus the user experience is always
assured.

6.2.2. Aggressiveness and responsiveness
In this section, we vary the offered load to the SIP network to

study how fast the overload control mechanisms respond to the
sudden load variations. Initially, the offered load to the network is
25 cps, which is below the capacity of the network. At 200 s, the
offered load is increased to 100 cps suddenly, which is beyond the
capacity of the network. At 400 s, the offered load is decreased
back to 25 cps. We measure the instantaneous goodput and call
setup delay every 10 s and show a sample path of goodput and call
setup delay as a function of time in Figs. 10 and 11, respectively.

As expected, in No Control, the network suffers from conges-
tion collapse under overload and can hardly recover from it even if
the offered load is decreased below the capacity. OCC-Local, OCC-
Hop and PEOC all respond quickly to the sudden load variations.

Besides, PEOC achieves better goodput and call setup delay when
the offered load goes beyond the capacity of the network.

In Fig. 10, we observe that there is a decrease just after an
increase in the goodput curves of all mechanisms at 200 s when
the offered load is increased suddenly. This is because in our
experiment the control parameters (e.g., processor occupancy,
acceptance probability, call gap interval, etc.) are updated once
per second, but the offered load is increased immediately at 200 s.
Therefore, at 200 s, a large number of new calls are admitted into
the network before the control parameters are updated. Due to the
call-oriented property of SIP, if the INVITE message is admitted, all
subsequent messages belonging to the same call as the INVITE
message should also be admitted. Thus, the network is overloaded
after 200 s, and the overload controls of all mechanisms begin to
decrease the call admission rate to eliminate overload, which
causes the decrease of goodput. After the overload is eliminated,
the goodput recovers.

As for PEOC, we observe that after a sudden increase of the
offered load (i.e., after 200 s), the goodput drops immediately as
shown in Fig. 10. Besides, the call setup delay is limited to a lower
value (i.e., less than 1 s) under overload as shown in Fig. 11. This is
mainly because in PEOC, the call admission rate is decreased more
quickly when overload occurs, and thus few calls, which will
amplify the overload of the network, are admitted. Therefore,
PEOC has high responsiveness. After the overload is eliminated,
the goodput increases immediately to the capacity of the network
as shown in Fig. 10. Therefore, PEOC has high aggressiveness.

Table 1 shows the comparison of response time between DEOC
and PEOC. In the following experiments, when comparing
response time, we use the same simulation setup as in this section.
The response time in the simulation is defined as the time (i.e., the
number of periods and the period is 1 s in the experiment) that the
network spends on increasing goodput to its capacity after over-
load is eliminated (after 200 s). In our simulation, the beginning of
response time is at the time when the processor occupancy of each
core server is less than 50% (i.e., the goodput starts to increase
after overload is eliminated). The end of response time is at the
time when goodput increases to the network's capacity. We can
see that our defined response time indicates aggressiveness, in
which shorter response time means higher aggressiveness.

Fig. 10. Goodput comparison among different overload control mechanisms when
the offered load is varied suddenly between overload and underutilization.

Fig. 11. Delay comparison among different overload control mechanisms when the
offered load is varied suddenly between overload and underutilization.

Table 1
Response time comparison between DEOC and PEOC.

DEOC PEOC

Response time (s) 14.1 5.3
(95% confidence interval) (12.63, 15.57) (4.37, 6.23)

Fig. 9. Delay comparison with varying offered load among different overload
control mechanisms based on topology 2.
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From Table 1, we can observe that the response time in DEOC is
longer than that in PEOC. This is because PEOC probes the network
proactively and thus can infer the network load in a timely
manner. Therefore, PEOC has higher aggressiveness than DEOC.

6.2.3. Fairness
Fairness is an important performance metric for distributed

rate control algorithms. In this section, we define an admitted call
flow as the admitted calls that have the same ingress server and
the same target server. We investigate the goodput of each
admitted call flow, whose ingress server is in domain A and target
server is in domain B, to study the performance of different
overload control mechanisms in terms of fairness. We choose
these admitted call flows to evaluate the fairness as they have the
same bottleneck (Bertsekas and Gallager, 1987) in the SIP network.
In the experiment, we measure the goodput of each admitted call
flow when the offered load is 50, 100, 150 and 200 cps and then
calculate Jain's fairness index (Jain et al., 1984), which is defined as
follows:

f ¼ ð∑k
i ¼ 1xiÞ2

kð∑k
i ¼ 1x

2
i Þ

The fairness index f considers k admitted call flows where the
goodput of flow i is xi. f is between 0 and 1, where 1 is completely
fair (all flows share the bottleneck resource equally). Fig. 12 shows
the results in terms of the fairness index.

When the offered load is within the capacity of the network
(i.e., the offered load is 50 cps), all mechanisms have good fairness
since there is no call rejection. When the offered load goes beyond
the capacity of the network (i.e., the offered load is 100, 150 and
200 cps), in No Control case, the index is not plotted as no call can
get through the network under overload. All other mechanisms
have good fairness (all indexes are above 0.98). Note that when the
offered load is high (150, 200 cps), OCC-Local and OCC-Hop have
slightly better fairness than PEOC and DEOC. We explain it as
follows: both OCC-Local and OCC-Hop control overload near the
overloaded server. Thus they have better knowledge of the over-
load. However, both PEOC and DEOC infer the overload at the edge
of the network. This inference may not be as accurate or timely as
that of OCC-Local and OCC-Hop. Even so, PEOC can still achieve
good fairness.

6.3. Parameter tuning

6.3.1. Effect of parameter δ
The parameter δ determines the increasing rate of call admis-

sion rate when the network load is low. According to the analysis
in Section 4, a smaller δ leads to a higher goodput and a lower

aggressiveness. Fig. 13 shows the goodput obtained from PEOC
with δ¼0.05, δ¼0.1, δ¼0.2 and δ¼0.5 under different offered load.
When the offered load goes beyond the capacity of the network
(i.e., the offered load is 100, 150 and 200 cps), the PEOC with
minimum δ has the highest goodput and the PEOC with maximum
δ has the lowest goodput. Table 2 shows the response time of PEOC
with different δ. We can see that the PEOC with minimum δ has
the longest response time and the PEOC with maximum δ has the
shortest response time. Thus the larger δ leads to lower goodput
and higher aggressiveness. This conclusion validates our analysis
of δ in Section 4. From Table 2 we can see that even a small δ can
achieve high aggressiveness, thus in practice δ should be set as a
small value in order to keep high throughput.

6.3.2. Effect of parameter θ
The parameter θ is the increasing step size of call admission

rate when the network load is high. According to the analysis in
Section 4, a smaller θ leads to a higher goodput and a lower
aggressiveness. Fig. 14 shows the goodput obtained from PEOC
with various θ under different offered load. When the offered load
goes beyond the capacity of the network, the PEOC with smaller θ
has higher goodput. The response time of PEOC with different θ is

Fig. 12. Jain's fairness index comparison among different overload control mechan-
isms when the offered load is 50, 100, 150 and 200 cps.

Fig. 13. Goodput comparison with varying offered load among PEOC with δ¼0.05,
δ¼0.1, δ¼0.2 and δ¼0.5.

Table 2
Response time comparison among PEOC with δ¼0.05, δ¼0.1, δ¼0.2 and δ¼0.5.

δ¼0.05 δ¼0.1 δ¼0.2 δ¼0.5

Response time (s) 10.1 5.3 2.4 1.3
(95% confidence interval) (8.36, 11.84) (4.37, 6.23) (2.08, 2.72) (1.00, 1.60)

Fig. 14. Goodput comparison with varying offered load among PEOC with θ¼0.05,
θ¼0.1, θ¼0.5, θ¼1.0 and θ¼2.0.
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shown in Table 3. We can see that the PEOC with smaller θ has
longer response time. Therefore, the smaller θ, the higher goodput
and the lower aggressiveness. This conclusion validates our
analysis of θ in Section 4. From Table 3 we can see that even a
small θ can achieve high aggressiveness, thus in practice it is
suitable to set θ as a small value in order to keep high throughput.

6.3.3. Effect of parameter Tth
The parameter Tth is the threshold value that determines

whether the network load is high or low. According to the analysis
in Section 4, a smaller Tth leads to a higher goodput and a lower
aggressiveness. Fig. 15 shows the goodput obtained from PEOC
with various Tth under different offered load. When the offered
load goes beyond the capacity of the network, the PEOC with
smaller Tth has higher goodput. Table 4 shows the response time of
PEOC with different Tth. We can see that the PEOC with smaller Tth
has longer response time. Therefore, the smaller Tth, the higher
goodput and the lower aggressiveness. This conclusion validates
our analysis about Tth in Section 4. In practice, we may choose a
proper threshold Tth to balance the performance between goodput
and aggressiveness according to our needs.

7. Conclusion and future work

With the increasing popularity and rapidly growing deploy-
ments of SIP, the issue of overload control in SIP networks
becomes more and more important. Compared to the traditional
Local and Hop-by-hop overload controls, the end-to-end overload
control can better utilize network resources and improve the
throughput when the offered load exceeds the capacity of the

network. The current existing end-to-end overload control solu-
tions can be classified into receiver-based and sender-based
control. The receiver-based mechanisms (Hilt and Widjaja, 2008;
Wang, 2010) control the overload based on the complicated
cooperation among edge servers and core servers, which are too
complex to be practical. On the other hand, the sender-based
mechanism DEOC (Liao et al., 2012) controls the overload based on
the simple binary overload feedback without the need of the
complicated cooperation among servers and thus is practical and
easy to implement.

In this paper, we proposed PEOC, which is a probe-based end-
to-end overload control mechanism for SIP networks. Similarly to
DEOC (Liao et al., 2012), PEOC controls the overload based on the
simple binary overload feedback. Besides, it estimates the network
load by probing the SIP network with SIP messages and thus can
control the overload of the network in a more efficiently and
timely manner compared with DEOC. We presented the design of
the proposed approach, and evaluated its performance through
simulation experiments. Our simulation results demonstrated that
PEOC can keep high throughput even when the offered load
exceeds the capacity of the network. Besides, it responds quickly
to the sudden variations of the offered load and achieves good
fairness.

In our future work, we plan to implement PEOC and evaluate its
performance in real networks. In real networks, some edge servers
may not deploy PEOC as they are not under the control of the
carrier. If only some of the edge servers deploy PEOC, it will lead to
the unfairness between the edge servers with PEOC and those
without PEOC when overload occurs in the core servers. This is
because the edge servers with PEOC decrease the call admission
rates in response to overload, while the edge servers without PEOC
are not cooperative and do not decrease the call admission rates.
Therefore, we need to design and implement a mechanism in core
servers that can guarantee the fairness between all edge servers,
when only some of the edge servers deploy PEOC.
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