
Implementing Reliable Broadcast in Anonymous Distributed Systems with Fair Lossy
Channels

Jian Tang
Distributed Systems Laboratory (LSD)

Universidad Politécnica de Madrid
28031, Madrid, Spain

Email: tjapply@gmail.com

Mikel Larrea
Universidad del Paı́s Vasco

20018, San Sebastián, Spain
Email: mikel.larrea@ehu.es

Ernesto Jiménez
Universidad Politécnica de Madrid

28031 Madrid, Spain
Email: ernes@eui.upm.es

Sergio Arévalo
Universidad Politécnica de Madrid

28031 Madrid, Spain
Email: sergio.arevalo@eui.upm.es

1. Introduction

Reliable Broadcast is used to disseminate messages among
a set of processes with RB broadcast() and RB deliver()
operations, which was introduced in [1]. Reliable Broadcast
is a broadcast service that requires all non-crashed processes
deliver the same set of messages. This service has been
extensively studied in non-anonymous systems, usually assum-
ing that communication channels are reliable (if a process p
sends a message m to a process q, and q is correct, then q
eventually receives m) [2]. However, most of real channels
are unreliable (e.g., fair lossy, which means that if a message
is sent an arbitrary but finite number of times, there is no
guarantee on its reception, it can lose an infinite number of
messages [3]). While some work has been done to construct
reliable channels over unreliable channels in non-anonymous
systems [3], [4], the study of reliable broadcast in anonymous
distributed systems with unreliable communication channels
still has a big gap that needs to be filled up.

2. System Model and Definitions

We consider anonymous asynchronous systems in which
processes have no identifiers and communicate with each other
via a completely connected network with fair lossy channels.
Two basic primitives are used in the system to send and receive
messages: broadcast(m) and receive(m). We say that a process
pi broadcasts a message m when it invokes broadcasti(m).
Similarly, a process pi receives a message m when it invokes
receivei(m).
Processes Processes are anonymous, asynchronous and exe-
cute the same algorithm. The system is composed of a set of

Research supported by the Community of Madrid, under grant
CLOUD4BIGDATA (S2013/ICE-2894), the Spanish Research Council, under
grants TIN2013-41123-P and TIN2013-46883-P, the Basque Government,
under grant IT395-10, and the University of the Basque Country UPV/EHU,
under grant UFI11/45.

n anonymous processes, denoted by Π = {pi}(i = 1, ..., n).
We consider that i is the index of each process in the system.
This index cannot be known by processes, it is just used as a
notation to simplify the description of the algorithm. There is
a global clock T whose values are positive natural numbers,
which is also used for notation.

A process that does not crash in a run is correct in that
run, otherwise it is faulty. A process executes its algorithm
correctly until it crashes. A crashed process can neither
execute any more statements nor recover.
Communication channels Each pair of processes is con-
nected by bidirectional communication channels. Processes
communicate by sending and receiving messages through
these channels. We assume that channels neither duplicate
nor create messages, but may loose messages. Note that in
our anonymous system, when a process receives a message,
it cannot determine who is the sender of this message.

Communication channels are fair lossy. Formally, a chan-
nel between two processes p and q is fair lossy if it satisfies
the following properties [5]:
• Fairness: If p sends a message m to q an infinite

number of times and q is correct, then q eventually
receives m from p.

• Uniform Integrity: If q receives a message m from
p, then p previously sent m to q; and if q receives
m infinitely often from p, then p sends m infinitely
often to q.

Reliable Broadcast Formally, Reliable Broadcast is de-
fined by two primitives, namely RB broadcast(m) and
RB deliver(m), satisfying the following properties:
• Validity: If a correct process broadcasts a message m,

then it eventually delivers m.
• Agreement: If a correct process delivers a message

m, then all correct processes eventually deliver m.
• Integrity: For any message m, every correct process

delivers m at most once, and only if m was previously
broadcast by a process.



3. The Algorithm

A reliable broadcast algorithm for anonymous asyn-
chronous systems with fair lossy communication channels
is proposed here. The algorithm makes every message
RB broadcast by processes in the system unique. To do so,
it relies on a random number generation function randomi()
at each process pi. This function is used to assign a unique
number to each RB broadcast message as a label, denoted
by tag. We assume that no random function can generate
the same random number to two different messages. Note
that this label assignment to messages does not violate the
anonymity of the system, since labels do not correspond to
process identifiers (the label does not allow determining the
sender of a message).

Algorithm 1 Reliable Broadcast in anonymous asynchronous
systems with fair lossy communication channels (code of
process pi)

1 Initialization
2 sets MSGi, RB DELIV EREDi empty
3 activate Task 1

4 When RB broadcasti(m) is executed
5 tag ← randomi()
6 insert (m, tag) into MSGi

7 When receivei(MSG,m, tag) is executed
8 if (m, tag) is not in MSGi then
9 insert (m, tag) into MSGi

10 end if
11 if (m, tag) is not in RB DELIV EREDi then
12 insert (m, tag) into RB DELIV EREDi

13 RB deliveri(m)
14 end if

Task 1:
15 repeat forever
16 for every message (m, tag) in MSGi do
17 broadcasti(MSG,m, tag)
18 end for
19 end repeat

Description of the algorithm:
In Algorithm 1, each process pi manages a random func-

tion randomi() and two local sets: MSGi, that records all
messages that pi has received; and RB DELIV EREDi,
that records all messages that pi has reliably delivered. Re-
member that index i is used just for description, no process
knows which process is pi, even itself.

The algorithm runs as follows:
At the beginning, pi initializes its sets MSGi and

RB DELIV EREDi to empty and activates Task 1 (Lines 1-
3). When pi calls RB broadcasti(m) (Line 4), its random
function generates a random number as a tag for m firstly
(Line 5). Then, pi inserts the pair (m, tag) into its set
MSGi (Line 6) in order to be broadcast as (MSG,m, tag)
periodically by Task 1 (Lines 15-19).

When receivei(MSG,m, tag) is executed (Line 7), pi
first records the pair (m, tag) into MSGi if this is the first
reception of m (Lines 8-10). Then, pi checks whether m
has already been reliably delivered (by checking if the pair
(m, tag) exists in RB DELIV EREDi or not). If not,
pi records the pair (m, tag) into RB DELIV EREDi and
reliably delivers m by executing RB deliveri(m) (Lines 11-
14).
Discussion:

Observe that in this algorithm, due to the assumption of
fair lossy channels, processes have to broadcast periodically
by Task 1 all messages that have been received (and reliably
delivered), in order to guarantee that all correct processes
deliver the same set of messages. This non-quiescent broadcast
can be considered as the cost of obtaining reliability over the
fair lossy channels in anonymous systems.

It turns out that this weakness also indicates the direction
in order to transform Algorithm 1 into a quiescent one, i.e.,
once a message m has been delivered by all correct processes,
it is not needed to broadcast it anymore, which means that
m should be removed from the MSG set of each correct
process. So, the quiescence problem consists in guaranteeing
that a message has been delivered by all correct processes. In
order to achieve this, we propose to combine two mechanisms:
(1) each process broadcasts an acknowledgment message after
it has delivered a message m, and collects acknowledgment
messages on m from all processes (including itself); (2) a
failure detector is needed to obtain information of all correct
processes.

4. Conclusion

Reliable Broadcast is a basic communication primitive in
distributed systems, which allows processes communicating
consistently and reliably. This agreement problem has been
extensively investigated in distributed systems where all pro-
cesses have different identifiers. In this paper, we studied this
primitive in asynchronous anonymous systems by overcoming
two adversaries: process anonymity and message loss.

References

[1] F. Schneider, D. Gries, and R. Schlichting. Fault-Tolerant Broadcast.
Science of Computer Programming, 4(1), pp. 1–15, 1984.

[2] A. Schiper. Failure detection vs group membership in fault-tolerant
distributed systems: hidden trade-offs. Proc. 2nd Joint International
Workshop on Process Algebra and Probabilistic Methods, Performance
Modeling and Verification, pp. 1-15, Springer-Verlag, London, 2002.

[3] A. Basu, B. Charron-Bost, and S. Toueg. Simulating reliable links
with unreliable links in the presence of process crashes. Proc.
10th International Workshop on Distributed Algorithms, pp. 105–122,
Springer-Verlag, London, 1996.

[4] Y. Afek, H. Attiya, A. D. Fekete, M. Fisher, N. Lynch, Y. Mansour, D.
Wang, and L. Zuck. Reliable communication over unreliable channels.
Journal of the ACM, 41(6): 1267–1297, 1994.

[5] M. K. Aguilera, S. Toueg, and B. Deianov. Revisting the weakest
failure detector for uniform reliable broadcast. Proc. 13th Interna-
tional Symposium on Distributed Computing (DISC’99), pp. 19–33,
Bratislava, Slovak Republic, September, 1999.


