
Designing and Evaluating Fault-tolerant Leader Election Algorithms ∗

Christian Fernández-Campusano, Roberto Cortiñas, Mikel Larrea
Computer Architecture and Technology Department

University of the Basque Country UPV/EHU
20018 San Sebastián, Spain

{christianrobert.fernandez, roberto.cortinas, mikel.larrea}@ehu.es

Jian Tang
Distributed Systems Laboratory (LSD)

Technical University of Madrid
28031 Madrid, Spain
tjapply@gmail.com

Abstract

Fault-tolerant leader election is a basic building
block for dependable distributed computing, since it al-
lows coordinating decisions among replicas such that
they remain consistent. Indeed, several fault-tolerant
agreement protocols rely on an eventual leader elec-
tion service. This problem has been initially studied in
crash-prone systems, and more recently in other failure
scenarios, e.g., crash-recovery, omission and Byzantine.
Most of the previous works have considered those failure
models individually. This paper presents our ongoing
work on the design and evaluation of distributed leader
election algorithms in systems prone to both crash-
recoveries and message omissions.

1 Introduction

A common technique to provide highly available
and fault-tolerant services in current distributed systems
consists in replicating their critical components, such
that if a component fails then one of the replicas takes
over and the service continues uninterruptedly. Replica-
tion has clear benefits, but also requires adequate coor-
dination protocols in order to keep replicas consistent.

The consensus problem [11] is a paradigm for many
coordination problems in fault-tolerant distributed com-

∗Research supported by the Spanish Research Council (grants
TIN2013-41123-P and TIN2013-46883-P), the Basque Govern-
ment (grant IT395-10), the University of the Basque Country
UPV/EHU (grant UFI11/45), and the Community of Madrid (grant
CLOUD4BIGDATA, S2013/ICE-2894).

puting. Informally, in consensus processes propose an
initial value and, despite failures, have to decide on one
of the proposed values. A fundamental result by Fischer
et al. [6] showed that consensus cannot be solved de-
terministically in asynchronous systems where at least
one process may crash. Several approaches have been
proposed to circumvent this impossibility, usually as-
suming some form of weak (partial) synchrony in the
system, either explicitly [4] or encapsulated in some ab-
stract mechanism, e.g., unreliable failure detection [2]
or eventual leader election [1]. Paxos [8], and more re-
cently Raft [10], are two examples of consensus proto-
cols relying on an eventual leader election mechanism.
These protocols are indulgent [7], i.e., they always pre-
serve safety and guarantee liveness as soon as a unique
leader remains for sufficiently long in the system.

In this work we address the design and evaluation
of fault-tolerant leader election algorithms in partially
synchronous systems prone to process crash-recoveries
and message omissions, in order to support leader-based
consensus protocols.

2 System Model and Definitions

We consider a system model composed of a finite
and totally ordered set of processes that communicate
only by sending and receiving messages through reliable
links that cannot create or alter messages. We assume
that the system is partially synchronous, i.e., there exist
upper bounds on processing time and on message com-
munication delay, although those bounds are not known
a priori by processes [4].



Processes can fail by crashing. Crashes are not per-
manent, i.e., crashed processes can recover. In every
execution of the system, we have the following three
types of processes: (1) eventually up, i.e., processes that
eventually remain up forever, (2) eventually down, i.e.,
processes that eventually remain crashed forever, and
(3) unstable, i.e., processes that crash and recover an in-
finite number of times. We assume that processes have
access to stable storage that maintains its content despite
crashes. Processes can also fail by omission at send-
ing and/or receiving messages. Omissions can be selec-
tive, i.e., with respect to some given process, or general.
Also, omissions can be transient or permanent.

Indulgent consensus protocols require a majority of
correct processes. Hence, we will assume a majority of
eventually up processes in the system. Note that these
processes may omit some messages. However, we as-
sume that there is a time after which a majority of even-
tually up processes stop omitting messages.

Our focus on the crash-recovery and omission failure
models makes our results more general and of practi-
cal application. Indeed, in real systems failed processes
usually recover, and messages can get omitted due to
collisions, buffer overflow or network saturation. More-
over, we have shown recently that Byzantine failures
can be reduced to omission failures by relying on a dis-
tributed security mechanism, e.g., by equipping nodes
with a tamper-proof smartcard [3].

Finally, the eventual leader election problem is de-
fined by the following property [9]: there is a time after
which (1) every correct process always trusts the same
correct process `, and (2) every incorrect process always
trusts either ⊥ (i.e., it does not trust any process) or `.

3 Work in Progress

We have recently designed a distributed leader elec-
tion algorithm according to the system model and defi-
nitions presented in the previous section [5]. In that al-
gorithm, processes exchange messages periodically, de-
tecting omissions through sequence numbers. Messages
also carry the incarnation value of the sender, which al-
lows detecting crash-recoveries. The incarnation value
is stored in stable storage, and incremented upon recov-
ery. A process is a candidate to become the leader only
if it communicates without omissions with a majority of
processes. Among the candidates, the process with low-
est incarnation value is selected as leader.

We are currently evaluating the performance of this
algorithm in order to get initial references. We are inter-
ested in studying the scalability of the algorithm for dif-
ferent scenarios and failure patterns, measured in terms
of the number of messages exchanged among nodes.

Also, we want to study the responsiveness of the al-
gorithm, measured in terms of the latency until a new
leader is elected after the current leader fails.

Other lines of research are the following:

• From a practical perspective, we are interested in
designing leader election algorithms where pro-
cesses do not have access to stable storage, as well
as more efficient algorithms, in which among cor-
rect processes eventually only the elected leader
keeps on sending messages. These algorithms will
be of application in ubiquitous computing scenar-
ios (sensors, wearable devices. . . ) as those envi-
sioned by the Internet of Things.

• From a more theoretical perspective, we are inter-
ested in determining the weakest system model for
implementing a leader election service.

References

[1] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. Journal of the
ACM, 43(4):685–722, 1996.

[2] T. D. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM,
43(2):225–267, 1996.

[3] R. Cortiñas, F. C. Freiling, M. Ghajar-Azadanlou, A. La-
fuente, M. Larrea, L. D. Penso, and I. Soraluze. Se-
cure failure detection and consensus in trustedpals. IEEE
Trans. Dependable Sec. Comput., 9(4):610–625, 2012.

[4] C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Con-
sensus in the presence of partial synchrony. J. ACM,
35(2):288–323, 1988.

[5] C. Fernández-Campusano, M. Larrea, and R. Cortiñas.
A distributed leader election algorithm in crash-
recovery and omissive systems. Technical re-
port, 2014. EHU-KAT-IK-05-14, University
of the Basque Country UPV/EHU. Available at
http://www.sc.ehu.es/acwlaalm/.

[6] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossi-
bility of distributed consensus with one faulty process.
J. ACM, 32(2):374–382, 1985.

[7] R. Guerraoui and M. Raynal. The information struc-
ture of indulgent consensus. IEEE Trans. Computers,
53(4):453–466, 2004.

[8] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, 1998.

[9] M. Larrea, C. Martı́n, and I. Soraluze. Communication-
efficient leader election in crash-recovery systems. Jour-
nal of Systems and Software, 84(12):2186–2195, 2011.

[10] D. Ongaro and J. K. Ousterhout. In search of an under-
standable consensus algorithm. In 2014 USENIX Annual
Technical Conference, USENIX ATC ’14, Philadelphia,
PA, USA, June 19-20, 2014, pages 305–319, 2014.

[11] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. J. ACM, 27(2):228–
234, 1980.


