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Abstract The broadcast service spreads a message m among all processes of a
distributed system, such that each process eventually delivers m. A basic broadcast
service does not impose any delivery guarantee in a system with failures. Fault-
tolerant broadcast is a fundamental problem in distributed systems that adds
certainty in the delivery of messages when crashes can happen in the system.

Traditionally, the fault-tolerant broadcast service has been studied in classi-
cal distributed systems when each process has a unique identity. However, very
recently have appeared new distributed systems, such as sensor networks, where
unique identity is not always possible to be included in each sensor node (due to
small storage capacity, reduced computational power, a huge number of elements
to be identified, etc.).

In this paper we study the definition and implementability of the fault-tolerant
broadcast service in anonymous asynchronous systems, that is, in asynchronous
systems where all processes have the same identity, and, hence, they are indistin-
guishable (they may have the same code).
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1 Introduction

One of the most important communication abstractions for distributed systems is
the broadcast service. This abstraction sends a message to all the processes of the
system. However, it does not impose any fault-tolerant property. So, if a sender
process crashes while it is broadcasting a message m, the outcome of the delivery
of m is not known a priori. To avoid this indeterminism in the delivery when
processes may crash, several types of fault-tolerant broadcast services have been
introduced. The most popular are reliable broadcast (RB), uniform reliable broadcast

(URB) and atomic broadcast (AB) services.
In the distributed systems that we study in this paper, a process can fail by

crashing (that is, it stops working permanently). Thus, a process either may crash
or not. In the first case we say that this process is a crashed process (or faulty

process), and in the latter case, a correct process. Furthermore, in this paper we
focus our study in asynchronous systems, that is, in distributed systems where the
execution time of processes, and the delivery time of sent messages are unbounded.

The reliable broadcast (RB) service ([22], [27]) requires that (a) each message
m sent by a correct process must be delivered by every correct process, and (b) if
a correct process delivers a message m, then each correct process also delivers m.

The uniform reliable broadcast (URB) service ([22], [27]) is another type of
fault-tolerant broadcast service that imposes a stronger delivery property. The
URB service requires that (a) each message m sent by a correct process must be
delivered by every correct process, and (b) if a process delivers a message m, then
each correct process also delivers m. Note that the URB service is stronger than
the RB service because the case (a) is the same in both services, and the delivery
in the case (b) of the URB service includes all processes (correct or not) instead
of only correct processes of the RB service.

The atomic broadcast (AB) service ([22], [27]) is also a fault-tolerant broadcast
service which establishes a total order in the delivery. Thus, the AB service requires
that if a process delivers the message m before m′, then there is no other process
that delivers m′ before m.

Many papers in the literature present the broadcasting primitives analyzing
how hardware and software can work in concert on scalable multi-processor and
also distributed systems, and show how these primitives can be used as building
blocks for more complex parallel operations ([3], [4], [5], [6], [7], [8], [12], [13],
[14], [34]). In these papers can be found a number of illustrative examples and
applications for broadcasting and also fault-tolerance.

To our knowledge, all works that study the fault-tolerant broadcast services
rely on distributed systems where processes are distinguishable because each one of
them has a unique identity ([10], [11], [15], [20], [22], [25], [27], [33]). In this paper
we base our study in anonymous systems. In an anonymous system processes are
not identifiable because all of them are coded identically (i.e., processes have no
identity, and there is no way to distinguish among them).

Nevertheless, we can find in the literature several works addressing the problem
of counting the size of a network where processes are anonymous and the network
topology constantly changes ([23], [29], [30]). In these works failures are limited to
links rather than processes.

Anonymous processes are common in some practical distributed systems, such
as sensor networks, where a unique identity is not always possible to be included in
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each device (due to, for example, small storage capacity, reduced computational
power, or a huge number of elements to be identified) ([1], [2], [32]). Another
practical issue where anonymous processes are used is related with privacy (for
example, to hide the user identity in a system) [21].

Our work Up to now, the fault-tolerant broadcast service has been studied in
classical distributed systems when each process has a different identity. However,
this is the first paper, to our knowledge, that is devoted to the broadcast service
with fault-tolerant guarantees in anonymous asynchronous systems.

In this paper we present several algorithms to prove the possibility to im-
plement different types of fault-tolerant broadcast services in anonymous asyn-
chronous systems. In particular, an implementation for the RB service, and an-
other for the URB service when a minority of processes can crash.

We also include in this paper the impossibility to implement the URB service
in anonymous asynchronous systems when a majority of processes can crash. To
circumvent this impossibility result, we present in this paper an algorithm that
implements the URB service independently of the number of crashed processes. To
achieve it, we enrich the anonymous asynchronous system with a failure detector.
A failure detector [19] is an oracle (i.e., a distributed component) that processes
can invoke to obtain information about crashed processes.

Finally, it is very well known in the literature the impossibility to implement
the AB service in the classical asynchronous system prone to failures ([19], [24]),
and, hence, also in its anonymous version. However in this paper we present an
algorithm that implements the AB service in anonymous asynchronous systems.
We have circumvented the impossibility results of [19] and [24] augmenting the
anonymous asynchronous system with the Consensus component. Consensus ([26],
[28]) is one of the most fundamental building blocks in fault-tolerant distributed
computing. Informally, Consensus states that all processes have to decide a same
value v, and this value v has to be proposed by some process of the system. We
prove that the AB service is implementable in anonymous asynchronous systems
adapting the solution proposed in [19] (we use the anonymous version of RB and
Consensus as building blocks).

The aim of this paper is to analyze the feasibility of the main types of fault-
tolerant broadcast services in anonymous systems. Thus, we try to present our
algorithms as simple as possible to solve each service. Other considerations such
as performance or efficiency are out of our paper’s scope (it is open for a future
work).

This paper is organized as follows. The anonymous system model is presented
in Section 2. Definitions of fault-tolerant broadcast services in anonymous systems
are included in Section 3. In Section 4 we include an implementation of the RB ser-
vice in the anonymous asynchronous system. In Section 5 we prove that the URB
service is impossible to be implemented in the anonymous asynchronous system
when a majority of processes can crash. In Section 6 we study the implementability
of the URB service in anonymous asynchronous systems. In particular, Section 6.1
includes an implementation of the URB service in the anonymous asynchronous
system when a minority of processes can crash, and Section 6.2 presents an al-
gorithm that circumvents the impossibility result of Section 5 by using a failure
detector. Section 7 presents an implementation of the AB service in the anony-
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mous asynchronous system augmented with Consensus, the RB and URB services.
Finally, we finish our paper with the conclusion in Section 8.

2 The Anonymous System

The anonymous asynchronous system (denoted AAS [∅]) is formed by a set of
processes Π = {pi}i=1,...,n such that its size |Π| is n, and i is the index of each
process pi, 1 ≤ i ≤ n.

Processes are anonymous [18]. Hence, they have no identity, and there is no a
way to differentiate between any two processes of the system (i.e., processes have
no identifier, and execute the same code). So, anonymity implies that process
indexes are fictitious in the sense that each process pi ∈ Π does not know its index
i. We only use process indexes from an external observer point of view, and with
the purpose of simplifying the notation.

A run R is formed by the set of steps taken by each process pi ∈ Π. We
assume that time advances at discrete steps in each run R, and there is a global
clock T whose values are the positive natural numbers. Note that T is an auxiliary
concept that we only use for notation, but that processes can not check or modify.
Processes are asynchronous, that is, the time to execute a step by a process in a
run R is unbounded.

When a process crashes it stops taking steps. We assume that a crashed process
never recovers. A process pi ∈ Π is correct if it does not crash, and faulty if it
crashes. Let Correct be the set of correct processes, and let Faulty be the set of
faulty processes. We denote by f the maximum number of processes that may
crash. Unless otherwise is stated, we consider that this maximum number is n− 1
(i.e., f ≤ n− 1).

In AAS [∅] processes communicate among them sending and receiving messages
through links. Each pair of processes is connected by a link. We assume that links
neither duplicate nor create spurious messages. We consider that links are reliable.
A link l is reliable if it is guaranteed that every message sent using l is eventually
received as long as sender and receiver are correct processes. Note that messages
can be lost in a reliable link if either sender or receiver is a faulty process. Unless
otherwise is stated, links do not enforce any restriction with respect to the order
in which messages are sent or received (that is, FIFO order is not necessarily
preserved).

The system AAS [∅] has two primitives to send and receive messages: bcast(m)
and del(m). We say that a process pi broadcasts a message m when it invokes
bcasti(m). Similarly, a process pi delivers a message m when it invokes deli(m).
The delivery of a message m by a process pi can be seen as the fact of passing the
message m to the upper layer where this process pi is (the user pi in the case of
the top layer). We omit the index i in these primitives when the process pi that
invokes these primitives is not important.

With bcasti(m) process pi asynchronously sends a message m to each process
pk ∈ Π, and deli(m) reports to the invoking process pi that m is the received
message which is delivered. To preserve the anonymity of the system, we also con-
sider that delivering processes can not identify the link through which a broadcast
message is received.
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In the literature is always considered that broadcast and delivered messages are
unique. It is traditionally assumed that every broadcast message m includes the
different sender’s process identity as part of the content of m to distinguish it from
other messages ([10], [22], [27], [33]). Since in AAS [∅] processes are anonymous, we
have to consider that messages are not unique. Hence, in AAS [∅] several instances
of a same message m can be broadcast or delivered. Thus, it is more accurate
to say that in AAS [∅] process pi sends an instance of message m to each process
pk ∈ Π when it invokes bcasti(m), and process pi is reported of the delivering
of an instance of a message m when it invokes deli(m). To simplify, we abuse of
the notation and we only distinguish between an instance of a message and the
message itself when it is absolutely necessary.

Let Bi be the multiset of all instances of messages broadcast by process pi, and
let Di be the multiset of all instances of messages delivered by process pi. Let B be
the multiset of all instances of messages broadcast in the system, i.e., B =

⋃
pi∈Π

Bi.

Similarly, D =
⋃
pi∈Π

Di is the multiset formed by all instances of messages delivered

in the system. Hence, for example, if we have the following five primitives with
the same message m: bcasti(m), bcastj (m), deli(m), delj (m), and delk (m), then the
multiset B has two instances of m, and D have three instances (i.e., B = {m,m},
and D = {m,m,m}).

We assume that broadcast and deliver primitives of AAS [∅] do not give any
fault-tolerant guarantees if a process crashes. Specifically, if a process crashes while
it is executing bcast(m), m can be received by any subset of processes, and, hence,
del(m) can be invoked only by this subset of processes. Therefore, the system
AAS [∅], with these two communication primitives, offers an unreliable broadcast

service.
Before finishing this section, we explain the nomenclature of the system that

we are going to use in this paper. As we have said, AAS [∅] is the notation of the
anonymous asynchronous system previously defined. As we will see later in this
paper, several results are only possible to achieve if we constrain or enhance the
system AAS [∅]. We use the brackets in the notation to indicate it. For example,
if we limit the number of faulty processes to a minority, we use AAS [f < n/2 ]. In
other cases we have to enrich the system with another component, for example,
with a failure detector. Thus, if we enhance the system AAS [∅] with the failure
detector ψ, we use AAS [ψ]. Finally, we use AAS omitting the brackets when it
is not important to determine whether the anonymous system is enhanced or
constrained by some component or condition.

3 Definitions

Now, we define broadcast services that include fault-tolerance.
Three properties have to be satisfied by the broadcast and deliver primitives

to provide a reliable broadcast (RB) service in the anonymous system AAS :

– Integrity: Each instance im of each message m delivered by a process has to be
the result of broadcasting im.

– Validity: Each instance of each message m broadcast by a correct process has
to be delivered by every correct process.
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– Agreement: All correct processes deliver the same number of instances of each
message m.

Let us define the RB service more formally.

Definition 1 (RB properties) The RB service has to preserve the following three
properties in AAS :

1. Integrity: ∀pi ∈ Π, Di ⊆ B.
2. Validity: ∀pi ∈ Correct,

⋃
pj∈Correct

Bj ⊆ Di.

3. Agreement: ∀pi, pj ∈ Correct, Di = Dj .

The uniformity in the delivery has to be added to provide uniform reliable

broadcast (URB) service. Roughly speaking, the basic idea of uniformity in classical
systems, where each broadcast message m is unique, is that if a faulty process
delivers a message m, then each correct process also has to deliver m once ([27],
[33]). Then, we can define it for an anonymous system AAS as follows:

– Uniformity: If a faulty process delivers x instances of a message m, then each
correct process delivers at least x instances of m.

Hence, more formally.

Definition 2 (URB properties) The URB service has to preserve the following
four properties in AAS :

1. Integrity: ∀pi ∈ Π, Di ⊆ B.
2. Validity: ∀pi ∈ Correct,

⋃
pj∈Correct

Bj ⊆ Di.

3. Agreement: ∀pi, pj ∈ Correct, Di = Dj .
4. Uniformity: ∀pi ∈ Faulty, and ∀pj ∈ Correct, Di ⊆ Dj .

The URB service can not be solved in anonymous asynchronous systems where
any number of processes can crash (see Theorem 1 of Section 5). To circumvent
this impossibility result, there is a distributed device that processes can use to get
information about process failures, namely, a failure detector [19].

All original classes of failure detectors presented by Chandra and Toueg in [19]
return information about the identifiers of crashed processes. In this work we use
the failure detector class ψ [31] because it does not handle identifiers. Roughly
speaking, the failure detector class ψ returns at time τ a number c, such that c is
an upper bound of the number of correct processes at time τ (transient period), but
eventually c converges towards exactly the number of correct processes (permanent
period). Let us define ψ more formally.

Definition 3 (ψ failure detector) Let us consider that each process pi has a local
variable outputi that always returns an integer and positive value. We denote by
outputτi this variable at time τ . Let |Correct|τ be the number of processes that are
correct up to time τ . For any process pi ∈ Π and run R, the variable outputi must
satisfy the following two properties:

1. ∀τ , outputτi ≥ |Correct|
τ (transient period).

2. ∃τ : ∀τ ′ ≥ τ , outputτ
′

i = |Correct|τ
′

(permanent period).
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We enrich the anonymous asynchronous system AAS [∅] with the failure detec-
tor ψ to solve the URB service even when a majority of processes can crash (that
is, AAS[ψ]).

The total order property in the delivery of messages has to be added to the URB
service to provide the atomic broadcast (AB) service1. In classical systems, where
each broadcast message m is unique, the total order is defined as the delivery of
each pair of messages m and m′ in a same order in all processes ([10], [11], [15], [22],
[25], [27], [33]). Then, we define the total order in the anonymous asynchronous
system AAS as follows.

– Total Order: For any two broadcast instances im and im′ , if a process delivers
im before delivering im′ , then no process can deliver im′ before delivering im.

Then, we define the AB service in AAS more formally.

Definition 4 (AB properties) The AB service has to preserve the following five
properties in AAS :

1. Integrity: ∀pi ∈ Π, Di ⊆ B.
2. Validity: ∀pi ∈ Correct,

⋃
pj∈Correct

Bj ⊆ Di.

3. Agreement: ∀pi, pj ∈ Correct, Di = Dj .
4. Uniformity: ∀pi ∈ Faulty, and ∀pj ∈ Correct, Di ⊆ Dj .
5. Total Order: For all processes pi, pj ∈ Π, and for all instances im ∈ B and

im′ ∈ B, if process pi delivers im before it delivers im′ , then process pj cannot
deliver im′ before it delivers im.

4 Implementing the RB service in AAS [∅]

We show in this section that the algorithm of Figure 1 implements the RB service
in an anonymous asynchronous system independently of the number of faulty
processes (i.e., AAS [∅]).

Description of the algorithm of Figure 1. Recall that we say that a process pi broad-
casts an instance of message m in AAS [∅] if it executes bcasti(m), and pi delivers
an instance of m if it executes deli(m). To avoid ambiguity, we say that process
pi RB-broadcasts an instance of message m if it invokes RB bcasti(m) (line 3).
Similarly, we say that process pi RB-delivers an instance of message m if it invokes
RB deli(m) (line 15).

When process pi invokes RB bcasti(m), it sends a message (m, seqi[m]) to every
process of the system AAS [∅], such that m is the instance of the message to spread,
and seqi[m] is the pi’s number of sequence of m (line 5). The variable seqi[m]
allows each process pj to distinguish among several instances of m RB-broadcast
by process pi (initially, seqi[m] is 0, line 2).

When process pi delivers (m, s), that is, message m with number of sequence
s (line 6), it uses count msgi[m, s] to increase the number of messages m with

1 A weaker version of the AB service is also possible using the RB properties instead of
the URB properties. Sometimes this stronger version is called the uniform atomic broadcast
(UAB) service [27].
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the same number of sequence s delivered by process pi (line 7). Then, it sends
(ACK ,m, s, count msgi[m, s]) to every process of the system AAS [∅] (line 8).

When process pi delivers (ACK ,m, s, c) for the first time, that is, an instance
of m with number of sequence s and a counter c (line 9), it relays this message
(ACK ,m, s, c) (line 10) to spread this message even if the sender process that
broadcast the message (ACK ,m, s, c) crashes. To avoid relaying a same message
indefinitely, lines 9-11 are executed only the first time that a same message is
delivered (line 9).

To RB-deliver an instance of message m as many times as needed, process
pi uses execi[m, s] and the function apply msg(m, s, c). The variable execi[m, s]
remembers the number of times that process pi executed RB deli(m) due to
the reception of (ACK ,m, s,−) (initially execi[m, s] is 0, line 2). The function
apply msg(m, s, c) allows process pi to execute RB deli(m) from the last time,
indicated by execi[m, s]+1, until the value of the counter of messages (m, s), indi-
cated by c (line 14). To avoid to RB-deliver instances of message m due to outdated
delivery of messages (ACK ,m, s, c), c has to be greater than execi[m, s] (line 13).

(1) init
(2) arrays seqi, execi and count msgi have 0 in all positions.

(3) when RB bcasti(m) is executed:
(4) seqi[m]← seqi[m] + 1;
(5) bcasti(m, seqi[m]).

(6) when deli(m, s) is executed:
(7) count msgi[m, s]← count msgi[m, s] + 1;
(8) bcasti(ACK ,m, s, count msgi[m, s]).

(9) when deli(ACK ,m, s, c) is executed for first time:
(10) bcasti(ACK ,m, s, c);
(11) apply msg(m, s, c).

(12) function apply msg(m, s, c):
(13) if (execi[m, s] < c) then
(14) for (j = execi[m, s] + 1 to c) do
(15) RB deli(m)
(16) end for;
(17) execi[m, s]← c
(18) end if.

Fig. 1 RB service in AAS [∅] (code for process pi).

Correctness of the algorithm.

Lemma 1 Integrity: ∀pi ∈ Π, Di ⊆ B.

Proof Let us consider, by the way of contradiction, that the claim is not true. Then,
there is a process pi such that Di ⊃ B. That is, following the contradiction, we
have that RB bcast(m) is executed x times, and RB deli(m) is executed y times,
being y > x. Note that in one extreme case x processes can execute RB bcast(m)
once, and, in the other, a same process can execute RB bcast(m) x times.
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A process pk increments its local sequence number of instance s of m by one
(line 4) previously to execute bcast(m, s) (line 5). Then, for each process pk, the
values of s for m that are broadcast are 1, 2, 3, . . . . So, in this case, these values
of s for m that are broadcast by any process will be in the range from 1, 2, 3, . . .
up to (at most) x. On the other hand, each time that a process pk delivers a
number of instance s of m executing delk(m, s) (line 6), it counts this number
of instances incrementing count msgk[m, s] by one (line 7). Hence, because links
are reliable and neither duplicate nor create spurious messages, if r ≤ x processes
executes bcast(m, s), then every process pk broadcast the sequence of messages
bcastk(ACK ,m, s, 1), bcastk(ACK ,m, s, 2), . . . bcastk(ACK ,m, s, c), such that c ≤ r.
Note that c could be less than r because some of these r processes can crash before
its broadcasting. Thus, because links are reliable and neither duplicate nor create
spurious messages, process pi, while it is alive, eventually receives the messages of
these broadcast primitives, and executes their corresponding deli(ACK ,m, s,−).
Note that, because links do not force any delivery order, these executions may not
be in the same order than their respective broadcast primitives were issued.

We can observe that process pi stores in execi[m, s] the number of invocations
of RB deli(m) for each instance s of m when deli(ACK,m, s,−) is executed (lines
14-17). We can also observe that process pi only RB-delivers the instance s of m
(line 15) when deli(ACK ,m, s, c) is also executed, but if it has not been applied
yet, i.e., if c > execi[m, s] (line 13). Then, RB bcast(m) is executed x times, and,
RB deli(m) is executed c times, being c ≤ x. So, we reach a contradiction, and,
hence, ∀pi ∈ Π, Di ⊆ B.

Lemma 2 Validity: ∀pi ∈ Correct,
⋃

pj∈Correct
Bj ⊆ Di.

Proof A correct process pj increments its local sequence number of instance s of
m by one (line 4) previously to execute bcast(m, s) (line 5). So, its values of s for
m that are broadcast are 1, 2, 3, . . . .

On the other hand, each time that a correct process pj delivers a number of
instance s of m executing delj(m, s) (line 6), it counts this number of instances
incrementing count msgj [m, s] by one (line 7). Hence, because links are reliable
and neither duplicate nor create spurious messages, if c correct processes execute
bcast(m, s), then every correct process pj eventually broadcasts the sequence of
messages bcastj(ACK ,m, s, 1), bcastj(ACK ,m, s, 2), . . . bcastj(ACK ,m, s, q), being
q ≥ c. Thus, because links are reliable and neither duplicate nor create spuri-
ous messages, every correct process pi eventually receives the messages of these
broadcast primitives, and executes their corresponding deli(ACK ,m, s,−).

We can observe that each correct process pi stores in execi[m, s] the number
of invocations of RB deli(m) for each instance s of m when deli(ACK ,m, s,−) is
executed (lines 14-17). Note that process pi only RB-delivers the instance s of m
(line 15) when deli(ACK ,m, s, c) is also executed, but if it has not been applied
yet, that is, if c > execi[m, s] (line 13). Then, if RB bcast(m) is executed x times,
c of these x times are due to correct processes, and, hence, RB deli(m) is executed

at least c times. Therefore, ∀pi ∈ Correct,
⋃

pj∈Correct
Bj ⊆ Di.

Lemma 3 Agreement: ∀pi, pj ∈ Correct, Di = Dj .
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Proof Let us consider, by the way of contradiction, that the claim is not true.
Following the contradiction, let us consider, w.l.o.g., that a correct process pi RB-
delivers x instances of a message m, and a correct process pj RB-delivers x′ < x

instances of this message m.
If correct process pi RB-delivers x instances of m, it always executes x times

deli(ACK ,m,−, c) such that c ≤ x (lines 12-18), and, hence, it also executes their
corresponding bcasti(ACK ,m,−, c) (lines 10-11). Note that c ≤ x because each
process increments count msgj [m, s] by one (line 7), and links are reliable and not
duplicate or create spurious messages. After all this happens, correct process pj
will also eventually execute x times the primitive delj(ACK ,m,−, c), being c ≤ x

(line 9), and process pj will eventually have to deliver from x′ to x instances of m
(lines 14-17). Therefore, we reach a contradiction, and ∀pi, pj ∈ Correct, Di = Dj .

5 Impossibility of the URB service in AAS [f > n/2 ]

We show in this section that the URB service is impossible to solve in the anony-
mous asynchronous system if a majority of processes can crash.

Theorem 1 There is no algorithm A that implements the URB service in every run

of an anonymous asynchronous system when a majority of processes can crash (i.e.,

AAS [f > n/2 ]), and when processes do not know the maximum number of faulty pro-

cesses (i.e., f is unknown).

Proof By contradiction, let us assume that there is an algorithm A that implements
the URB service in every run of AAS [f > n/2 ] when processes do not know f . Let
us consider the following two valid runs R1 and R2 of A.

In R1 a correct process pb executes the URB broadcast primitive with the
message m, and, to preserve the Validity Property of the URB service, a correct
process pd executes at time τ the URB deliver primitive with the message m.
We consider that pd delivers m after receiving x messages acknowledging that x
processes have also delivered this message m. Note that a process only knows
that in a run the rest of processes can crash, but it does not know how many
processes will crash in R1 or who they will be. So, x is not related to the number
of correct processes. Finally, we consider that in R1 the transmission of any other
message not previously specified is delayed in this asynchronous system until time
τ ′, τ ′ > τ .

R2 is the same execution of R1 until time τ . So, R1 and R2 are indistinguishable
until time τ . Then, let us consider in R2 that pb crashes at time τ ′′, τ < τ ′′ < τ ′. We
also consider in R2 that pd crashes at time τ ′′, hence, after delivering m. Similarly,
let us consider that these x processes, that informed pd about their delivery of m,
also crash at a time τ ′′. Note that, as process pd does not know a priori anything
about correct processes, it can happen that the intersection between the set of
these x processes and the set of correct processes can be empty. We also assume
in R2 that all transmitted messages in R1 sent by faulty processes that were
delayed until time τ ′ are lost in R2. Note that this can happen because reliable
channels only guarantee the delivery of messages if sender and receiver processes
are correct. Then after τ ′, there is no correct process in R2 that has received any
message related to m. Hence, we reach a contradiction, and there is a process pd
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that delivers m at time τ , but there is no correct process that can deliver m in R2

(which violate the Uniformity Property of the URB service).

Therefore, there is no algorithm A that implements the URB service in every
run of AAS [f > n/2 ] when processes do not know f .

As we can see, the unique identity of the processes has no influence in the proof
of the previous theorem. Hence, note that the following corollary is also preserved.

Corollary 1 There is no algorithm A that implements the URB service in every run

of a classical asynchronous system when a majority of processes can crash, and when

processes do not know the maximum number of faulty processes.

6 Implementing the URB service in AAS

In this section we present an algorithm (see Figure 2) that implements the URB
service in the anonymous asynchronous system when a majority of processes are
correct (i.e., AAS [f < n/2 ]).

Another algorithm (see Figure 3) is presented in this section that implements
the URB service in AAS [∅] with the failure detector ψ, see Definition 3, (i.e.,
AAS [ψ]). Note that, due to the impossibility result of Theorem 1, we need to use
a failure detector to enhance the system and circumvent this impossibility. Thus,
the implementation of the URB service in AAS is possible independently of the
number of correct processes.

6.1 Implementing the URB service in AAS [f < n/2 ]

We show that the algorithm of Figure 2 implements the URB service in AAS [f < n/2 ].

Description of the algorithm of Figure 2. Similarly to Figure 1, we say in Fig-
ure 2 that a process pi URB-broadcasts an instance of message m if it invokes
URB bcasti(m) (line 3), and that a process pi URB-delivers an instance of mes-
sage m if it invokes URB deli(m) (line 20).

The algorithm of Figure 2 is basically the same of Figure 1 except when
process pi executes deli(ACK ,m, s, c) (lines 9-16). In this case of Figure 2, pro-
cess pi also relays this message (ACK ,m, s, c) when it is executed by pi for the
first time (lines 10-12). Process pi uses count acki[m, s, c] to count the number of
messages (ACK ,m, s, c) received it (line 13). If process pi has received a mes-
sage (ACK ,m, s, c) from a majority of processes, then process pi applies this
message (lines 14-16), executing URB deli(m), from the last time, indicated in
execi[m, s] + 1, until the value of the counter of messages (m, s), indicated by
c (lines 19-22). Similarly to Figure 1, to avoid to URB-deliver messages due to
outdated delivery of messages (ACK,m, s, c), the value c has to be greater than
execi[m, s] (line 18).
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(1) init
(2) arrays seqi, execi, count msgi and count acki

have 0 in all positions.

(3) when URB bcasti(m) is executed:
(4) seqi[m]← seqi[m] + 1;
(5) bcasti(m, seqi[m]).

(6) when deli(m, s) is executed:
(7) count msgi[m, s]← count msgi[m, s] + 1;
(8) bcasti(ACK ,m, s, count msgi[m, s]).

(9) when deli(ACK ,m, s, c) is executed:
(10) if (deli(ACK ,m, s, c) is executed for first time) then
(11) bcasti(ACK ,m, s, c)
(12) end if;
(13) count acki[m, s, c]← count acki[m, s, c] + 1;
(14) if (count acki[m, s, c] > n/2) then
(15) apply msg(m, s, c)
(16) end if.

(17) function apply msg(m, s, c):
(18) if (execi[m, s] < c) then
(19) for (j = execi[m, s] + 1 to c) do
(20) URB deli(m)
(21) end for;
(22) execi[m, s]← c
(23) end if.

Fig. 2 URB service in AAS [f < n/2 ] (code for process pi).

Correctness of URB in AAS [f < n/2 ]

Lemma 4 Integrity: ∀pi ∈ Π, Di ⊆ B.

Proof It is similar to the proof of Lemma 1.

Lemma 5 Validity: ∀pi ∈ Correct,
⋃

pj∈Correct
Bj ⊆ Di.

Proof A correct process pj increments its local sequence number of instance s of
m by one (line 4) previously to execute bcast(m, s) (line 5). So, its values of s for
m that are broadcast are 1, 2, 3, . . .

On the other hand, each time that a correct process pj delivers a number of
instance s of m executing delj(m, s) (line 6), it counts this number of instance
incrementing count msgj [m, s] by one (line 7). Hence, because links are reliable
and neither duplicate nor create spurious messages, if c correct processes execute
bcast(m, s), then every correct process pj broadcasts the sequence of messages
bcastj(ACK ,m, s, 1), bcastj(ACK ,m, s, 2), . . . bcastj(ACK ,m, s, c). Thus, because
links are reliable, there are no duplicated or spurious messages, and a majority
of processes are correct (due to AAS [f < n/2 ]), every correct process pi even-
tually receives the messages of these broadcast primitives from a majority of
processes, and it executes its corresponding line 15. As pi stores in execi[m, s]
the number of invocations of URB deli(m) for each instance s of m when ap-
ply msg(m,s,c) is executed, and process pi only URB-delivers the instance s of m
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if it has not been applied yet (line 18), hence, pi URB-delivers m at least c times
because URB bcast(m) is executed at least c times. Therefore, ∀pi ∈ Correct,⋃
pj∈Correct

Bj ⊆ Di.

Lemma 6 Agreement: ∀pi, pj ∈ Correct, Di = Dj .

Proof Let us consider, w.l.o.g., that a correct process pi URB-delivers x instances
of a message m, and a correct process pj URB-delivers x′ < x instances of this
message m.

If correct process pi URB-delivers x instances of m, it eventually executes line
20 of function apply msg() with parameters (m,−, c1), . . . (m,−, cs) such that
c1+ . . . +cs = x. To do so, process pi has to receive each corresponding mes-
sage (ACK ,m,−, c1), . . . (ACK ,m,−, cs) from at least a majority of processes
(lines 14-16). Then, a majority of processes executes bcasti(ACK ,m,−, c1), . . .
bcasti(ACK ,m,−, cs), and each one of them rebroadcasts these messages the first
time they receive them (lines 10-12). Thus, because links are reliable, there are
no duplicated or spurious messages, and a majority of processes are correct (i.e.,
f < n/2), all these x messages (ACK ,m,−, c1) . . . (ACK ,m,−, cs) will be received
by correct process pj , and it eventually also has to URB-deliver from x′ to x

instances of m (line 20). Therefore, ∀pi, pj ∈ Correct, Di = Dj .

Lemma 7 Uniformity: ∀pi ∈ Faulty, and pj ∈ Correct, Di ⊆ Dj .

Proof Each time that a faulty process pi URB-delivers m, it executes line 20 into
the function apply msg() with parameters, w.l.o.g, (m, s′, c′). Note that this hap-
pens because process pi has received the message (ACK ,m, s′, c′) from a majority of
processes (lines 14-16). Then, a majority of processes executes bcasti(ACK ,m, s

′, c′),
and each one of them rebroadcasts this message the first time they receive it
(lines 10-12). Thus, because links are reliable, there are no duplicated or spurious
messages, and a majority of processes are correct (i.e., f < n/2), this message
(ACK ,m, s′, c′) will be received by correct process pj , and it eventually also has to
URB-deliver at least c′ instances of m (lines 19-21). Therefore, ∀pi ∈ Faulty, and
pj ∈ Correct, Di ⊆ Dj .

6.2 Implementing the URB service in AAS [ψ]

In this section we show that the algorithm of Figure 3 implements the URB service
in AAS [ψ] independently of the number of correct processes.

Description of the algorithm of Figure 3. As in the Figure 2, we say that a process
pi URB-broadcasts an instance of message m if it invokes URB bcasti(m) (line 5),
and URB-delivers an instance of message m if pi invokes URB deli(m) (line 25).

This algorithm of Figure 3 is similar to the algorithm of Figure 2. The main dif-
ference now is that a process pi, based on the value returned by the failure detector
ψ in FD .outputi , has to wait until it delivers a number of messages (ACK ,m′, s′, c′),
indicated by count acki[m

′, s′, c′], broadcast by all correct processes. As the num-
ber of correct processes may change over time, process pi needs a task (task T2
of Figure 3) where it can know this variation. In this task T2 process pi checks
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permanently the variable FD .outputi of the failure detector ψ. Hence, if process
pi delivered a number of messages (ACK ,m′, s′, c′) at least equal to the current
number of correct processes (line 18), it applies this message m′ in the same way
that the algorithm of Figure 2 does (line 19, and lines 22-28).

(1) init
(2) arrays seqi, execi, count msgi and count acki

have 0 in all positions;
(3) start tasks T1 and T2.

(4) task T1:
(5) when URB bcasti(m) is executed:
(6) seqi[m]← seqi[m] + 1;
(7) bcasti(m, seqi[m]).

(8) when deli(m, s) is executed:
(9) count msgi[m, s]← count msgi[m, s] + 1;
(10) bcasti(ACK ,m, s, count msgi[m, s]).

(11) when deli(ACK ,m, s, c) is executed:
(12) if (deli(ACK ,m, s, c) is executed for first time) then
(13) bcasti(ACK ,m, s, c);
(14) end if;
(15) count acki[m, s, c]← count acki[m, s, c] + 1.

(16) task T2:
(17) repeat forever
(18) for each (count acki[m

′, s′, c′] ≥ FD .outputi ) do
(19) apply msg(m′, s′, c′)
(20) end for
(21) end repeat.

(22) function apply msg(m, s, c):
(23) if (execi[m, s] < c) then
(24) for (j = execi[m, s] + 1 to c) do
(25) URB deli(m)
(26) end for;
(27) execi[m, s]← c
(28) end if.

Fig. 3 URB service in AAS [ψ] (code for process pi).

Correctness of URB in AAS [ψ]

Lemma 8 Integrity: ∀pi ∈ Π, Di ⊆ B.

Proof It is similar to the proof of Lemma 1.

Lemma 9 Validity: ∀pi ∈ Correct,
⋃

pj∈Correct
Bj ⊆ Di.

Proof A correct process pj increments its local number of instance s of m by one
(line 4) previously to execute bcast(m, s) (line 5). So, its values of s for m that are
broadcast are 1, 2, 3, . . . .
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On the other hand, each time that a correct process pj delivers a number of
instance s of m executing delj(m, s) (line 8), it counts this number of instances
incrementing count msgj [m, s] by one (line 9). Hence, because links are reliable
and neither duplicate nor create spurious messages, if c correct processes execute
bcast(m, s), then every correct process pj broadcasts the sequence of messages
bcastj(ACK ,m, s, 1), bcastj(ACK ,m, s, 2), . . . bcastj(ACK ,m, s, c). Thus, because
in the system AAS [ψ] links are reliable, there are no duplicated or spurious mes-
sages, and every correct process pi eventually has in its variable FD .outputi of the
failure detector ψ the number of correct processes (from Property 2 of Definition
3), it eventually receives at least FD .outputi messages (line 18), and, hence, exe-
cuting its corresponding line 19. Note that correct process pi stores in execi[m, s]
the number of invocations of URB deli(m), for each instance s of m when ap-
ply msg(m,s,c) is executed. Similarly, note that process pi only URB-delivers the
instance s of m if it has not been applied yet (line 23). Hence, as a consequence,
process pi URB-delivers m at least c times, because URB bcast(m) is executed at

least c times. Therefore, ∀pi ∈ Correct,
⋃

pj∈Correct
Bj ⊆ Di.

Lemma 10 Agreement: ∀pi, pj ∈ Correct, Di = Dj .

Proof Let us consider, w.l.o.g., that a correct process pi URB-delivers x instances
of a message m, and a correct process pj URB-delivers x′ < x instances of this
message m.

If correct process pi URB-delivers x instances of m, it eventually executes
line 25 of function apply msg() with parameters (m,−, c1), . . . (m,−, cs) such
that c1+ . . . +cs = x. To do so, process pi has to receive each corresponding
messages (ACK ,m,−, c1), . . . (ACK ,m,−, cs) from at least FD .outputi processes
(lines 18-20). Then, eventually FD .outputi is equal to the number of correct pro-
cesses (from Property 2 of Definition 3), and it executes bcasti(ACK ,m,−, c1), . . .
bcasti(ACK ,m,−, cs), and each correct process rebroadcasts these messages the
first time they receive them (lines 12-14). Thus, because links are reliable and the
variable FD .outputi of the failure detector ψ of all correct processes eventually con-
verges towards the number of correct processes (from Property 2 of Definition 3),
all these x messages (ACK ,m,−, c1) . . . (ACK ,m,−, cs) will be received by correct
process pj , and it eventually also has to URB-deliver from x′ to x instances of m
(lines 24-26).

Lemma 11 Uniformity: ∀pi ∈ Faulty, and pj ∈ Correct, Di ⊆ Dj .

Proof Each time that process pi URB-delivers m, it executes line 25 into the func-
tion apply msg() with parameters, w.l.o.g, (m, s′, c′). Thus, process pi receives the
message (ACK,m, s′, c′) from FD .outputi processes (lines 18-20). Then, eventually
FD .outputi is equal to the number of correct processes (from Property 2 of Defini-
tion 3), and it executes bcasti(ACK,m, s

′, c′), and each one of them rebroadcasts
this message the first time they receive it (lines 12-14). Thus, because links are reli-
able and the variable FD .output of all correct processes contains this exact number
of correct processes (from Property 2 of Definition 3), this message (ACK,m, s′, c′)
will be received by correct process pj , and it eventually also has to deliver at least
c′ instances of m (line 25). Therefore, ∀pi ∈ Faulty, and pj ∈ Correct, Di ⊆ Dj .
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7 Implementing the AB service in AAS

It is known that the AB service is not possible to be solved in classical asyn-
chronous systems prone to process crashes ([19], [24]), and, hence, in anonymous
asynchronous systems. To circumvent this impossibility, in this section we show
that the algorithm of Figure 4 implements the AB service in the anonymous asyn-
chronous system AAS [∅] if we enrich it with the following two components: Consen-
sus and the RB service. Note that the algorithm of Figure 4 is a simple adaptation
to anonymous synchronous systems the solution of [19] presented for classical asyn-
chronous systems. We include it in this paper with the aim of proving that the
AB service is also possible with anonymity.

Roughly speaking, Consensus ([26], [28]) specifies that all processes decide a
same value v, and this value v is proposed by some process. Let us define consensus
more formally.

Definition 5 Let us consider that a process pi of the anonymous system AAS

proposes a value vi invoking the primitive consensusi(vi). This primitive returns
to process pi the decided value v preserving the following three properties.

1. CON-Termination: Every correct process eventually decides.
2. CON-Validity: The value v decided by any process is one of the proposed values.
3. CON-Agreement: All decided values are the same value v.

Let us see the requirements of the two components that Figure 4 needs to
implement the AB service. As we have shown in Section 4, the RB service can
be implemented in AAS [∅]. It is also known that Consensus cannot be solved in
AAS [∅] [16]. Hence, the algorithm of Figure 4 is implementable in AAS [∅] enhanced
with the requirements that Consensus enforce. Then, we denote AAS [Consensus]
the anonymous system AAS [∅] enriched with the requirements of the Consensus
component.

As examples of the implementability of Consensus, and hence of the AB service
in AAS , there are in the literature several works that solve Consensus augmenting
the anonymous asynchronous system with an implementable failure detector ([9],
[17])2. [9] implements Consensus in the anonymous asynchronous system AAS [∅]
enhanced with a failure detector3. [17] implements Consensus in AAS [ψ], that is,
in an anonymous asynchronous system enriched with the failure detector ψ. Thus,
the AB service can be solved at least in an anonymous system AAS [ψ].

Description of the algorithm of Figure 4 First of all, note that it is a simple adap-
tation of [19] with multisets of messages and with anonymous Consensus. The
necessity of multisets is due to the fact that messages in anonymous systems are
not unique (as we have already explained in Section 2). Thus, several instances of
a same message can be maintained in the multiset.

Similarly to the rest of algorithms in this paper, we say that a process pi AB-
broadcasts an instance of message m if it invokes AB bcasti(m) (line 6), and a
process pi AB-delivers an instance of message m if it invokes AB deli(m) (line 17).

2 We can find other papers in the literature that solve Consensus in anonymous systems
with a failure detector that can not be implementable ([18], [16]). That is, they can solve it
theoretically, but not practically.

3 Actually, [9] solves Consensus in a more general system such that a particular case is the
anonymous asynchronous system.
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Each process pi has in consensusi an array of instances of the Consensus com-
ponent (line 3). Each instance consensusi[k] is totally independent of the rest of
instances consensusi[s], being k 6= s. We consider that instances of Consensus can
be executed concurrently if it is necessary.

Process pi RB-broadcasts a message m each time it AB-broadcasts an instance
of m (lines 6-7). An instance of message m is stored by process pi in the multiset
receivedi each time it RB-delivers m (lines 8-9). Process pi stores an instance of
message m in the multiset deliveredi each time it AB-delivers an instance of m
(lines 17-18). All messages received by processes pi but not yet delivered are stored
in the multiset pendingi (line 12). Note that pendingi, receivedi and deliveredi have
to be a multiset variable because messages are not unique, and, hence, there can
be multiples instances of a same message m. Initially, receivedi and deliveredi are
empty (line 2).

If process pi has some message in pendingi, process pi proposes a value to be
consensuated (lines 15-16). This proposed value is the first message considering
the FIFO (first-in and first-out) sequence of messages in order of arrival to the
process and not yet AB-delivered. Then, process pi proposes a message to get
consensus in the instance of Consensus indicated by next orderi when it invokes the
primitive consensusi[next orderi](proposali) (line 16). This decided message is in
the variable decisioni[next orderi] when the primitive consensusi finishes. Finally,
process pi AB-delivers the decided message in decisioni[next orderi] (line 17), and
it also includes this decided message in the multiset deliveredi[next orderi] (line
18). Then, the instance of the message in decisioni[next orderi] can be removed
from the multiset pendingi in the next iteration of process pi (line 12).

Correctness of AB in AAS [Consensus] The proofs of the properties CON-Termination,
CON-Validity and CON-Agreement of Consensus are similar to [19] but using mul-
tisets of messages and the anonymous Consensus component.

8 Conclusion

Fault-tolerant broadcast is a fundamental problem in distributed systems that
includes several guarantees in the delivery of messages when crashes can happen
in the system. Traditionally, the fault-tolerant broadcast service has been studied
in classical distributed systems where each process has a unique identity.

In this paper we have studied for first time the fault-tolerant broadcast service
in anonymous systems. First, we include an implementation of the reliable broad-
cast (RB) service for anonymous systems. On the possibility to implement the
uniform reliable broadcast (URB) service, in this paper we prove the impossibil-
ity to implement the uniform reliable broadcast (URB) service when a majority of
processes can crash and the amount of crashed processes is unknown by the correct
processes, and the possibility of implement it when only a minority can crash. To
extend the implementability of the URB service circumventing this impossibility
result, we present an algorithm that implements the URB service in anonymous
asynchronous systems independently of the number of crashed processes. We do it
enriching the system with a failure detector (we use ψ because it is a failure detec-
tor that works without knowing the identities of the processes). We also prove in
this paper that the atomic broadcast (AB) service is implementable if we augment
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(1) init
(2) multisets receivedi and deliveredi are empty;
(3) array consensusi shared by all processes;
(4) next orderi ← 1;
(5) start task T.

(6) when AB bcasti(m) is executed:
(7) RB bcasti(m).

(8) when RB deli(m) is executed:
(9) receivedi ← receivedi ∪ {m}.

(10) task T:
(11)repeat forever
(12) pendingi ← receivedi \ deliveredi;
(13) if (pendingi 6= ∅) then
(14) next orderi ← next orderi + 1
(15) proposali ← first message of pendingi in FIFO order;
(16) decisioni[next orderi]←

consensusi[next orderi](proposali);
(17) AB deli(decisioni[next orderi]);
(18) deliveredi ← deliveredi ∪ {decisioni[next orderi]}
(19) end if
(20)end repeat.

Fig. 4 AB service in AAS (code for process pi).

the anonymous asynchronous system with the requirements needed by Consensus.
Hence, as there are in the literature anonymous Consensus components that are
implementable in the anonymous systems, hence, we prove in this paper that AB
service is implementable in anonymous systems.

As future work, we have to study other fault-tolerant broadcast services with
different properties of delivery (such as FIFO or Causal order). Another future
line is to search the weakest failure detector that allows to implement each type
of fault-tolerant broadcast service in asynchronous anonymous systems. Finally,
the solutions included in this paper have been focused to prove the possibility
results with algorithms as simple as possible. Hence, we aim to the researchers
to study new algorithms that solve the fault-tolerant broadcast services regarding
the performance or efficiency of the anonymous systems.
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