
INDICIa: a new distributed clustering protocol

Mar Callau-Zori
Universidad Politécnica de Madrid, Spain

mcallau@fi.upm.es

ABSTRACT
Many data streaming applications produces massive amounts
of data that must be processed in a distributed fashion due
to the resource limitation of a single machine. We propose
a distributed data stream clustering protocol. Theoretical
analysis shows preliminary results about the quality of dis-
covered clustering. In addition, we present results about the
ability to reduce the time complexity respect to the central-
ized approach.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems

Keywords
data streams, k-means, distributed clustering

1. INTRODUCTION
In the last years, the data streaming paradigm has emerged

to deal with continuous processing in near-real time of ap-
plications like online targeted publicity, anomaly detection
in cloud data centers, etc. Many of these applications re-
quire data mining tasks which cannot be satisfied by the
query language provided by data streaming platforms. We
focus in clustering, an important data mining task, where
data is grouped according to different dimensions. A moti-
vating scenario is targeted publicity in social networks, user
information (e.g. tweets in Twitter) is grouped to drive the
targeted publicity. Streaming scenarios are characterized by
massive amounts of data demanding scalable distributed so-
lutions that can leverage the cloud computing power. Our
research work focuses precisely on this topic, how to perform
clustering in a distributed system over data streams. In the
social network application, this technique could be applied
to clusters user messages among studding how trending topic
emerges and evolves.

In this research abstract, we present INDICIa (INnocent
DIstributed ClusterIng), a distributed clustering protocol

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

that processes data as a single set in a distributed fashion.
Our protocol aggregates the computational power of many
nodes in order to share the load of the clustering process-
ing. We show some preliminary results about the clustering
quality and time complexity of the distributed protocol with
respect a centralized approach. The clustering quality quan-
tifies the ability of the algorithm to discover representative
groups. The time complexity quantifies the cost of produc-
ing the clustering on a per tuple basis.

Prior work. Existing solutions for distributed clustering
over streams focus mainly on producing intermediate clus-
terings computed close to the data sources and combining
them [2, 1, 4]. These approaches introduce an important
bias due to the hierarchical processing of the clustering.

2. PROBLEM STATEMENT
Given a data stream S = {sn}n∈N ⊂ X, we focus on the k-

means problem over each sliding window of size N : the goal
is to find a set of k centers Cn ⊂ X that minimizes the qual-
ity function cost(Wn, Cn), measuring the sum of all the dis-
tances from each tuple in the window Wn to the nearest cen-
ter in Cn. Formally, a window is formed by the most recent
N tuples starting from sn, Wn = {sn, . . . , sn−N+1}, and the
function cost cost(Wn, Cn) =

∑
s∈Wn

minc∈Cn d(s, c). An al-

gorithm gives an (a, b)-approximation to the k-means prob-
lem, if the center set has a number of centers in [a, ak] with
a cost at most b times the minimum cost. We refer to the
weight of a center c as the number of tuples assigned to c,
i.e., ωn = card({s ∈ Wn : c = arg minc̃∈Cn d(s, c̃)}). Being
the weighted set Wn the weight of each center in Cn.

The addressed problem is to distribute the computation
of a k centers set Cn over each window Wn based on two al-
gorithms: 1) algorithm A computes an (a, b)-approximation
clustering over non-complete windows and the clusters weight
in aO(f(N)) processing time whereN is the maximum num-
ber of tuples received of a window; and 2) algorithm AF
computes k centers over a weighted set (C,W) with approx-
imation factor c in a O(f(M)) processing time where M is
the length of the input weighted set.

3. PROPOSED APPROACH
We present here INDICIa, a protocol to distribute the

computation over multiple nodes of the centralized algo-
rithm A (Fig. 1). There are three kinds of nodes: 1) load
balancer(LB) which distributes tuples according to a round-
robin process; 2) m instances of algorithm A (A1, . . . ,Am)
which compute a set of intermediate weighted clustering
centers; and 3) clustering aggregator (AC) which computes

the final clustering Cn based on the algorithm AF over the
weighted centers set from all the A instances.

A1
ak clusters and weights

Am
ak clusters and weights

AC
k clusters

round-robin

LB
S

Figure 1: INDICIa

The addition of new stream sources is managed with a
new LB at each stream source. It takes care of distributing
the data across the A instances without introducing any bias
on the sources of the data.

Elasticity. This challenge lies in how to provision and
decommission instances. If clustering can be partitioned, a
consistent protocol requires the ability of transferring state
between instances. In this case, when the number of in-
stances needs to be scaled up or down, some clusters are
transferred from some instances to others. This approach
has not impact on the final clustering. We provide an al-
ternative approach if state cannot be partitioned. A new
provisioned node will start performing a new intermediate
clustering, initially with the empty set, with not impact in
the final clustering. Moreover, during decommissioning, the
intermediate clusters associated to the instances to be de-
commissioned will not be updated anymore. Hence, in the
AC there are two kinds of intermediate clusterings depend-
ing on whether the A instance is still active. In this case,
the AC component computes two different final clusterings
from the intermediate clusterings according to this classifi-
cation: one for the active instances and other one over the
non-active instances.

4. PRELIMINARY RESULTS
In this section we present some preliminary results about

INDICIa along two lines: 1) the clustering quality and 2) the
improvement in the time complexity (reduction of processing
time per tuple).

Clustering quality. In this section, we measure two
source of error in INDICIa: 1) the window is split and several
approximated clusterings are computed, and 2) the interme-
diate clusterings are not synchronized. Firstly, the impact of
the partitioning in the quality has been studied in [3] (Thm.
4) with a different goal. We reformulate it to our case at-
taining an approximation cost factor (c(b+ 1) + b). On the
other hand, the non-synchronized instances arise from the
fact that each incoming tuple is only sent to one Ai. Focus-
ing on the instance Aold that has received the oldest tuple,
sold, we have that the number of tuples outside the window
Wn that have been considered in the clustering computation
Ne is at most Eold = n − old. As each Ai receives a tuple
with probability 1/m, then the number Eold is a random
variable following a geometric distribution. Due to the geo-
metric distribution measures the number of Bernoulli trials
to get the first success (a success is “route to Aold”). Apply-
ing the one-side Chebyshev’s inequality over Eold, we obtain
the result.

Proposition 4.1. The number of tuples outside the win-

dow that are considered into the clustering, Ne, satisfies:

Pr{Ne ≤ (1 +
√

1/δ − 1(m− 1)} ≥ 1− δ
Time complexity. In this section, we present a prelim-

inary result about the reduction of the time processing per
tuple. In INDICIa, O(1) time is spent to route a tuple to
an A instance. Due to the balancing load each A instance
receives N/m tuples per window, computing the intermedi-
ate clustering in O(f(N/m)) time. Finally, the final clus-
tering is computed from all the intermediate clusterings in
a O(f(akm)) time. Hence, INDICIa processes a tuple in
O(f(N/m) + f(akm)). At this point, we are interested into
the constraints of the centralized algorithm A in order to
improve the time complexity under INDICIa. The following
result summarizes this idea.

Proposition 4.2. Given ϕ(·) the complexity set function
respect to the number of A instances, i.e., ϕ(1) = O(f(N))
and ϕ(m) = O(f(N/m)+f(akm)), ∀m ≥ 2. We have: C1)
If f(x) = xp, p ≥ 1, then ϕ(m) ⊆ ϕ(1), N ≥ 2akm. C2) If
f(x) = log(x), then ϕ(m) ⊇ ϕ(1).

Proof. We remark that if f(x) ≤ g(x), then O(f(x)) ⊆
O(g(x)). Let us look at the function cases. C1) We need to
prove Np ≥ Np/mp + apkpmp. Given the interesting points

mp
± =

Np±
√

N2p−4apkpNp

2apkp , hence, it is enough prove that

mp ∈ [mp
−,m

p
+]. As N ≥ 2akm, then mp

+ ≥ Np

2apkp ≥ mp.
Due to m > 2, hence it is enough to prove mp

− ≤ 2p ↔
22p

2p−1
apkp ≤ Np ← 22p

2p−1
apkp ≤ 22papkp ↔ 22p

2p−1
≤ 22p ↔

2p− 1 ≥ 1 which is right with p ≥ 1. C2) It is derived from
log(N) ≤ log(N)− log(m) + log(ak) + log(m).

5. CONCLUSIONS AND FUTURE WORK
We have presented a protocol to distribute the cluster-

ing computation over data streams with some preliminary
results about the clustering quality and the time comple-
xity. As future work, we will focus on: 1) finding a metric
about the impact in the clustering quality of the number
of expired tuples, 2) a deeper study about the reduction
of the time complexity, 3) designing of a smarter protocol
that considers data locality to reduce space redundancy be-
tween instances, and 4) parallelizing the clustering aggrega-
tor AC. Finally, a real implementation using social network
data (such as Twitter) will be conducted.

6. REFERENCES
[1] Beringer and Hüllermeier. Online clustering of parallel

data streams. DKE, 2006.

[2] Dai, Huang, Yeh, and Chen. Clustering on demand for
multiple data streams. In ICDM ’04.

[3] Guha, Meyerson, Mishra, Motwani, and O’Callaghan.
Clustering data streams: Theory and practice. TKDE,
2003.

[4] Hassani, Müller, and Seidl. EDISKCO: energy efficient
distributed in-sensor-network k-center clustering with
outliers. In SensorKDD ’09.

7. ACKNOWLEDGEMENTS
This work was partially supported by the Spanish Re-

search Agency: CloudStorm project TIN2010-19077 and the
FPI PhD-fellowship BES-2008-009249; by the Madrid Re-
gional Research Council: CLOUDS project and by the Eu-
ropean Commission: MASSIF project FP7-257475.

	1 Introduction
	2 Problem statement
	3 Proposed approach
	4 Preliminary results
	5 Conclusions and future work
	6 References
	7 Acknowledgements

