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Infrastructure as a Service clouds are a flexible and fast way to obtain (virtual) resources as demand
varies. Grids, on the other hand, are middleware platforms able to combine resources from different
administrative domains for task execution. Clouds can be used by grids as providers of devices such as
virtual machines, so they only use the resources they need. But this requires grids to be able to decide
when to allocate and release those resources. Here we introduce and analyze by simulations an economic
mechanism (a) to set resource prices and (b) resolve when to scale resources depending on the users’
demand. This system has a strong emphasis on fairness, so no user hinders the execution of other users’

Keywords: >

Clouds tasks by getting too many resources.

Grids Our simulator is based on the well-known GridSim software for grid simulation, which we expand
Scalability to simulate infrastructure clouds. The results show how the proposed system can successfully adapt the
Economic model amount of allocated resources to the demand, while at the same time ensuring that resources are fairly
GridSim shared among users.

Fairness
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1. Introduction

The term cloud [1] is applied to systems that allow to exter-
nalize the provision and management of computing resources.
Infrastructure as a Service (IaaS) clouds supply virtual physical re-
sources such as virtual machines (VMs). They are arguably the most
well-known cloud type, and there are already several commer-
cial offerings that provide such remote infrastructure services, e.g.
Amazon EC2! or Rackspace.? The main feature of these cloud sys-
tems? is their ability to quickly supply virtual resources on de-
mand, in commercial settings under a pay-per-use billing policy.
Afterward, users can release those resources as soon as they do
not need them. This way, users can handle peaks on capacity de-
mand without incurring in resource overprovision. This character-
istic is denoted as scalability and is getting a lot of attention from
the research community [2]. Also, clouds provide a high degree of
flexibility as each VM can use its own software stack. Hence, it is
possible to run in the same physical host different applications
even if they have conflicting software needs.
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3 From now on, the term cloud will be used to denote IaaS clouds.

0167-739X/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.10.001

Grid systems, on the other hand, are a well-known technology
that can provide a seemingly unique infrastructure from several
resource providers, possibly heterogeneous. Typically, grid users
send their tasks to the grid platform which will distribute them
among the resources available. Activities such as resource location,
execution scheduling, security handling, etc. are managed by the
grid.

Grids can use clouds as infrastructure providers so they can
deploy orrelease resources in order to react to changes on demand,
or to anticipate to variations on that demand if load prediction
systems (like [3]) are available. This demand of resources will be
induced by the amount (which depends on the triggering rate)
and size of tasks sent to the grid. Thus, grids will be able to
allocate only the infrastructure they require. Besides, grids can
benefit from clouds flexibility as they will be able to run tasks
with heterogeneous software requirements in the same host. We
deem this is of special interest in some typical grid usage scenarios
where several users compete for resources which are freely (in
monetary terms) available, but are also limited. Examples of such
scenarios are several scientific environments, where resources can
be provided by one or several entities. This proposal is mainly
oriented to that kind of setups.

However, this brings a new problem: how can grids decide
when to scale up or down resources? For example, a grid system
could decide to enqueue incoming tasks, or even to reject them,
instead of allocating new resources. Hence, it seems reasonable
that users should be able to point out if their tasks have a certain
priority so they should be run as soon as possible, instead of being
enqueued or discarded.
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Here we propose an economic mechanism to enable grids
to decide how to scale resources. A price is computed for each
resource, so the cost of running each task can be calculated. These
prices are adapted depending on the demand. Users have a limited,
periodically renewed budget to run their tasks. Negotiation follows
a tender/contract-net model [4] where users ask for offers for each
task they want to run and choose the most suitable one following
a utility function also defined by them. The tender/contract-net
model is known to be the economic model that optimizes users’
utility [5], which is the main goal in the scenarios we address.
Also, as no user can demand too many resources due to budget
restrictions, no user can get a unfair share of those resources.
Tasks have a deadline, so those that could not be run (not suitable
offer was received) before their deadline expires will be marked as
failed.

The main contribution of this work is the introduction of a
hybrid grid-cloud architecture where one or more clouds provide
infrastructure resources and the grid:

e Automatically scales resources usage to attend a variable de-
mand to run tasks with possibly heterogeneous software needs.

e Splits resources fairly among users. Here, fair does not mean
equally. Maybe some users need more resources than others,
and those should be granted while there are enough resources
for all.

In the presented architecture the grid system is not in charge of
ordering users’ tasks, which are processed following a FIFO policy.
We assume instead that each user is the one who must prioritize
her tasks following her own criteria, i.e.: the user is the one to de-
cide which is the next task to execute. A tasks ordering mechanism
for users is also proposed in this work, based not only on the pri-
ority assigned to each task by the user, but also on the risk of not
being able to run that task which is computed using its size and the
time to its deadline. This mechanism shows a better outcome than
ordering tasks using only their priority. It is applied in the subse-
quent experiments to simulate a realistic dynamic market where
users implement complex task management strategies.

We test and evaluate this proposal by simulations run using
the GridSim [6] simulator, whose features we extended in order
to suit the requirements of our experiments. Experiments are run
over a hybrid architecture that combines a grid system with laaS
clouds. The grid system used as basis of this architecture is DIET [7].
In [8] Caron et al. introduce and discuss a first proposal of the
architecture presented here.

The rest of the paper is organized as follows: Section 2 details
the architecture proposed; Section 3 explains how the system
market approach is implemented, i.e. how currency flows, how
offers for each task request are computed, how prices are adapted,
etc.; Section 4 shows the results of some simulations that test
key features of the proposed system; Section 5 presents an
analysis of related work in the area of clouds and economy-based
grid systems; finally Section 6 discusses the conclusions of the
work presented. The extensions proposed to GridSim, which were
the base for the simulations presented in Section 4 are briefly
explained in Appendix.

2. Grid-cloud architecture

The solution proposed in this paper combines a hierarchical grid
system, DIET, with several clouds that will provide resources to the
grid. To describe this solution we need first to outline how DIET
works.

DIET [7] connects its components through a hierarchical tree
for scalability. The basic DIET component is the Agent. Agents
have scheduling and data management capabilities, but here
we will focus on their primary and most basic functionality:
service location. Fig. 1 depicts DIET components organization.
Each DIET grid has a unique Master Agent (MA) on the top of its
hierarchy. This MA gets service requests from users. Each request

(0)

(4)

(0) The user issues a new task request to the Master Agent.
(1) The user task is forwarded down through DIET hierarchy.
(2) Finally the request reaches the SeDs at the bottom.

(3) The SeD buids an answer, taking into account its own
capacity. It forwards it to the parent Local Agent.

(4) A list of SeDs able to fulfill the request Offers is sent back
through the hierarchy to the Master Agent who forwards it
to the user. That list is ordered by SeDs' capacities.

(5) User chooses the best SeD and sends it the task.

Fig. 1. DIET hierarchical layout.

goes down through the hierarchy formed by the agents until it
reaches the Server Daemons (SeD), that interact with the execution
environments and provide the actual execution services. Each
Agent knows the services that can be executed by the SeDs at the
bottom of each one of its children Agents, and it will not forward
service requests to those Agents whose corresponding SeDs cannot
run the service. Each SeD is connected to DIET’s hierarchy through
Local Agents (LA), LAs are intended to be at the resources provider
site. When some request reaches the SeD, it builds a reply reporting
its state. Replies are sent back through the hierarchy up to the MA.
Replies are ordered by some objective function that depends on
the SeDs’ state, so the “best” SeDs are first in the list. Finally the
MA will send the list of replies to the user, who will pick some SeD
in the list (usually the first one) and command it the task to run.

DIET’s layout makes straightforward to connect IaaS clouds as
resource providers to the grid. [aaS systems will be connected to
the SeD nodes, who will decide when to scale (allocate and release)
resources to attend users requests. Services will be run in the VMs
hosted in the cloud. laaS providers can be built on top of hardware
providers by using several open solutions such as OpenNebula [9],
Eucalyptus [10] or Nimbus [11]. Such solutions have simple remote
interfaces that SeD nodes can use to request the creation of VMs
and/or networks to connect them. Once a VM is created, the SeD
node will be in charge of connecting to it to run services in order
to attend users’ tasks. Fig. 2 shows a first sketch of the elements
involved in the described layout, using OpenNebula as a possible
laaS Provider. In our proposal the user interacts at all times with
DIET elements (MA and SeDs). She is totally unaware about the fact
that SeDs may run tasks in VMs supplied by IaaS clouds.

The hybrid approach presented here is detailed in Fig. 3. A
new module for task allocation is placed between the laaS system
and DIET’s SeD node (Task Allocation Module, TAM), that will
be in charge of computing where the tasks sent by users can be
executed and will adapt prices as demand changes. A task can
be run in an already active VM, or in a new VM that will be
demanded by the TAM to the cloud provider. The cloud provider
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Fig. 2. Sketch of the proposed hybrid grid-cloud layout.
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Fig. 3. Architecture overview.

will have a catalog describing the hardware configuration of the
VMs that the TAM can instantiate. Each VM will have one or more
processing elements (virtual CPUs) with their corresponding queue
of pending tasks. When computing allocations for a given task, the
TAM must take into account the tasks already in the queues of each
VM. The TAM can ask to the cloud provider whether a VM of a
certain type can be instantiated or not which will depend on the
resources of the physical hosts available. This is necessary so the
TAM can determine allocations in new VMs. We assume that a set
of disk images containing the VMs software stack (OS, libraries...)
required to run the tasks is available.

Now, the main goal of the grid system is to ensure that resources
are shared in a fairly manner. To achieve this we propose a market-
based approach, that is described in detail in the next section.
The characteristics of this approach impose certain changes in the
way SeD nodes run. Those changes are also explained in the next
section.

3. Using markets to reach fairness

Markets can be defined as a way to exchange “goods”, in this
case the right to run tasks on some infrastructure. In such market,
resources have a certain price associated, and so users must take
into account their (limited) budget to decide when and where
to demand the execution of those tasks. If resource prices are
set taking into account the demand, and budgets are allocated
equally among users, by intrinsic market dynamics we can expect
resources to be fairly shared (a more thorough discussion about the
role of markets as a solution for fair resource sharing can be found
in[12]).

When designing a market environment several decisions must
be taken regarding different features:

e How currency is managed.

e How negotiation is performed, i.e. how requests are sent and
how offers are collected.

e How offers for each user request are built.

e How resource prices, that determine each offer cost, are
computed.

o How the user chooses the best offer.

The rest of this section describes the characteristics of our pro-
posed market and explains the design decisions taken regarding
them.

3.1. Currency

Users budget will be bounded by the amount of virtual currency
they have (using real money is possible, but is has several
drawbacks, see Section 5.1.2). An initial budget is assigned to
each new user in the system. Users cannot run tasks beyond
their budget. On the other hand, currency should be assigned to
users to avoid the potential problems of starvation (users cannot
access resources), depletion (users hoard currency to monopolize
resource access at certain times) and inflation (prices grow due
to uncontrolled addition of currency to the system) [13]. Several
options are possible:

e The global value of all resources is periodically computed,
taking into account their present prices. This would represent
the total “wealth” of the system. This amount is then split and
sent to the users.

e Agiven fixed amount is sent periodically to all users. Providers
(i.e. clouds) do not hoard the money they get from users.

e SeD/Clouds do not hoard neither drop the money received from
the users. Instead, all that money is periodically gathered and
forwarded back to the users.

The two first options can easily lead to inflation as currency
is injected to the system even if the demand of resources is low.
Also, new users will be in an adverse situation as previous users
can hold big amounts of virtual currency. Thus, the third option
seems the more feasible, and is in fact similar to the idea proposed
in Mirage [14] (see Section 5). Our proposal adds a new entity, the
Virtual Bank, which will be in charge of gathering all the incomes
of the cloud providers. Periodically, the currency collected by the
Virtual Bank is evenly split and sent to the users. Payments from
users to providers are done directly once the corresponding task
execution is finished, with no intervention from the Virtual Bank.

3.2. Task execution negotiation

Every time the user needs to run a task, it sends a REQUEST_FOR
_OFFERS message that through DIET hierarchy will reach all avail-
able SeD nodes (in fact, their corresponding TAM modules, see
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Fig. 3) connected to some cloud provider. Our simulations take into
account three resources (more can be easily added): CPU, disk and
memory. Hence, each request contains information about the re-
quired amount of resources (CPU measured in Mls, memory mea-
sured in MBs, and disk measured in GBs).

When a REQUEST_FOR_OFFERS message reaches a certain
TAM, this module will build a set of offers to execute the task. The
process of creating offers for a request is detailed in Section 3.3. An
allocation offer A is a tuple that contains the cost and time that
it will take to run a given task (A™E ACST) A TAM can create
none, one or many allocation offers for a task T;. When all possible
allocations to run the task have been computed by the provider
they are sent back to the user in an OFFERS message. If the provider
could not find any suitable offer then the message will be empty.
OFFER messages are sent again through DIET. Each node in the
hierarchy (LAs, Agents and the MA) will gather all the offers they
receive from their children nodes for each REQUEST_FOR_OFFERS
they had forwarded before, and will build a new OFFERS message
with the offers carried by the OFFERS messages from its children.
Of course, the node will not build and send the new OFFERS
message for a task until it node has received an OFFERS message
for that task from all its children.

Finally, only one OFFERS message will reach the user, con-
taining all offers from all SeDs. Then, the user will choose the most
suitable allocation offer using some utility function, and will send
a RUN_TASK message directly to the corresponding provider. If the
OFFERS message is empty, or it does not contain any suitable offer,
then the task is stored in a queue by the user to be tried again later.
An offer is not suitable for a task if its cost A“°%T is greater than the
available user’s budget, or if the time to execute it ATE exceeds
the task deadline. Each user periodically checks the tasks stored,
discarding as failed those tasks whose deadline has expired.

A RUN_TASK message carries the time and cost conditions
from the chosen offer. When the TAM receives such message, it
computes again possible allocations for the task to check if it still
can honor the offer. If it is not so (due to shortage of resources or
changes on resource pricing) then the user is notified. In such case
the task is stored by the user as if it had no offer. If the task can still
be run under the offer conditions then it is executed. When the task
is finished the result is sent to the user by a RUN_RESULT message,
which carries the task results or the corresponding errors. If the
task could not be run due to some reason (e.g. unexpectedly the
deadline was surpassed during execution) then the user discards
the task as failed.

3.3. Building tasks allocations offers

Before describing how offers are built by cloud providers, it is
necessary to outline how physical hosts and VMs are characterized.
Then we describe the process of computing all possible options
to run a task. Each option will then become an allocation offer
(ATME “ACOSTy that will be sent in the corresponding OFFERS
message.

3.3.1. Physical hosts and virtual machines

Each cloud provider has a catalog of VM types available
{Vi, ..., Vu}. Each VM type V; defines a hardware configuration
with the resources it has: amount of Processing Elements PEs* Vjc
and their processing speed Vjs (in MIPS); memory ij; and disk de.
Also, there is information about how long it takes to start a VM of
that type V>™%" and the price of creating such instance V,**". Each
cloud provider has a set of m physical hosts {Hy, . . ., Hy}. Each host

4 To avoid confusion with physical CPUs, we will denote as PEs the VMs’ CPUs.

H; has a set of ch CPUs all with the same processing capacity H;.
For each processor py; (1 < I < ch) in host H, we represent by
pz, , the available processing capacity of that CPU (in MIPS), i.e. the
processing capacity not used for any of the VMs allocated in the
host. Conversely py  is the used capacity, so p, + pj; = H;. Also,
the amount of memory in host k is given by H;", while H,T‘a and
H,'cn’“ are the available and used memory in that host respectively.
HP represents the amount of disks of host k, and H represents
their capacity. For each disk z;; (1 < | < HY), z{, and z, are the
available and used storage capacity of disk z; (z/; + z, = Zy))-
When a new VM of type V; is allocated in some host Hy then the
corresponding values are updated. The PEs must be allocated in VJ-C

physical CPUs (of course V{ < Hf) with enough available capacity.
For example, processor py 1 would be assigned one of VM’s PEs
only if pﬁy] > Vjs. When one PE is assigned to some physical CPU
its corresponding parameters are updated so for example pz’] =
P, — V7. Also, the host available memory must be enough to
allocate the VM memory, and if so then it must be updated when
the VM is finally created H;"* = H;"* — V/". Finally, the capacity
of the disk where the VM storage will be set is also updated so
Zp =24~ de. H,"" and z} are updated likewise. If there are more
than one host where the VM can be created, then the host running
more VMs is used for the new VM. The goal is to use as less physical
hosts as possible at all times, which in turn should impact on the
power consumption (unused hosts can be in sleep mode, which
will demand less power). On the other hand, as time passes some
VMs can become idle, i.e. they have run all tasks assigned and are
waiting for new tasks to be executed. Periodically it is checked how
long each one of these idle VMs has been in that state. If any VM
has been idle for a period longer than a certain threshold time, that
VM is switch off and its resources are released. So if the VM was of
type V; and was running on host Hy, then the available resources
are updated as expected: H;"* = H;"* + V", and so on.

All PEs have a FIFO queue of tasks associated. When a RUN_
TASK message reaches a cloud provider the set of possible allo-
cations must be computed again to check whether that task can
be run within the cost and time originally offered (which are car-
ried by the RUN_TASK message). If so, the provider will choose
among the found allocations the one that maximizes the user’s util-
ity function. Depending on the allocation, the task can (1) be as-
signed to a free PE and start immediately; (2) be assigned to a PE
that is busy (an then it will be added to the PE’s task queue); (3)
require to start a new VM, in such case a new VM instance will be
created, once it is ready the task will be assigned to any of its PEs.
The algorithm to compute all possible allocations for a task is de-
scribed in the next section.

3.3.2. Task allocations computation

An allocation for a task is the assignation of the task to a certain
PE in some VM. Each allocation will have a cost and duration
(ATIME’ACOST).

When an user asks for offers to compute a task, or sends a
request to execute it, potential allocations for that task must be
looked for. In the former case, each allocation found is sent back to
the user as an offer (see Section 3.2). In the latter case, if some of
the possible task allocations meets the time and budget given by
the user, then the task will be processed by the corresponding PE.

All the possible allocations for a task are calculated by an
algorithm that comprises two steps: (1) first the TAM analyzes
the VMs already present and whether they can run the task;
(2) then the possibility of creating new VMs to run the tasks is
checked. The output of each step will be a collection of allocations.
Both sets will be combined resulting in the final set of potential
allocations for the task. The remaining of this section details these
two steps, specifying also how A“T and ATME are computed for
each allocation:
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1. First, the TAM analyzes the state of the already present VMs in

order to find running VMs where the task could be executed.
They are grouped by the VM type (V;) they belong to. These VMs
can be active (running some other tasks) or idle (all PEs are free).
Idle VMs are checked first.
For a task i, let ¢;, d; and m; be the amount of CPU, memory and
disk required by that task respectively. The time to run the task
i in an idle machine of type V; is A™" = ¢;/V;. Regarding cost
computation, let P,;, Py and P, be the price of 1 MB of memory,
1 GB of disk, or the computation of MI (prices computation is
explained in Section 3.4), then the cost of the task is computed
as:

AT = Pum; + Pyd; + Pcci. (M

After looking for allocations in the idle VMs, active VMs are
checked too, i.e. those VMs whose PEs are running some other
tasks. For each active VM of type V;, the TAM checks each
one of its V¢ PEs to see when it will be available (it will
not be running any task and its queues are empty). Let q
be the amount of tasks waiting in the PE’s queue, numbered
from 1toq. Let {cq, ..., cq}, {mq, ..., mg} and {dy, ..., dg} the
CPU, memory and disk those tasks demand. Let also ¢y the
remaining MIs to be executed of the task being run when the
allocations are computed. Then, the PE will be busy until t, =
(o + Xgox<q &) /V;. If at t, the amount of disk and memory
that will be available in the VM (i.e., not used by the tasks run
by the others PEs in at t;,, which is known studying their queues)
will be enough to run the task, then a new allocation where the
task is assigned to that PE can be built. The time to run the task
will be:
o+ D &+

0<x<q

Vjs

The cost of running the task is computed as before (see Eq. (1)).
2. Second, each VM type V; is analyzed to check (a) if a new VM
instance of that type could run the task, i.e: ij > my; de >
d;; (b) if there is any physical host H, with enough spare
capacity where the VM can be instantiated, that is, it has enough
available memory V" < H/"%, it has some disk with enough
available storage V¢ < zg and it has Vf processors with enough
spare processing capacity V.
If both conditions are met, tﬁen anew allocation has been found.
The allocation time is computed as the addition of the time to
start the VM, plus the time to run the task itself:

ATIME —

(2)

Ci
ATIME _ VjSTART +

5
Vj

The allocation cost is computed as the addition of the cost of
instantiating the VM, plus the cost of using the resources for the
duration of the task which depends on their price. Let P,,,, Py and
P. be the prices of memory, disk and CPU (price computation is
explained in Section 3.4). Then:

(3)

AT = VEOST 4 Pom; + Pyd; + Peci. (4)

3.3.3. Choosing the best allocation to run a task

When the SeD receives a task to run (in a RUN_TASK message)
and the TAM has computed all the suitable allocations for that task,
then one of those allocations must be chosen. The TAM applies the
user’ utility function to choose which is the best allocation choice.

But in some cases different allocations will have the same time
and cost (and so the same utility value). For example, one allocation
can run the task in an already active VM with some free PEs, and
another one can run the task in an idle VM of the same type. So,

when several allocations have the same time and cost the TAM
applies some heuristics that favor energy saving to choose the
definitive allocation for the task:

e The grid will prioritize those allocations that will run the task
in an already active VM (i.e. one or more of its PEs are running
tasks).

o If no allocation in an active VM is found, then the grid will
prioritize those allocations that assign the task to an already
present VM (which will be idle). If there are several idle
machines, the VMs that have been idle for the shortest period
of time are preferred. The goal is to keep idle machines in that
state while possible, so their resources will be eventually freed
when they are shut down (the grid shuts down the VMs that
have been idle for longer than a certain time).

e Only if no allocations in active or idle VMs are found, then
allocations that require instantiating a new VM are considered.

3.4. Resource prices computation

The price adaptation mechanism applied takes into account the
resources demand to change prices accordingly. This algorithm is
run periodically by the TAM to compute the price of the resources
in the cloud.

A cloud provider will price resources differently depending on
the goals pursued. To maximize benefits, the provider could apply
the approach explained in [15]. But in collaborative environments,
the cloud provider can also try to maximize resource usage and so
the amount of tasks run. The latter is the approach taken in this
work.

The algorithm goes as follows. Let r be the total amount of some
resource in the provider’s site, measured in a certain unit (e.g. MBs
of memory). Let ri(t), r%(t) and r*(t) the amount of demanded
resources by all tasks in the grid (running or in queues), available
resources, and resources demanded only by waiting tasks at time
t. The amount of free resources r?(t) is given by the addition of the
free resources in all physical hosts plus the available resources in
all the virtual machines they run (i.e. unused by the tasks being
processed at that moment). At all times ré(t) = r — ro(t) + r“(t).
Also, often (but not always) if r’(t) > 0 then r(t) = 0. Let P;(t)
by the price at time t. Price is adapted periodically every s seconds
as described in Eq. (5) (let t’ =t + s):

@)
rd) —r\ o

ifrit) > 0Ari(t) >0
( rd(t) —r> (5)
P(t) x |1+ f

ifrit)y >o0Arit)=0
P (t)/2 ifri(ty = o.

The first case in Eq. (5) aims to increase (decrease) the price
depending on the amount of resources demanded over (below) the
total available. The exponent modulates the adaptation depending
on how sharp the change on resources demand has been since
the last price recomputation. The second case is identical to the
first one, to be applied when r¢(t) = 0. Finally, if the amount of
resources used at t is 0, then the price is divided by 2.

Pr(t/) =

3.5. Processing of offers by users

To simulate real users behavior is far from trivial. Usually, logs
of task requests in real-world grids are helpful to reproduce a real
load. However, they do not capture users reactions to situations
where their requests could not be run due for example to resource
contention, i.e. how they prioritize their tasks, how they choose
between different execution options from different grids when
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(3) The execution result is sent to the user.

Fig. 4. Main architecture elements and interactions.

available (usually grid usage logs refer to a single grid), how many
tasks were outdated while waiting in the users queues, etc. Thus,
instead of going through static load records, we chose to simulate
users as dynamic entities that take planning decisions about their
tasks.

3.5.1. Utility function for offer selection

For each REQUEST_FOR_OFFERS issued by the user, the MA
will send back a list of possible allocations (offers). The user will
first filter those offers that cannot be accepted because of time or
cost restrictions. Each task has a deadline associated, so offers that
would last beyond that deadline will not be considered by the user.
Also, if the offer cost is greater than the user actual budget the offer
is likewise rejected.

Then, the user must choose the best offer among the remaining
ones. This depends on the user own priorities. Users will define a
utility functionu : R>o x R>p — R to express the “utility” or worth
of each task depending on the cost and time to execute it. The
utility function is applied to the offers received, and the offer with
the greatest utility value will be chosen. A possible utility function
is u(ACOST, ATIMEY — (ACOST 5 ATIMEY—1 [f the user is only concerned
about the time to execute the task regardless of its cost then the
utility could be defined as u(A®ST, ATME) — (ATME)~1 The goal is
to enable users to express their preferences, e.g. not to spend too
much in a task (although it takes longer to run it) or to run the task
as quickly as possible (even if it is expensive).

3.5.2. Negotiation strategies
When some user requests execution offers for a task, she can
face different situations:

e No offer is received, or all fail to meet the time and cost bounds

imposed, that is the task deadline and the user budget. Then,

the user can just label the task as “failed” or store it in a queue

for later retrial.

Some offers are suitable. Then, the best is chosen using the

utility function as described in 3.5.1. The task is sent to the

corresponding provider. In such case, still two things can

happen.

- The offer can still be honored by the provider, and so the task
is executed.

- The provider cannot fulfill the offer any more (e.g. due to a
load burst after the offer was computed). Again, the user can
then ignore the task or retry it.

If failed tasks are stored, then users will prioritize them to
set which tasks must be tried again first. Each task i will have a
value I; to represent its importance/priority. A basic strategy is
to order tasks by importance so those with higher I; values are
retrieved from the queue and tried again first. We denote this
strategy Priority by Importance. Yet, in real situations users will take
also into account the “risk” of not being able to execute some task
before its deadline expires. For example, if one task has a higher
importance than another one, but there is still plenty of time to
run the first while the second task’s deadline is close, then the user
can prefer to run the second task first. We propose the following
mechanism for our simulations to set the tasks priorities: for each
task i we compute the risk of not being able to run it on time as the
coefficient between the task size (c;) and the remaining time until
the task deadline T; (how the deadline is computed is explained in
Section 4), which at time t is T; — t. Then, this risk is multiplied by
the task importance ; to get the priority of the task. So, the priority
of task i at time t is computed as ¢; x (T; — t)~! x I;. The user queue
that stores the tasks will order them by this value. We denote this
other strategy Priority by Risk.

Users will periodically check if they have pending tasks stored,
choose the one with the highest priority, and start the negotiation
to run the task (see Section 3.2). This is done also every time that
the user receives the result of another task.

Also, when the user has chosen the best offer for a certain task,
she can store the other suitable offers instead of just discarding
them. Thus, if the offer initially chosen is not valid anymore, then
the user can try the other alternative offers before requesting
new ones. In that case, providers can also send alternative offers
when they are not able to run the task with the conditions of the
original offer. These new alternative offers will be blended with
the ones the user already stores for the task. As long as there
are suitable alternative offers, the user will not send any new
REQUEST_FOR_OFFERS message.

Fig. 4 summarizes the main architectural elements presented in
this section and their interactions as part of the market-oriented
grid architecture proposed.

4. Simulations results

This section studies the best strategies for the user, and also two
features of the system: adaptability to load changes and fairness.
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Table 1
Catalog of VM types available.

VM type PEs (ij x V) Mem (V") (GBs) Disk (de) (GBs)
Normal 1PEat1GHz 1.5 160
Large 4 PEs at 1 GHz 7.5 850
Extra-large 8 PEs at 1.5 GHz 15 1690

4.1. Cloud provider setup

As explained in Section 2, each cloud provider has a catalog
of types of VMs that it can instantiate to attend users requests.
For the experiments presented here, providers are assigned a
catalog defining three types of VMs that can be instantiated (these
types closely correspond to the ones defined in EC2 catalog®). This
catalog is described in Table 1. These types correspond to the
set {Vi, ..., V,} introduced in Section 3.3.1. The VjCOST and VjSTART
parameters for each type are set to minimal values so they do
not interfere in the results outcome. Thus, the cost is set to 0,
although inreal settings administrators could choose to discourage
the usage of certain VM types by assigning them higher prices.
Also, the creation time is set to 1, which the authors know is fairly
optimistic but will not introduce biases in the results: the goal
is not to study which is the best/most chosen VM type, but the
performance of the system as a whole.

Tasks processing requirements will be expressed in Mls, so we
need to convert GHzs to MIPS. Such conversion is never accurate
in any architecture, and it strongly depends on the software being
run. But an approximate conversion can be 1 GHz = 6000 MIPS.®

Also, it is needed to define the amount of hardware resources
of each cloud provider. Table 2 shows the amount of physical
hosts and the resources of each one: memory, CPUs (with their
processing speed) and disks (with their size). The hardware
configuration of a standard cluster host is close to typical blade
hardware settings,” the configuration of hosts in the other cluster
types are defined taken that one as reference.

Each provider updates the prices of resources every 50 s. All
providers set initial prices as follows: P. = 100 (per Ml), P,, =
1000 (per MB), P, = 1000 (per GB). Also, as commented in
Section 3.3.1, each provider will check for idle VMs every 50 s.
When a VM is found that has been idle for more than 600 s, the
VM is turn off.

4.2. Nodes setup

Nodes in the system (DIET nodes, TAMs, the Virtual Bank)
have all the same bandwidth, 1 Mb (which is quite conservative).
All messages are 1 Kb. The Virtual Bank retrieves money from
providers and splits it among users every 1000 s. We assume
messages processing time is negligible. This can be safely assumed
even for messages that imply the computation of allocations for a
task, as the process has little complexity and this complexity grows
linearly with the amount of present VMs and the cluster size.

4.3. Users behavior

We deem interesting to study which strategy is better suited
for the user benefit before further research. That way, we can
make a reasonable assumption about how users will behave in real
situations, which we will apply in our later experiments.

The setting applied to study users strategies is as follows.
We assume a scenario with two private clouds, each one getting

5 http://aws.amazon.com/ec2/instance-types/.
See for example the values shown in http://en.wikipedia.org/wiki/
Instructions_per_second.

7 See for example http://www.sgi.com/products/servers/half_depth/2u_intel_
2p.html.

resources from a Small cluster (see Table 2). Also, we assume 20
users, each one with 500 tasks to run. Time between the issuing of
new tasks follows an exponential distribution. Initially, the average
time between tasks is set to A™! = 30s.

For each task i, its size ¢; also follows an exponential distribution
with average size 10° MI. Also, for each task it is necessary to know
the maximum amount of time the user will accept to wait to get
the task result. This time will be proportional to the task size and a
new magnitude that we denote urgency factor f;. This magnitude
simulates the fact that not all results are equally critical for the
user, so more important ones will get a higher f; value. Then, if task
i is created at t then the task deadline willbe T; = t + ¢; X f;,
that is, the time the user is ready to wait to obtain the result
is proportional to both the size and importance of the task. In
our experiments f; is uniformly chosen from the following values:
{0.001, 0.01, 0.1, 10, 100}. The memory m; and disk d; required
are also uniformly chosen from different sets of values. In our
experiments these were {10, 20, 30, 40, 50} MBs for memory size
and {10, 20, 30, 50, 60, 100} GBs for disk size.

Finally, each task i importance (I;), which is required to know its
priority against other tasks (see Section 3.5.2), must be computed
too. As in [16], we split tasks into two categories: high importance
tasks and low importance tasks. Also as in [16], 20% of tasks will be
of high importance. The importance of tasks of high importance
follows a normal distribution with mean 100 and standard
deviation 50. The importance of tasks of low importance follows a
normal distribution with mean 10 and standard deviation 5. Note
that we do not relate importance with the maximum amount of
currency the user will accept to pay for a task. As long as one offer’s
cost is not greater than the present user budget (minus the cost of
the tasks already under execution, to ensure that the user never
runs out of enough currency to pay an executed task), the offer can
be accepted by the user.

The utility function u applied by users to choose the best offer
is:

U(ACOST,ATIME) — (ACOST X ATIME)fl. (6)

The initial price of processing one MI is 100. The initial price of
one MB and of one GB of disk is the same, 10 000. Each user has an
initial budget of 10° currency units.

As explained in Section 3.5.2 users can follow two different
strategies:

e Retry asking for offers for those tasks that do get an acceptable
offer. Those tasks are stored in a queue ordered by priority.
Each user will pick the first task in the queue and send a
REQUEST_FOR_OFFERS message for that task every time the
result of another task is received, and periodically at a certain
rate. Experimentally we have seen that a low rate is enough
to ensure that stored tasks do not have to wait long periods of
time. We set this rate to 500 s.

e Keep alternative offers sent in the OFFERS message, i.e. those
offers that were not chosen initially by the user. If the grid
replies in the RUN_RESULT message that it failed to run the
task, the user will check first whether there are still alternative
offers for that task. If so, one of them will be chosen (using
the user’ utility function). Only when the user runs out of
alternative offers a new REQUEST_FOR_OFFERS message will
be sent.

Four sets of five experiments were run, each set corresponding
to a different users’ strategy. Results are shown in Fig. 5 in four
set of histograms, one histogram per experiment. Each histogram
depicts the amount of tasks that were successful, that did not find
a suitable offer due to budget limitations, etc. If we look at the
first set of histograms, we see that the proportion of failed tasks
is really high (due also in part to the high load). Almost all failed
tasks are due to budget constraints: the user cannot afford paying

doi:10.1016/j.future.2011.10.001

Please cite this article in press as: L. Rodero-Merino, et al., Using clouds to scale grid resources: An economic model, Future Generation Computer Systems (2011),



http://aws.amazon.com/ec2/instance-types/
http://en.wikipedia.org/wiki/Instructions_per_second
http://en.wikipedia.org/wiki/Instructions_per_second
http://en.wikipedia.org/wiki/Instructions_per_second
http://en.wikipedia.org/wiki/Instructions_per_second
http://en.wikipedia.org/wiki/Instructions_per_second
http://en.wikipedia.org/wiki/Instructions_per_second
http://en.wikipedia.org/wiki/Instructions_per_second
http://en.wikipedia.org/wiki/Instructions_per_second
http://www.sgi.com/products/servers/half_depth/2u_intel_2p.html
http://www.sgi.com/products/servers/half_depth/2u_intel_2p.html
http://www.sgi.com/products/servers/half_depth/2u_intel_2p.html
http://www.sgi.com/products/servers/half_depth/2u_intel_2p.html
http://www.sgi.com/products/servers/half_depth/2u_intel_2p.html
http://www.sgi.com/products/servers/half_depth/2u_intel_2p.html
http://www.sgi.com/products/servers/half_depth/2u_intel_2p.html
http://www.sgi.com/products/servers/half_depth/2u_intel_2p.html
http://www.sgi.com/products/servers/half_depth/2u_intel_2p.html
http://www.sgi.com/products/servers/half_depth/2u_intel_2p.html
http://www.sgi.com/products/servers/half_depth/2u_intel_2p.html
http://www.sgi.com/products/servers/half_depth/2u_intel_2p.html

8 L. Rodero-Merino et al. / Future Generation Computer Systems I (1111) IR1-111

Table 2
Hw configurations for cloud providers in experiments.

Cluster Hosts CPUs/host (H{ x H) Mem/host (H") (GBs) Disks/host (H? x HJ)
Small 4 2 CPUs at 2 GHzs 16 2 x 1TBs
Standard 5 8 CPUs at 2 GHzs 64 8 x 2 TBs
Powerful 10 12 CPUs at 3 GHzs 96 12 x 2 TBs
Tasks Results Under Different User Strategies
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Fig. 5. Impact of retrials on request for offers and usage of alternative offers.

for the task given the offers received (“No Offer Fits Budget”). A
small set of tasks fail because no offer can run the task before the
deadline is met (“No Offer Fits Deadline”). And another set of tasks
fail because when the cloud provider is asked to run a task under
certain cost and time conditions (extracted from the offer chosen
by the user) those conditions cannot be fulfilled any more (“No
Allocation Possible For Offer”).

The second set of histograms show the results when the user
applies the alternative offers. This policy does not bring any
significant improvement in terms of the successful tasks rate.

Much more useful is asking for new offers (i.e. as long as the
task deadline can be met) as shown in the third and fourth group
of histograms. Now each task is stored until either a provider runs
it or the task expires. Using alternative offers slightly improves the
rate of successful tasks. i.e., it is better to use alternative offers
before performing requests for new ones. Another interesting
metric to study is the sum of the values (importance) assigned
to the executed and failed tasks, ) ¢ .ooc i and Y p.i1.4 li» Which
should be maximized and minimized respectively. In both cases,
the combination of using alternative offers and asking for new ones
get the best results.

Our results show how simple user strategies such as storing
tasks with no offers to retry them later have a significant positive
effect on the final system outcome. Thus, it should be assumed
that users will implement such strategies in real world situations.
In the rest of the simulations presented users will use alternative
offers if there are any. When no alternatives offer are available,
then the user will store the task in her queue and resend
REQUEST_FOR_OFFERS messages when the task is chosen again
to be executed among the enqueued ones. This contrasts with
typical approaches where failed tasks are simply discarded.

4.3.1. Tasks priority

Also, we have studied the positive impact of the prioritization
mechanism for stored tasks we propose (see Section 3.5.2), Priority
by Risk, compared with the most straightforward Priority by
Importance approach. In these experiments users will retry failed
tasks and will use alternative offers. The setting of all parameters
is similar to the one used in the previous experiments, but each
user will run 5000 tasks, and load is changed by setting an average
time between tasks of 50.

Fig. 6 shows the results. Recall that the priority is represented
by the value assigned to the task, and that tasks can be of two kinds,
those with high value and those with low value (see Section 4.3).
Fig. 6(a) and (b) show the amount of failed and total tasks for both
types, when users apply priority by importance. Fig. 6(c) and (d)
show the results when users order tasks by risk.

It can be observed from Fig. 6 that, for both sets of values,
when applying priority by risk the proportion of successful tasks
is greater (around 77% in total) that when applying priority by
importance (when is only around 66%). Regarding the total value
of the successful tasks (Y g,ccoss i), Priority by risk yields an
improvement of 11% compared with priority by importance. On the
otherhand ) .., ., Ii is 62% lower when using priority by risk than
when using priority by importance. Due to its better performance,
it can be assumed that users will prefer using the priority by risk
strategy to order their tasks. This will be assumed during the next
experiments. Also, this was the policy applied in the experiments
shown in previous Section 4.3 (we tested that using priority by
importance does not alter the conclusion that retrying tasks and
using alternative offers is the best choice).
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Fig. 6. Failed and total tasks for different task priority mechanisms.

4.3.2. About users behavior: summing up
The main goal of this section was to find out the strategies that
bring the best outcome for users:

e When no suitable offer is found for some task, it is worth to
store it for later retrieval instead of just discarding it, even it
this strategy means that tasks will have to “compete” as user’
budget is limited.

e Itis better to use alternative offers before requesting new offers
to the grid.

e The Priority by Risk strategy to order enqueued tasks results in
less failed tasks.

Once these best strategies have been identified we can build
a representative characterization of users. This is necessary to
simulate market-based scenarios realistically, where users take
decisions regarding tasks ordering, etc., instead of just discarding
failed tasks.

4.4. System adaptability

Once the most beneficial/likely strategies for users have been
settled, it is time to study the behavior of the market-based
system proposed. Two properties must be analyzed: adaptability
and fairness. This section addresses the ability of a cloud provider
to adapt to a changing load, while fairness is studied in the next
section.

Recall that load can be controlled by setting the average time
between tasks for each user, A7, to different values. To check
system adaptation an experiment will be run where A~! will be
changed to check the performance under different loads. Thus, 1!
is set initially (t = 0) to 75, to 7.5 at t = 10000, to 75 again at
t = 15000 and finally to 750 at t = 20 000. There will be 10 users,
each one with 2000 tasks to run, and one single cloud provider on
top of a Powerful cluster (see Table 2). The rest of the setup is similar
to the previous experiments.

Results are shown in Fig. 7. It depicts the amount of allocated
and running PEs, along with the number of tasks waiting in VMs

queues (the number of tasks in execution is of course equal
to the number of running PEs). It can be observed that the
system successfully reacts to the increased demand of resources
by allocating new Processing Elements in new VMs at t = 10000,
where tasks will be run. Likewise, when the rate is decreased again
at t = 15000 to the initial value the amount of running PEs falls
abruptly, and so does the amount of PEs allocated later. Finally,
when the rate shrinks at t = 20 000 once again the system adapts
and uses a minimum amount of resources. The reason because
the changes on the amount of allocated PEs is abrupt is that users
choose offers that will cause their tasks to be run in VMs of Extra-
large type, which are faster (see the VM definitions in Table 1), but
require more CPU resources.

4.5. Fairness

Achieving fairness is the main goal of grid market-based
systems. Fairness refers to how resource usage is split among
users by providers. No user should be able to require resources
without limits, as this could lead to resource shortage for others.
But users should be able to run their tasks as long as they do
not impact on other users throughput even if they have a higher
resource demand. On the other hand, there should also be a limit
onresources usage so when under high demand from several users,
those users demanding too many resources will not be able to get
all of them.

To test the fairness of our system three experiments were run,
each one assigning to the (only) provider cloud available one Small
cluster, one Standard cluster and one Powerful cluster respectively.
All experiments have 30 users, split into three sets of 10 users each.
The average time between tasks for each set are 500, 200, and 25 s
respectively. Each user will try to run 2000 tasks.

Fig. 8 shows the amount of tasks successfully run or failed (they
expired before they could be executed) during the initial part of
the experiment for three users, each one with a different task
generation rate (users with the same rate show all very similar
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Fig. 8. Fairness: tasks run and failed, initial part of the experiment.

behavior), in the three different settings. In a powerful cluster
(Fig. 8(a)) all users can run their tasks with no restriction, as
there are enough resources to attend all petitions regardless of the
resources they demand. But in a standard cluster (Fig. 8(b)) the
cloud cannot serve all petitions, i.e. there is a certain resources
shortage, and so some tasks fail. Yet, this does not affect all users
evenly: users with low demand are not affected by this resource
shortage and can run their tasks as in the previous setting. Also,
users with medium demand are able to run almost all their tasks as
before, and are only very lightly impacted by the lack of resources.
Users with a high load, however, cannot run all their tasks anymore
as they demand more resources than the amount the cloud will
grant to any user. As a result, many tasks from users with high
load will fail. Note that around t = 50000 users with high load
will have already initiated all their tasks, so from that moment on
they will only request to run the tasks enqueued. Finally, when
using a small cluster (Fig. 8(c)), the same effect seen in the standard
cluster is found again but amplified. Users with small and medium

load are only lightly affected, as their demand for resources can
be attended by the cloud. In contrast, many tasks from users with
a high generation rate fail (more in fact that the amount of run
tasks). Note also how the rate of successful tasks from the users
with medium rate is increased little after t = 50 000. The reason is
that users with high rate are only trying to run tasks stored in their
queues, thus effectively lowering their need for resources.

In Fig. 9 we show the run and failed tasks for the small
cluster until the end of the experiment. While users with low and
medium demand keep the same task execution rate, users with
high demand only very slowly are able to keep running tasks. After
users with medium load have left the system (they have finished
all their tasks) the demand of resources is so low that users can
again run requests at high rate (recall that users check their tasks
stored in their queues every 500 s and also every time that one task
result is received, which allows for fast re-sending of tasks when
resources are available).

These results lead to interesting conclusions. Users can try to
run more tasks up to a certain rate as long as they do not interfere
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Fig. 9. Fairness: tasks run and failed in small cluster.

with other users. This is positive, as we do not force all users to
work at the lowest rate. But if the resource demand by some user
is too high then the system penalizes the user by not running many
of her tasks, the user will have to store them until many eventually
expire (fail), the system does not subtract resources from other
users needs.

5. Related work

Despite being a recent technology, cloud computing has already
raised the interest of the research community. Present research on
laaS systems is focusing on two main topics:

e Enabling the allocation of distributed resources on federated
cloud systems. Open Cirrus [17], the Sky Computing [11]
initiative or the EU Reservoir [18] joint research project are
works oriented to the construction of such environments.

e Automatic scaling to adjust resources allocation to the demand.
Automatic scaling is already implemented in some commercial
solutions such as Amazon, where users configure scaling actions
based on hardware state metrics such as CPU usage, etc. Other
works [19,20] propose more flexible scaling mechanisms based
on service state in federated environments.

Regarding clouds and grids, there was some initial confusion
about the differences and similarities between the two, although
this was soon addressed by the community [1]. Later work [21]
has further clarified the distinction between them, and analyzed
how grids could evolve to benefit from the ideas introduced by the
cloud (or the other way around, see for example [22]). In [23,24]
the authors present an architecture for the dynamic provision of
resources to the virtual organizations (VO) of a grid. Part of the
same team lead the StratusLab® project, a strong initiative in this
regard. StratusLab is an EU joint research project that views clouds
and grids as complementary technologies. StratusLab proposes
three methods to integrate them:

e Deploy a grid site (based on EGEE® software) within a public
cloud (Amazon’s).

e Apply clouds for resource provisioning in grids.

o Add laaS-like interfaces to existing grid services.

The second method lies close to the approach introduced in
this work. But StratusLab goal is to virtualize an entire grid site
for dynamic provision of worker nodes, while this proposal rather
connects a grid system (DIET) to one or more clouds to get a supply
of VMs in the same dynamic mode. StratusLab, on the other hand,
does not apply economic models to ensure fair resource sharing.

5.1. Economy-based grid systems

Applying an economic approach in a grid system is hardly a new
idea. Buyya et al. [4] already introduced a market based framework
for grids, with an analysis of different market approaches such as

8 http://stratuslab.eu.
9 http://www.eu-egee.org.

auctions, posted price, tendering/contract-net, etc. In [25] the
authors further discuss how economy can be applied to efficiently
manage resources on grid environments and the advantages
of such solutions (automatic regulation of supply and demand,
scalability...).

It is not our intention to make a complete survey of all economy-
based grid proposals (see [13,5] for such overview of market-
oriented grid systems). But in the remaining of this section we will
comment how some of those works relate to two main aspects
of the system proposed here, i.e. price computation and currency
distribution.

5.1.1. Price computation

Regarding proposals for resource price computation, Libra [26]
and Libra+$ [16] suggest mechanisms for setting resource prices
depending on demand. However they depend on some parameters
whose values are arbitrary (must be tuned depending on the
system and tasks). In contrast, our pricing solution does not
requires such parameter values guessing.

G-commerce [27] proposes a formal pricing solution based
on markets theory that aims to get the equilibrium prices of all
resources. The equilibrium price is a market concept. In a market
scenario, if the price of a commodity is low the demand will
grow, in turn if the price of a commodity is high the demand
will decrease. The equilibrium price in a market is the price
reached when supply is equal to the demand. Unfortunately, such
solution cannot be applied here. To compute the equilibrium price
isrequired to have knowledge of the global demand of all resources
in all SeDs, which we assume is not feasible in many scenarios.

On the other hand auction systems such as Bellagio [28],
Mirage [14], and Tycoon [29] do not need providers to compute
the price of resources. Users are the ones who must compete for
the resources they require by bidding, so the resource is assigned
to the highest bids. But then is the users who must decide policies
to set the initial bid, how much increase the bid each time, what
is the maximum bid, etc. So an auction approach is not easier to
implement, it simply assigns more responsibility to users.

Other proposals such as FirstPrice [30], FirstReward [31]
or FirstOpportunity [32] do not propose any resource price
computation mechanism.

5.1.2. Distribution of virtual currency

Currency creation and circulation is an important concept in
any market system. An option suggested in some works is to
use real currency instead of virtual one [28], so users will take
real care when demanding resources. Also, this solution frees the
system from having to inject virtual currency and assign it to users.
However, this approach has several inconveniences. For example,
users with more economic means (e.g. better funding) will get
more resources, leading to unfair situations. Also, in scientific
environments users could be reluctant to spare real currency
for resources as they often work in other kind of settings were
resources, even if scarce, are freely available. Thus, using virtual
currency, created and distributed by the system seems to be the
most feasible solution.

There are several options to inject and circulate virtual
currency:

e Each provider (SeD) periodically reports to some central entity
(Virtual Bank) about the value of all the resources it can deliver,
taking into account their updated price. This would represent
the ‘wealth’ of the system. This amount is then split and send
to the users. However this solution would cause permanent
inflation.

e The Virtual Bank periodically sends a certain amount to all
users. Providers do not hoard money. But it is then necessary to
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decide how much assign to users, i.e. how much currency inject
to the system. Arbitrary amounts could cause artificial inflation
or deflation.

e The SeD/Cloud does not hoard neither drops the currency it
gathers. Instead, it sends it to the Virtual Bank which will
forward it to the users. This approach seems the more suitable.

In fact, the third approach is similar to the idea proposed in
Mirage [ 14]. Also, to avoid hoarding by users, Mirage implements a
taxing system that periodically reduces users budget so they do not
tend to store currency too long. The currency obtained thorough
this taxing system is then distributed back to user, as in the case
of the clouds income. A similar mechanism could be used in our
proposal.

Other works do not shed light to this problem, at least in the
scenario proposed here. In Bellagio [28] users receive a budget
proportional to the resources they provide, but this cannot be
applied here as for the sake of flexibility DIET users are not assumed
to be providers as well (although they could be). G-commerce [27]
follows a similar approach to the one defined in the second point of
the list above. They do not set any mechanism to decide how much
to assign to users at each iteration. Tycoon [29] does not make any
assumption, users “...are funded at some regular rate. The system
administrators set their income rate based on exogenously determined
priorities”, or “... bring resources ... must earn funds by enticing other
users to pay for their resources”. FirstPrice [30] does not say anything
about the subject. FirstReward [31] proponents explicitly state
that they do not address how currency is injected or recycled.
FirstProfit, FirstOpportunity [32] and Aggregate Utility [33] do
not say anything about the subject (Aggregate Utility [33] in fact
encourages using real currency).

6. Conclusions

The system presented in this paper is a proposal to combine
grid and cloud systems through a market-based approach. Grids
can benefit from clouds by requesting and releasing resources from
them, thus not being forced to have their own pool of resources.
However, the grid system needs some criteria to know when to
take resource scaling decisions. This criteria must of course take
into account the demand induced by the tasks sent by the users.

By applying the pricing adaptation mechanism here proposed,
grids can now scale resources automatically, while at the same
time ensuring fairness in resource sharing. Future work will
consist on implementing this on a real system: adapting DIET,
programming the Virtual Bank and TAM, and connecting the TAM
to some laaS cloud provider, based for example on OpenNebula.
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Appendix. Extensions to GridSim

Our simulation software is based on GridSim [6], a well known
simulation framework in Java for grid environments. In this section
we briefly introduce the design of our simulator and the extensions
done to the main GridSim components, needed for our cloud-grid
hybrid system. Keep in mind that the diagrams shown in this
section are merely descriptive, and do not provide a complete
design view of the simulation software.

Generic GridSim simulations are based on the GridSimCore
class. This class has the basic functionality for net communications

fr.inria.avalon.gridcloud.iaas| gridsim|
laaSResource > GridResource
GridSimCore
fr.inria.avalon.gridcloud|
User Agent SeD
MasterAgent LocalAgent VirtualBank
Fig. A.1. Main simulation entities.
gridsim fr,inria.avalon,gridcloud.iaasl
IIaaSResourcel |PriceAdaptor|
I 1 | |

11aaSAllocPolicy <>J

I laaSResourceCharacteristics |
|

AllocPolicy

| ResourceCharacteristics |<
I |
I

laaSMachinelList

MachinelList

laaSMachine

0
[PEqueus

fr.inria.avalon.gridCloud. c'luster|

1
ResGridlet

<

PhysicalHost

Fig. A.2. Cloud provider components.

and event handling. The DIET-related entities of our simulations,
i.e. User, MasterAgent, Agent and LocalAgent extend this
class as shown in Fig. A.1. The VirtualBank, which gathers the
currency earned by the cloud providers and sends it back to the
users (see Section 3.1) is based on this class as well. These classes
use default GridSim functionality, without adding new features to
its standard behavior. The GridResource class of GridSim, on the
other hand, is intended to represent a group of machines that are
available for the grid tasks. But it is not designed to support the
dynamic addition or removal of machines (or VMs in this case). We
extend it with the TaaSResource class, that extends the default
behavior so the VMs available can be changed as the simulation
evolves. Each laaS cloud will be represented by an instance of
TaaSResource.

The mechanism to compute allocations and assign tasks to
PEs, which is described in Section 3.3.2, is implemented by class
TaaSAllocPolicy, which extends GridSim's AllocPolicy
class. Each instance of IaaSAllocPolicy will contain an
instance of the PriceAdaptor class for price adaptation. Thus,
TAM’s functionality is implemented by TaaSAllocPolicy.

To simulate the management of tasks, VMs, and physical hosts,
it was necessary to extend several GridSim classes, as shown
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in Fig. A.2. In GridSim, the Machine class represents a host,
containing a set of PEs (class PE). Each PE instance executes
tasks, which are represented by the ResGridlet class. A new
TaaSMachine class, based on Machine has been developed. Each
instance of this class represents a VM. This class handles a queue of
tasks per PE, which is not provided by GridSim. Physical resources
are represented in a new package cluster. Accounting of physical
resources (as explained in Section 3.3.2) is performed by this
package.
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