
CReW: Cloud Resilience for Windows Guests through Monitored Virtualization

Flavio Lombardi
Sistemi Informativi - DCSPI

Consiglio Nazionale delle Ricerche
Rome, Italy

Email: flavio.lombardi@cnr.it

Roberto Di Pietro
Dipartimento di Matematica

Universita Roma Tre
Rome, Italy

Email: dipietro@mat.uniroma3.it

Claudio Soriente
DLSIIS

Universidad Politecnica de Madrid
Madrid, Spain

Email: csoriente@fi.upm.es

Abstract—Clouds are complex systems subject to an in-
creasing number of anomalies and threats. In this paper
we briefly revisit the issues related to Windows guest cloud
service resilience and later provide some preliminary results
on the resilience of Windows cloud guests via virtualization.
In particular, we propose an architecture, Cloud Resilience
for Windows (CReW). CReW can transparently monitor guest
Windows VMs and can also react to both security breaches
and system integrity violation, improving the dependability of
cloudified Windows systems. CReW can also improve resilience
from software misconfiguration by restoring the guest latest
safe state. Effectiveness and performance of a CReW prototype
have been evaluated; obtained results show the feasibility of
such a system.

Keywords-Resilience management and security issues in
clouds; Resilience measurement studies; Operating systems, file
and storage systems; Secure and intrusion tolerant systems

I. INTRODUCTION

Resilience [6] is the ability of a system to recover and
provide an acceptable level of service in situations in which
a component (HW/SW) is either missing (e.g. a crashed ser-
vice or a burned component) or it is not behaving correctly,
where this latter case can be originated by configuration
changes, upgrades or attacks, to name a few.

In particular, the Windows kernel and services are con-
stantly exposed to a number of new threats; new vulnera-
bilities are discovered that malware and especially rootkits
can exploit to gain administrator privileges and hide their
presence from spyware blockers, antiviruses, and system
utilities. In fact, rootkits can intercept calls to the Windows
libraries and modify the returned values in order to remain
hidden [14]. Kernelspace rootkits can also intercept calls to
execution ring 0 where they can alter kernel data structures.
In addition, software upgrades and deployment of new
components can reduce guest service functionality or open
the way to new vulnerabilities and threats.

Windows-based services are often deployed on Linux-
based Clouds as Virtual Machines (VMs) [1], leveraging the
reliability of the underlying OS and the isolation benefits
virtualized platforms can provide. Linux offers a securer
hosting platform, offering at least two different hypervisor
technologies, Xen and KVM [13]. The latter has been
preferred to Xen in this work due to its tight integration

HP HP

VM VM

VM

VM

VM

VM

Figure 1. Windows Server VMs in the Cloud: Service Users (SU) access
Windows server VMs managed by Service Providers (SP) on Hosting
Platforms (HP) managed by Cloud Providers (CP)

with the vanilla Linux kernel and due to the better support
from the majority of Linux vendors and developers who are
slowly phasing-out Xen.

This paper discusses the Windows guest cloud service
resilience problems (see Figure 1) and provides some con-
tributions. First, it describes an architecture, Cloud Re-
silience for Windows (CReW) for increased security of
cloud resources and services. CReW can effectively improve
the trustworthiness in such computing systems. CReW can
transparently monitor guest Windows VMs and can also
react to security breaches and to unauthorized system con-
figuration changes, improving the persistence of the depend-
ability of cloudified Windows systems. A CReW prototype
has been implemented on a widely deployed cloud host
software (Eucalyptus [10]). Effectiveness and performance
of a CReW prototype have been evaluated; obtained results
show the feasibility and effectiveness of such a system.

The remainder of this document is organized as follows:
Section II summarizes state of the art solutions applied to

cloud resilience; Section III describes CReW architecture
and gives some implementation details; Section IV presents
preliminary performance figures; finally, in Section V con-
clusions are drawn.

II. RELATED WORK

Cloud resilience and particularly security issues have been
the subject of much recent research efforts, since undetected
attacks can be extremely dangerous over time.

In Self-Cleansing Intrusion Tolerance (SCIT) [4] all
servers are considered potentially compromised. SCIT pe-
riodically restores servers from secure snapshots in order to
make nodes resilient against long-lasting attacks. Similarly,
VM-FIT [3] creates redundant server copies which can
periodically be refreshed to increase the resilience of the
server. Such systems do not support long-lasting sessions
required by most complex server applications. Sousa’s ap-
proach [19] leverages proactive recovery: In the case when
the probability that services have been compromised exceeds
a given threshold, clean service replicas react and substitute
compromised ones. Similarly to the above-mentioned solu-
tions, the Sitar [20] system relies on redundancy to obtain
intrusion-tolerance. Sitar requires an IDS to successfully
detect an attack for the intrusion tolerance mechanisms to
operate. It remains to be seen what happens to sitar when the
intrusion attempt is successful and goes undetected by the
IDS. Also LoGrid [16] is an interesting example of resilience
tool that adopts autonomic reaction mechanisms to protect
from attacks.

Co-location attacks have been proven to be able to extract
information from a target VM on the same hardware [15].
Placing a VM on the same host as the target VM can be
easily obtained by an attacker, provided information on the
cloud auto-scaling allocation algorithm is known.

Most recent approaches leverage CPU hardware virtual-
ization support [11] to monitor Virtual Machines. SecVisor
[17] and KVM-L4 [12] leverage virtualization to monitor
guest kernel code integrity from a privileged VM or hy-
pervisor. Such proposals have limitations that prevent them
from being used in distributed computing scenarios (e.g..
SecVisor only supports one guest per each host) or do not
scale up to large distributed systems such as clouds. KVM-
L4 shares the same underlying technology as [7] but the
additional context switching overhead in the 64-bit scenario
(as in most cloud hosts) is not clear.

Among other solutions, SVGrid [21] creates a secure
Xen-based virtual environment aimed at monitoring file and
network access requests from a virtual machine where secu-
rity policies are enforced. SVGrid provides isolation among
applications by running multiple Grid Virtual Machines each
running one grid application at a time. Also Smith [18]
proposes a separation of grid components currently running
on one machine into separate virtual operating systems. This
prevents users from installing malicious software and driving

inter-users attacks, since each user is confined to his or her
own virtual environment.

Virtualization also introduces technological challenges
that deserve special attention. They include an increase in
the complexity of digital forensics and questions regarding
additional vulnerabilities of the host system.

III. CREW ARCHITECTURE AND IMPLEMENTATION

The proposed Cloud Resilience for Windows (CReW) is
intended to actively monitor guest Windows VM and cloud
middleware activity and integrity. Our proposal extends the
KvmSec [7] and ACPS [8] approaches in order to protect
guest Windows components from misconfiguration-enabled
damage and against intruders and attacks such as worms and
viruses. CReW is entirely contained in the host side and
leverages semantic introspection [5]. This allows deploying
and running unmodified guest VM images.

As shown in Figure 2, in CReW, the host-side database
Checks DB contains computed checksums for selected host
infrastructure and guest kernel code, data, and files. In
fact, the storage is virtualized and accesses are intercepted
by the Interceptor/Actuator component. Further, off-line
integrity cross-checks are periodically run over guest system
configuration files, in order to detect differences between
guest-returned file content and actual files on disk (cross-
view detection [14]). The runtime HashC daemon repeatedly
recomputes hash values of monitored objects and submits
warnings to the AlertDB. The Evaluator daemon asyn-
chronously examines such warnings and decides whether
anomalies in the system behavior are present or the system
is under attack. In such a case the Interceptor/Actuator is
instructed to act according to a specified security policy. In
fact, CReW can directly react to security breaches or dele-
gate reaction to an external networked configuration/security
management layer. CReW can also replace a misbehaving
server on-the-fly by reverting back to the latest VM safe
state. Alternatively the guest can be restarted from a clean
backup image. CReW is integrated in the virtualization soft-
ware and leverages Qemu [13] to access guest VM memory
and status. Access to cloud middleware components is not
mediated (see Figure 2) and allows to collect information
over load level and functionality of such components. It
is worth noting that no system call is ever blocked or
delayed by CReW to check for permission violation and the
kind of reaction our monitoring system can perform (freez-
ing/restarting/reinitializing) cannot be distinguished from
normal system maintenance tasks.

CReW actively intercepts and monitors guest Windows
VM activity by leveraging virtualization-supporting exten-
sions of recent CPUs [11]. CReW has been implemented
entirely on open source software and has been deployed over
Eucalyptus. In fact, it can be tailored and applied to other
distributed systems and guests. CReW can inspect Windows
kernel guest state thanks to the information learnt from the

Host

VM

App

Checks DB

Win

Kernel

Data

Win

Kernel

Code

Evaluator
Alert DB

Controller
Node

Eucalyptus

Qemu

Figure 2. CReW combined with Eucalyptus - Architecture

Identifier Category Example
AN1 guest server misconfig. failed web server update
AN2 kernel rootkit see table II
AN3 colocation-based attack multiple alloc. requests

Table I
MOST COMMON CLOUD SERVICE ANOMALIES AND THREATS

Windows research kernel [9] source code. However, CReW
services can be applied to regular Windows kernels as well.

CReW enjoys the following features: it is transparent to
guest machines; it leverages CPU hardware virtualization,
which renders the system less detectable on guest side,
and it can be deployed on Linux-hosted cloud computing
platforms.

IV. EVALUATION

In this section we present the results of our experiments
aimed at evaluating CReW effectiveness and performance
in real-world environments, facing configuration changes,
events popping-up, and threats. Tests have been conducted
using Athlon 64 X2 4400+ CPUs equipped with 4GB RAM;
Ubuntu 10 04-based Eucalyptus ran on the hosts, KVM
version 83. Each guest was given 1 virtual CPU and 1GB
RAM. All guests ran 32-bit OSes while hosts ran 64-bit
OSes. The guest operating systems were Windows Server
2003 SP1.

A. CReW Effectiveness

In this section we show how CReW copes with anomalies
and attacks cloud services can be subject to. In particular,
we report on practical experiments performed to measure
the resilience of the proposed architecture. The detection
and reaction capabilities of our system are assessed against
the set of anomalies and attack techniques summarized in
Table I.

Attack Type Detection Reason Reaction
AFX hooks native Win API Revert to safe snapshot
Vanquish DLL injection Restore Libraries
Mebroot alters disk MBR Reinstall MBR
HackerDefender SSDT replacement Restore SSDT
Rustock alters Sysenter handler Revert to safe snapshot

Table II
CREW DETECTION/REACTION CAPABILITY

CReW has been proven to detect and to react to anomalies
and attacks belonging to the above mentioned categories. In
particular, we took from the current literature some rele-
vant attacks (see Table II) that actual Windows networked
architectures can be subject to and we showed the added
protection provided by CReW to guest VMs when the
system is exposed to such events.

In particular, we simulated an anomaly of type AN1
by causing a partial update of an IIS Server hosted on
a Windows VM. CReW notices the lack of response to
request network packets targeted at the HTTP service. Once
the anomaly is detected, CReW restarts the compromised
server from a verified executable and re-establishes its
configuration files.

Then, we implemented an attack of type AN2 by inserting
a Rustock rootkit [2] in a guest VM. Rustock alters the
syscall handler in order to change the execution flow to
execute malicious code. CReW detects both the alteration
of the handler and the change in the library files checksum
on virtual storage. The reaction includes reverting back to
the latest safe state of the virtual machine.

Finally, we implemented attacks of type AN3 by using
the techniques cited by Ristenpart in [15]. First of all, both
external (outside the cloud) and internal (from sibling VMs)
network probing via port scanning is intercepted by CReW
rules that raise an alarm that is inserted into the Alert
DB. Secondly, in order to reduce co-location time, CReW
stimulates and induces transparent migration of guest Virtual
Machines from one host to another over time. As regards
keystroke timing [15], given that the attacker resorts to co-
residence load measurements to analyze the time between
keystrokes and collect sensitive information, CReW renders
such attack less feasible since CReW itself is running on the
CPU under attack, thus rendering times measurement results
much less reliable for the attacker.

B. Performance

In order to test different kinds of workload we adopted
commonly available tools on both Windows and Linux. In
particular, we tested the performance of the following work-
loads: (1) CPU-bound; and, (2) I/O bound. We measured
the time it takes a Windows cloud guest on Eucalyptus to
perform two different kinds of operations:

T1 CPU stress tests: the Lame audio software is used to

paranoid strict relaxed
0

20

40

60

80

100

120

140

160

180

3vm Eucalyptus

3vm-CReW

2vm-Eucalyptus

2vm-CReW

1vm-Eucalyptus

1vm-CReW

configuration

s
e
c
s

Figure 3. CReW impact on execution times - T1 - CPU-bound workload

 paranoid strict relaxed
0

100

200

300

400

500

600

700

800

900

3vm Eucalyptus

3vm-CReW

2vm-Eucalyptus

2vm-CReW

1vm-Eucalyptus

1vm-CReW

configuration

s
e
c
s

Figure 4. CReW impact on execution times - T2 - I/O-bound workload

test CPU performance when encoding WAV files to
the mp3 format;

T2 I/O stress tests: the Tar archive file management soft-
ware is used to test read/write disk operations and
filesystem performance.

Three different approaches to monitoring have been tested
for each benchmark:

(1) paranoid, where the monitoring checks are repeated
at every interaction with the virtual machine;

(2) strict, where the frequency of monitoring checks is
half of that for the paranoid mode;

(3) relaxed, where the frequency of monitoring checks is
half of that for the strict mode.

Test results are shown in groups composed of six bars
each. The six bars represent the result of the same test under
six different scenarios:

1) first bar represents the scenario where 3 VM are
running on the Eucalyptus host and CReW is inactive;

2) second bar represents the scenario where 3 VM are
running on the Eucalyptus host and CReW is active;

3) third bar represents the scenario where 2 VM are
running on the Eucalyptus host and CReW is inactive;

4) fourth bar represents the scenario where 2 VM are
running on the Eucalyptus host and CReW is active;

5) fifth bar represents the scenario where only 1 VM is
running on the Eucalyptus host and CReW is inactive;

6) sixth bar represents the scenario where only 1 VM is
running on the Eucalyptus host and CReW is active;

The results of the CPU-bound tests are reported in Figure
3 where bars represent execution times (lower is better). The
same set of tests has been run on an unprotected Windows
guest machine on the same Eucalyptus host. Values are
averaged over the tested CPUs and show that the overhead
introduced by CReW is proportional to the degree of pro-
tection/control frequency, and can be made quite small in
relaxed mode.

The results of the I/O-bound tests are reported in Figure
4 where, as above, bars represent execution times (lower
is better). The same set of tests has been run on an
unprotected Windows guest on the same Eucalyptus host.
Values are averaged over the tested CPUs and show that
the overhead introduced by CReW is quite large here, even
though the overhead is still proportional to the degree of
protection/control frequency, and can be reduced in relaxed
mode.

These first results are interesting, and encourage us to
perform further investigation aimed at reducing such over-
head. Nevertheless, the impact on performance can be tuned
as needed in order to obtain the required performance-
protection trade-off. It is worth noting that even though
overall performance is degraded by the monitoring system
itself, such performance penalty cannot be distinguished by
the attacker from regular CPU load, since no system call is
ever blocked or delayed by CReW.

V. CONCLUSION

In this paper we provide some preliminary results on
the resilience of Windows cloud guests via virtualization.
In particular, we introduce a novel architecture (CReW)
for transparent monitoring of Windows guests and ser-
vices. CReW can effectively improve the trustworthiness in
such computing systems. CReW can also react to security
breaches and to system misconfiguration, improving the
dependability of cloudified Windows systems. The proposed
architecture has been implemented entirely on open source
software. Effectiveness and performance of a first CReW
prototype have been evaluated; results show the feasibility
and effectiveness of such a system. The bottom line is that
virtualization can increase the resilience of cloudified Win-
dows systems and services by leveraging smart monitoring

of core components. As for further research directions, we
aim to further investigate the support the CReW system can
provide in securing Windows platforms.

ACKNOWLEDGMENTS

The authors would like to especially thank Matteo Sig-
norini and Ing. Maurizio Lancia for their support. Claudio
Soriente’s research was partially supported by the Spanish
National Science Foundation (MICINN) under grant TIN
2010-19077, the Madrid Regional Research Council (CAM)
under the CLOUDS project (S2009/TIC-1692) and EU
structural funds, and the European Commission under the
MASSIF project (FP7-257475).

REFERENCES

[1] Amazon.com. Amazon ec2 running microsoft windows
server. http://aws.amazon.com/windows, 2009.

[2] Ken Chiang and Levi Lloyd. A case study of the rustock
rootkit and spam bot. In HotBots’07: Proceedings of the
first conference on First Workshop on Hot Topics in Under-
standing Botnets, pages 10–18, Berkeley, CA, USA, 2007.
USENIX Association.

[3] Tobias Distler, Rüdiger Kapitza, and Hans P. Reiser. Efficient
state transfer for hypervisor-based proactive recovery. In
WRAITS ’08: Proceedings of the 2nd workshop on Recent
advances on intrusiton-tolerant systems, pages 1–6, New
York, NY, USA, 2008. ACM.

[4] Yih Huang, David Arsenault, and Arun Sood. Closing cluster
attack windows through server redundancy and rotations. In
CCGRID, pages 21–33, 2006.

[5] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy mal-
ware detection through vmm-based ”out-of-the-box” semantic
view reconstruction. In CCS ’07: Proceedings of the 14th
ACM conference on Computer and communications security,
pages 128–138, New York, NY, USA, 2007. ACM.

[6] Jean-Claude Laprie. Resilience for the scalability of depend-
ability. In NCA ’05: Proceedings of the Fourth IEEE Interna-
tional Symposium on Network Computing and Applications,
pages 5–6, Washington, DC, USA, 2005. IEEE Computer
Society.

[7] Flavio Lombardi and Roberto Di Pietro. Kvmsec: a security
extension for linux kernel virtual machines. In SAC ’09: Pro-
ceedings of the 2009 ACM symposium on Applied Computing,
pages 2029–2034, New York, NY, USA, 2009. ACM.

[8] Flavio Lombardi and Roberto Di Pietro. Secure virtu-
alization for cloud computing. Journal of Network and
Computer Applications, In Press, Accepted Manuscript, DOI:
10.1016/j.jnca.2010.06.008, 2010.

[9] Microsoft. Windows Research Kernel. http://www.microsoft.
com/resources/sharedsource/Licensing/researchkernel.mspx,
2006.

[10] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, and al.
The Eucalyptus open-source cloud-computing system. In
CCGRID ’09: Proceedings of the 2009 9th IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid,
pages 124–131, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[11] Ronald Perez, Leendert van Doorn, and Reiner Sailer. Vir-
tualization and hardware-based security. IEEE Security and
Privacy, 6(5):24–31, 2008.

[12] Michael Peter, Henning Schild, Adam Lackorzynski, and
Alexander Warg. Virtual machines jailed: virtualization in
systems with small trusted computing bases. In VDTS ’09:
Proceedings of the 1st EuroSys Workshop on Virtualization
Technology for Dependable Systems, pages 18–23, New York,
NY, USA, 2009. ACM.

[13] Qumranet. Linux kernel virtual machine. http://kvm.
qumranet.com.

[14] Nguyen Anh Quynh and Yoshiyasu Takefuji. Towards a
tamper-resistant kernel rootkit detector. In SAC ’07: Pro-
ceedings of the 2007 ACM symposium on Applied computing,
pages 276–283, New York, NY, USA, 2007. ACM.

[15] Thomas Ristenpart, Eran Tromert, Hovav Shacham, and al.
Hey, you, get off of my cloud: Exploring information leakage
in third-party compute clouds. In CCS ’09: Proceedings of
the 14th ACM conference on Computer and communications
security, pages 103–115, New York, NY, USA, 2009. ACM.

[16] Silvio Salza, Yuri DiCarlo, Flavio Lombardi, and Roberto
Puccinelli. Leveraging the grid for the autonomic manage-
ment of complex infrastructures. In GCA Grid Computing and
Applications Conference Proceedings, pages 32–37, 2006.

[17] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig.
Secvisor: a tiny hypervisor to provide lifetime kernel code
integrity for commodity oses. In SOSP ’07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems
principles, pages 335–350, New York, NY, USA, 2007. ACM.

[18] Matthew Smith, Christian Schridde, and Bernd Freisleben.
Securing stateful grid servers through virtual server rotation.
In HPDC ’08: Proceedings of the 17th international sym-
posium on High performance distributed computing, pages
11–22, New York, NY, USA, 2008. ACM.

[19] Paulo Sousa, Alysson Neves Bessani, Miguel Correia,
Nuno Ferreira Neves, and Paulo Verissimo. Resilient intrusion
tolerance through proactive and reactive recovery. Pacific Rim
International Symposium on Dependable Computing, IEEE,
0:373–380, 2007.

[20] Dazhi Wang, Bharat B. Madan, and Kishor S. Trivedi. Se-
curity analysis of sitar intrusion tolerance system. In SSRS
’03: Proceedings of the 2003 ACM workshop on Survivable
and self-regenerative systems, pages 23–32, New York, NY,
USA, 2003. ACM.

[21] Xin Zhao, Kevin Borders, and Atul Prakash. Svgrid: a
secure virtual environment for untrusted grid applications. In
MGC ’05: Proceedings of the 3rd international workshop on
Middleware for grid computing, pages 1–6, New York, NY,
USA, 2005. ACM.

