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Abstract—Data streaming has become an important paradigm
for the real-time processing of continuous data flows in domains
such as finance, telecommunications, networking, . . . Some ap-
plications in these domains require to process massive data flows
that current technology is unable to manage, that is, streams
that, even for a single query operator, require the capacity of
potentially many machines. Research efforts on data streaming
have mainly focused on scaling in the number of queries or
query operators, but overlooked the scalability issue with respect
to the stream volume. In this paper, we present StreamCloud
a large scale data streaming system for processing large data
stream volumes. We focus on how to parallelize continuous
queries to obtain a highly scalable data streaming infrastructure.
StreamCloud goes beyond the state of the art by using a novel
parallelization technique that splits queries into subqueries that
are allocated to independent sets of nodes in a way that minimizes
the distribution overhead. StreamCloud is implemented as a
middleware and is highly independent of the underlying data
streaming engine. We explore and evaluate different strategies to
parallelize data streaming and tackle with the main bottlenecks
and overheads to achieve scalability. The paper presents the
system design, implementation and a thorough evaluation of the
scalability of the fully implemented system.

I. INTRODUCTION
There is a wide spectrum of applications that require real-

time processing of data streams, e.g. financial data analysis,
processing the output of large sensor networks, etc. The
requirements of these applications have been identified in [1]
where it has been recognized the inability of former paradigms
such as store and process provided by transactional databases
to deal with the real time processing of data streams. Stream
processing engines (SPEs) have been proposed to address the
specific challenges of these new applications [2]–[6].
Some emerging applications such as network monitoring

and fraud detection, are pushing the limits of current data
streaming infrastructures. These applications are characterized
by their real-time requirements and very high-volume data
streams. For instance, in cellular telephony and credit card
payment systems, because of these current limitations, fraud
can only be detected after it happens, what is very expensive
in economical terms. In cellular telephony, the number of
call description records (CDRs) that must be processed to
detect fraud in real-time is in the range of 10,000-50,000
CDR/second. Most queries for fraud detection require one or

�Patent pending.

more joins of the CDR stream with itself using complex join
predicates, requiring the comparison from 100 million to 2,500
million pairs of CDRs per second.
In the last few years, there have been substantial advance-

ments in the field of data stream processing. From the initial
centralized SPEs, the state of the art has progressed to SPEs
able to distribute queries among a cluster of nodes or even
distributing different operators of a query across different
nodes [7]. However, there is an increasing number of emerging
applications with requiring real-time processing of very large-
volume data streams. The volume of the data streams is such
that a single node is not able even to process a single operator
of a query for the entire data stream. Distributed SPEs, such as
Borealis [7], limit their scalability by allocating an individual
operator to a single node. That is, a node running a particular
operator has a maximum throughput T. Therefore, it can
at most process data streams at a rate of T, thus limiting
the stream volume which the whole system can handle to
the capacity, T, of a single node. Parallelization of SPEs in
cluster environments has been mostly overlooked with a few
exceptions such as Aurora* [8] and Flux [9]. Aurora* provides
box splitting as a mechanism to scale. However, it requires the
entire stream to go through a single node at the beginning of
the split box and a single node at the end of the split box. No
performance evaluation of the Aurora* approach is available.
But it introduces a single-node bottleneck and hampers scaling
up to stream volumes larger than the ones a single node can
process. Flux [9] resorts to the exchange parallel operator
that requires to be implemented for each specific data stream
system. The performance evaluation results provided in [9] are
based on simulations and are limited to a single operator.
This paper proposes a highly scalable data stream sys-

tem able to process massive data flows with emphasis on
maximizing scale-out. The problem under consideration is
the processing of large data flows at input rates that largely
exceed the processing capacity of individual nodes even
though a node only runs a single query operator. In this
paper, we present StreamCloud, a highly scalable stream
processing system. StreamCloud provides high scalability by
exploiting intra-operator parallelism [10]. That is StreamCloud
is able of distributing any individual subquery (as small as
a single operator) to a large set of shared-nothing nodes
(subcluster). StreamCloud does not concentrate a data stream
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over a single node. Instead, a logical data stream is split
into multiple physical data substreams that flow in parallel
from one subcluster to the next one, thus avoiding single-
node bottlenecks. This approach enables both to scale with
respect to the stream volume by aggregating the computing
power of subcluster nodes and with respect to the continuous
query window size by aggregating their memory. That is,
on one hand, the computing power of multiple nodes is
used to share the load of processing a data stream. On the
other hand, the windows of stateful operators are distributed
across nodes enabling to have larger (distributed) windows.
The parallelization performs communication only when it is
absolutely required, i.e. for repartitioning data before each
stateful operator thus minimizing the overhead introduced by
distribution. The minimization of the distribution overhead is
a crucial feature of StreamCloud since the targeted large scale
(100s of nodes) requires the minimization of the footprint of
the system in terms of required number of nodes for processing
a given load and therefore the resulting cost.
StreamCloud provides transparent query parallelization.

That is, the user expresses regular queries that are automat-
ically parallelized by StreamCloud. A compiler transforms
the abstract query into a parallel query that is automatically
allocated to a given cluster of nodes.
StreamCloud is implemented as a middleware system that

runs on top of a distributed SPE (currently Borealis [7], yet
highly independent of it). This independence is achieved by
parallelizing queries using regular data stream operators.
StreamCloud is also able to exploit the multiple CPUs,

cores, and hardware threads of each node. It can scale with
both by increasing the number of nodes and the number of
processors (CPUs, cores and/or hardware threads) per node.
The scalability of StreamCloud has been evaluated extensively,
evaluating both, the scalability of individual operators and full
queries. To the best of our knowledge this is the first real
implementation and evaluation of a scalable data stream pro-
cessing system. The results demonstrate its superior scalability
with respect existing approaches.
The contributions of this paper are:
• A highly scalable data stream processing system for
shared-nothing clusters. StreamCloud is a full-fledged
system, with a complete implementation currently being
used for industrial applications;

• a novel parallelization approach that minimizes the dis-
tribution overhead;

• a parallelization technique independent of the underlying
SPE based on standard data stream operators;

• transparent parallelization of queries with a query com-
piler;

• and a thorough scalability evaluation of a real and fully
implemented system in a large cluster (60 dual and quad-
core nodes amounting 160 processors).

The rest of the paper is organized as follows. In Section
II, we make precise the system model and give the problem
definition. In Section III, we present the overall system ar-
chitecture of StreamCloud and the detailed description of its

parallelization strategy. Section IV gives a thorough evaluation
of StreamCloud. Section V discusses related work. Section VI
concludes.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model

A data stream Si is an infinite append-only sequence of
tuples with the same schema (Ai

1, A
i
2, . . . , A

i
ni

). Tuples of
a stream Si have a timestamp that specifies their time of
origin. We assume that query sources and system nodes
are equipped with well-synchronized clocks using a clock
synchronization protocol such as Network Time Protocol as in
[11]. Continuous queries are defined over one or more input
data streams, {S1, S2, . . . , Sm}. Each query is modeled as a
network of connected operators. A connection represents a
data flow. Typical query operators of SPEs are filter, map,
union, join, and aggregates [4]. These operators are analogous
to relational algebra operators. Operators can be classified as
stateless (filter, map and union) or stateful operators (join
and aggregates). Stateless operators do not hold any state
across tuples and perform their computation on a single tuple.
Because of the infinite nature of the data stream, stateful
operators perform their computation over sliding windows of
tuples defined over a period of time (e.g. tuples received in the
last hour) or as a fixed number of tuples (e.g. last 100 tuples).
The amount of data in the window and the amount by which
the window slides are parameters.
Map is a generalized projection operator. It applies a set

of functions to each input tuple. The output stream can have
a schema different from that of the input stream, but the
timestamps of input tuples are preserved.
Filter is like a case statement. For every input tuple, it

checks if it satisfies predicates P1, . . . , Pm. Its output consists
of m + 1 streams. Tuples that satisfy the predicate P1 are
output on the first output stream, the ones that satisfy P2 but
not P1 are output in the second stream and so on.
Union is used to merge two or more streams with the same

schema into a single output stream. Union can output tuples
in any order. Output tuples have the same schema and values
as input tuples.
Aggregate computes an aggregate function (e.g. average) on

sliding windows over its input stream. When the difference
between the timestamps of an input tuple and the oldest tuple
in the window is larger than the size of the window (time
based window) or the number of tuples exceeds the size of
the window, an output tuple is produced. Output tuples are
tagged with the smallest timestamp in the window.
Join is a binary operator that takes two input streams and a

predicate over pairs of tuples (each one from one input). Given
two input streams, S and U , both with timestamp t, and a
window size, w, join matches tuples that satisfy the predicate
and |s.t − u.t| <= w. It outputs a tuple that is the concate-
nation of the input tuples with timestamp min(s.t, u.t). The
join operator is deterministic. It takes always the tuple with
the smaller timestamp from the two incoming streams.
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B. Problem Definition
The focus of this paper is on a parallel-distributed SPE

deployed in a shared-nothing cluster connected with a LAN.
We aim at supporting intra-operator parallelism in addition to
inter-query and inter-operator parallelism. That is, enabling a
query operator (in general, any subquery) to be allocated to
an arbitrary set of nodes or subcluster.
StreamCloud addresses some specific goals: Scalability. It

is the main design goal with emphasis on the ability to scale
with respect to the data stream volume (e.g., tuples per second
processed) by exploiting intra-operator parallelism in a shared-
nothing architecture [10].
Transparency. Queries should be parallelized in a transpar-

ent way, without any user intervention.
Portability. The parallelization should be highly indepen-

dent from the underlying distributed SPE to be used with
different SPEs and thus be more general.

III. StreamCloud: PARALLEL DATA STREAMING

A. Overview

The StreamCloud system is deployed on a cluster of nodes.
Each node might run as many instances of the StreamCloud
system as processors (CPUs, cores and/or threads) available. In
order to attain intra-operator parallelism queries are split into
subqueries. A subquery can be as small as a single operator.
Each subquery is allocated to a subset of nodes or subcluster.
That is, each StreamCloud instance running at each of the
nodes of the subcluster executes the same subquery (called
local subquery) for a fraction of the input data stream, and
produces a fraction of the output data stream. In order to
attain high scalability, bottlenecks should be avoided. This
means that a logical data stream is never routed through
an individual node. Instead, a data stream always flows in
parallel from one subcluster to the following one as multiple
physical substreams. Therefore, the output from a node of a
subcluster might be potentially distributed to all the nodes of
the following subcluster(s).
StreamCloud requires some extra components to achieve

the parallelization of a query (see Figure 1). It requires a
load balancer (LB) at the end of each subquery of each
node of a subcluster to redistribute the output to the nodes
of the next subcluster(s). If the next subcluster contains only
stateless operators, it distributes the load evenly across all
nodes. Otherwise, if it contains a stateful operator, it distributes
the data with semantic awareness. In this case, it applies a
data partitioning scheme aware of the operator semantics that
guarantees that data that needs to be aggregated or joined
together are received by the same node. For instance, in the
case of an equijoin, data of the two incoming streams is
partitioned so that all tuples of both streams with the same
value of the joining attribute are received by the same node.
Each node of a subcluster therefore receives input streams

sent from the load balancers of the previous subcluster(s). An
input merger (IM) is used at the beginning of the allocated
subquery to merge all the input streams received from the

Fig. 1. Query Parallelization

load balancers of the previous subcluster(s) and forward the
merged stream to the local subquery. For the join and Cartesian
product operators, there is one IM for each input stream.
StreamCloud provides two different IMs: 1) A best effort
IM that simply merges tuples from the incoming streams
as they are received; and 2) an IM that guarantees that the
parallel operator executes queries equivalently to the non-
parallel operator, i.e., it enforces fully transparent parallel
processing.
In order to attain the portability goal, our parallelization

strategy, materialized as load balancers and the input mergers,
is implemented using standard data stream operators instead
of custom parallelization operators (unlike Flux). The load
balancer is implemented as a filter operator that routes each
tuple to the node in charge of the data partition the tuple
belongs to. The input merger is implemented as a union
operator that merges all incoming substreams into a single one.
Since the parallelization is implemented using standard data
streaming operators, filters and unions, StreamCloud becomes
independent of the underlying SPE.

B. Parallel Data Streaming Strategies

The main goal of StreamCloud is to scale up to high vol-
umes of streaming data and it attains this goal by parallelizing
queries. Scaling with respect to the stream volume requires
intra-query parallelism, and more precisely intra-operator
parallelism [10]. There are several alternative strategies to
parallelize queries in a shared-nothing environment. A full
query can be allocated to a subcluster of nodes in which
each node executes the full query for a fraction of the input
data stream. Communication across nodes needs to happen
at least before each stateful operator to partition data in
a consistent and balanced way. We call this parallelization
strategy query-cluster. This means that, in general, there will
be communication from all to all nodes (N to N, N being
the total number of nodes) for every stateful operator in the
query. In Figure 2, the abstract query on the top of the figure
consists of a map, filter, join, filter, aggregate, and a map. In
the example, the query is parallelized using this strategy across
a cluster of 90 nodes. Each node receives a 90th of the input
data and executes the query for that data. Since each stateful
operator requires to partition data in such a way that data
to be aggregated/joined together is sent to the same instance,
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Fig. 2. Query Parallelization Strategies

which requires redistributing all data being sent to the stateful
operator. In the query-cluster approach, the communication is
from all nodes to all nodes for every stateful operator.
Another parallelization strategy consists in allocating each

individual operator of a query to a set of nodes (operator
subcluster). Operator subclusters are connected according the
query. In this case, the communication pattern is n i to nj

(being ni the number of nodes of the operator subcluster i). We
call this strategy operator-cluster. In Figure 2, each operator is
executed in a subcluster of 15 nodes. In general, the output of
each subcluster needs to be redistributed to the next subcluster
since subclusters may vary in size. In this case, there would be
4 communication steps (one between each pair of consecutive
operator subclusters). It would involve communication from
all nodes of one subcluster to the next one.
It should be observed that in order to parallelize a query, the

only indispensable communication happens for stateful oper-
ators to guarantee that data that should be aggregated/joined
together are received by the same node. Stateless operators can
be easily parallelized since they compute their result based
on the current tuple. On the other hand, stateful operators
compute their results aggregating/joining data. If the data is
distributed blindly, some results may be missed. For instance,
two tuples that need to be aggregated together if they reach
two different nodes, they will never be aggregated together.
Therefore, data needs to be partitioned consistently before
each stateful operator. By mapping subclusters to stateful
operators one can minimize the communication overhead. That
is, data do not travel across the network unless necessary. Our
parallelization strategy is based on this fact and its goal is to
parallelize queries while minimizing the distribution overhead.
For this purpose, each query is divided into subqueries. There
are as many subqueries as stateful operators the query has, plus
potentially an additional one, if the query starts with stateless
operators. A subquery consists of a stateful operator followed

by all the stateless operators connected to its output until the
next stateful operator(s) or the end of the query. If the query
starts with stateless operators, the first subquery consists of
all stateless operators before the first stateful operator(s). In
Figure 2, this parallelization strategy is depicted. Three sub-
clusters are used. The first one contains the prefix of stateless
operators, and the next two, a stateful operator followed by the
following stateless operators. Each subcluster contains a third
of the nodes, i.e. 30 nodes. The communication is like in the
query-cluster strategy, but not from all nodes to all nodes, but
from one subcluster to the next one.
Comparing the cost of the three strategies, we have to take

into account two overheads: 1) The number of communication
steps that involve serializing, deserializing and communicating
data for each tuple; 2) The cost associated to the fan-out, that
is, the number of communication channels maintained, each
consuming a set of resources (e.g. memory). The query-cluster
and subquery-cluster strategies perform the minimal number of
communication steps, that is, as many as stateful operators in
the query. The operator-cluster, on the other hand, involves
the maximal number of communication steps, as many as
operators in the query. In terms of fan-out overhead, query-
cluster has the highest one since it involves communication
from all to all nodes as many times as stateful operators appear
in the query. While the operator-cluster and subquery-cluster
strategies have the minimal fan-out overhead, involving only
communication across subclusters.
We illustrate the query parallelization process by means of

the sample query depicted in Figure 1. The query contains
three operators: join (J), map (M) and aggregate (Ag). This
query receives two streams, one with call description records
(CDRs) with origin phone number, start and end time, and
another one with suspicious phone numbers. It performs a join
that matches CDRs with suspicious phone numbers. Then, it
transforms the start and end times of the call into duration in
minutes via a Map. Finally, it aggregates calls by grouping
them by duration. The query is split into two subqueries.
Subquery1 consists of a Join followed by a Map, and sub-
query2 consists of the aggregate operator. They are allocated to
subclusters 1 and 2, respectively. The data partitioning for the
join is done according to the hash of the phone number modulo
2. The map operator, since it is stateless and does not require
any specific data partition, is collocated with the join operator.
The data partitioning for the aggregate is performed on the
hash of the duration, the attribute on which the aggregation is
performed, modulo 2. Node 2.1 is responsible for %2=0, and
node 2.2 for %2=1. At each node of subcluster2, the input
merger receives the results of subquery1 coming from the two
nodes of subcluster1 and merges and forwards them to the
local aggregate operator.
The aforementioned parallelization is best effort. That is, it

does not guarantee that the parallel execution is equivalent to
the non-parallel one. StreamCloud also provides a paralleliza-
tion that guarantees that the parallel execution is equivalent
to a non-parallel one. This fully transparent parallelization is
useful for applications with strict requirements in the ordering
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of tuples within data streams.
In the rest of this section, we describe the parallelization of

the stateless and stateful subqueries in more detail, in terms
of the load balancers and input mergers which encapsulate
the parallelization logic. We first describe the best effort
parallelization (Figure 3.a) and then, the fully transparent
parallelization (Figure 3.b).

C. Parallelization of Stateless Subqueries
Stateless subqueries are those that only have stateless

operators, that is, either the full query does not have any
stateful operator or the query starts with one or more stateless
operators. In the later case, all the stateless operators until
the first stateful operator form a stateless subquery. Since the
subquery only has stateless operators, each input tuple can
be processed by any node in the subcluster assigned to the
subquery. The load balancer (see Figure 3 lines 1-5) applies
a round-robin strategy to distribute the tuples across nodes of
the subcluster.

D. Parallelization of Stateful Subqueries
Stateful subqueries in StreamCloud contain one stateful

operator followed by zero or more stateless operators. Stateless
subqueries allow sending each input tuple to an arbitrary
node of the operator subcluster. However, the load balancer
for stateful subqueries needs to be enriched with semantic
awareness. Basically, in order to split the load across the nodes
of a stateful subquery subcluster, it should take into account
the semantics of the stateful operator and its data partitioning
scheme. In what follows, we discuss the parallelization of
stateful subqueries containing the three main operators we
have considered: join (equijoin), Cartesian product (general
join), and aggregate.
1) Join Operator: The join operator we consider is an

equijoin with a set of predicates between pairs of attributes
of the input streams, for instance, right.phoneNumber =
left.phoneNumber, on the left and right input streams being
joined. StreamCloud uses partitioned parallelism [10] where
different nodes execute the same subquery on different input
data partitions and a symmetric hash join approach [10]. The
join matches tuples from the windows (e.g. tuples received
in the last hour or the last 1,000 received tuples) associated
to the incoming streams that fulfill the joining predicate. Each
input stream is split by load balancers (see Figure 3 lines 6-10)
into N substreams (being N the number of nodes in the join
subcluster) according to the hash of the attribute used in the
equality predicate. Assuming that A is the attribute of one of
the input streams used in the equality predicate, hash(A)%N
is used to determine to which target node of the subcluster
the tuple should be sent. In this way, tuples that have to be
matched together are received by the same node. For instance,
in the example in Figure 1,the join is an equijoin that matches
the phone number in CDRs in one of the input streams with
suspicious phone number in the other input stream. So, hashing
is applied to the phone number attribute. Every tuple with the
same phone number will be redirected to the same node in

the subcluster (their hash value is the same) and therefore,
all the required matchings are found. If the equijoin contains
multiple predicates, the hash is computed over all the attributes
referred in the predicates. Thus, each particular combination
of attribute values will go to the same node and could be
matched locally.
2) Cartesian Product Operator: The Cartesian product

(CP) operator performs general joins with arbitrarily complex
predicates. As in the join operator, it takes two input streams
and considers the tuples stored in the windows associated
to each stream and applies a predicate to each pair formed
by a tuple of each window producing tuples that match the
predicate. This operator is parallelized as follows (see Figure
3 lines 11-23). Given a subcluster of N nodes to execute
the CP operator, each tuple is sent to M =

√
N nodes

of the destination subcluster (lines 15-22). Therefore, each
load balancer splits its output into M substreams (line 13),
according to a hash of the tuples %M (line 14). The streams
sent to the CP operator are dealt with differently depending on
whether they correspond to the right or left input streams in
order to distribute data coherently. Each CP instance receives
two set of substreams, each set consisting of the substreams
sent by each node in the previous subcluster.
Figure 4 depicts an example with a query with two map

operators (Ml andM r) and a CP operator with time windows.
On the top part of the figure, the abstract query is shown
with a sample input and the resulting output. In the bottom
part, we show the parallel version of the query in which
map operators are deployed on a subcluster of 2 nodes and
the CP operator in a subcluster of 4 nodes (N = 4). The
timestamps of the tuples are indicated on the top of each
stream (the values at the right of the “ts” tag). One of the
incoming streams is 0-3 and the other A-D. Each of these
2 streams are split into two substreams. The stream 0-3 is
split into 2 substreams with the values (0,3) and (1,2). The
stream A-D is split into 2 substreams with the values (A,C)
and (B,D). The substream (0,3) is sent to CP instances 0 and
1, and the substream (1,2) is sent to the instances 2 and 3.
The substream (A,C) is sent to instances 0 and 2 and the
substream (B, D) to instances 1 and 3. This splitting results
in each of the 4 CP instances performing 1/4th of the whole
Cartesian product on the incoming streams. That is, each CP
instance would perform the Cartesian products (0,3)×(A,C),
(0,3)×(B,D), (1,2)×(A,C), and (1,2)×(B,D), respectively.
3) Aggregate Operator: In order to produce the aggrega-

tion in a consistent way and minimize communication, the
parallelization of the aggregate operator requires that all the
tuples to be grouped together according to the group-by clause
of the operator should to be processed by the same node
of the subcluster. This is the criterion used to partition data
across nodes in the subcluster. In the example in Figure 1,
the operator Ag aggregate calls by their duration. In order to
parallelize this operator, the data is partitioned in a similar
way to the join (see Figure 3 lines 6-10). That is, the set
of attributes used in the group-by clause are hashed and the
resulting value modulo N is used to split the stream across
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Load Balancer for Stateless Subquery1

Upon arrival of t:2

destination:=(destination+1) % N;3

forward(t, nextSubcluster[destination]);4

end5

Load Balancer for Join & Aggregate6

Upon arrival of t:7

destination:= hash(t.A, t.B, ...) % N;8

forward(t, nextSubcluster[destination]);9

end10

Load Balancer for Cartesian Product11

Upon arrival of t from stream S (left or right):12

M:=
√

N ;13

j:= hash(t) % M;14

for i:= 0 to M-1 do15

if left(S) then16

destination:= j*M+i;17

else18

destination:= j+i*M;19

end20

forward(t, nextSubcluster[destination]);21

end22

end23

Best Effort Input Merger24

Upon arrival of t:25

forward(t, localSubquery);26

end27

Timeout Management at All Load Balancers28

Upon forwarding a message to subcluster[destination]:29

lastTS[destination]:= t.TS;30

lastTime[destination]:= currentTime();31

end32

Upon ∃dest ∈ {0..N − 1}|currentTime() >= lastTime[dest]+d33

-- d time units elapsed since last sending to the34

destination;
dummy.TS:= lastTS[dest];35

forward(dummy, nextSubcluster[dest]);36

lastTime[dest]:= lastTime[dest]+d;37

end38

Transparent Input Merger39

Upon arrival of t:40

if ¬ dummy(t) then41

buffer[t.sender].enqueue(t) ;42

end43

latestTS[t.sender]:= t.TS;44

-- get oldest TS across senders45

lastTS:= mini∈{0..N−1}(latestTS);46

next:= j|∀i ∈ {1..M} Buffer.nonEmpty[i] ∧ latestTS[j] <= latestTS[i];47

-- forward oldest tuple, if available;48

if next �= ∅ then49

forward(buffer[next].dequeue(), localSubquery);50

end51

end52

a) Best effort parallelization b) Additions for transparent parallelization

Fig. 3. Formal Description of Query Parallelization
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the N subcluster nodes.

E. Transparent Parallelization

The best-effort query parallelization described so far may
produce results that are not equal to the ones produced by the
non parallel version. For instance, in the previous example in
Figure 4.a, the non-parallel CP operator receives each input
stream in timestamp order, (0, 1, 2, 3) and (A, B, C, D). The
evolution of the time windows for the non-parallel query is
depicted in Figure 5.a. When a new tuple t is received the
window corresponding to the other input stream is trimmed,
removing those tuples with a timestamp difference with t
timestamps bigger than the window size. In the example, the
reception of the tuple with value C (step 4 in Figure 5.a) causes
the removal of the tuple with value 0, the arrival of the tuple
with value 2 causes the removal of tuple with value A (step
5), and so on. This update is independent of the interleaving
on the incoming streams and only depends on the timestamps
of the incoming tuples.
With the best-effort parallel version, the following scenario

could happen. At CP3 the tuples with values 1 and 2 are
received. Then, the tuple with value D is received. The arrival
of D causes the removal of 1 from the window. Then, the tuple
with value B is received, but the tuple with value 1 is not in
the window anymore, which results in not yielding the output
tuple (1, B). The reason is that, because the map operator is
parallelized and D and B are produced by two different nodes,
they might be interleaved in an arbitrary order at CP3, such
as D is first received and then B. This results in a different
tuple order in this input stream than the one that would happen
with a non-parallel map, in which case it would be guaranteed
that tuples in the same stream are received in timestamp order.
Therefore, the best effort parallelization strategy can produce
results that would never be produced with the original non-
parallel query, thus failing to provide transparent parallelism.
The transparent parallelization of StreamCloud (see Figure 3

lines 28-52) addresses this issue by enhancing the input merger
(IM). The IM (lines 39-52) performs a merge sort that takes
timestamp ordered substreams coming from the load balancers
and generates a single merged substream that is timestamp
ordered. It guarantees that each local operator instance gets
a timestamp ordered input stream and therefore, it produces

a timestamp ordered output stream. The IM outputs a tuple
whenever it has received at least one tuple from each input
substream in order to take the one with the smallest timestamp
(lines 46-51). In order to avoid blocking of the IM, in case
that one or more of the input substreams become empty for
a period of time, load balancers generate dummy tuples for
those destinations for which they have not generated any tuple
in the last d units of time (lines 28-38). The dummy tuple is
timestamped with the timestamp of the last tuple sent to that
destination plus the units of time elapsed since then (line 37).
The dummy tuple is not forwarded to the operator (lines 41-
43) but enables to take tuples from other substreams at the IM
(lines 44-47) and output new tuples, which avoids blocking.
This IM can be implemented by means of standard operators
such as union, order, and synchronization operators.
Let us look again at the example in Figure 4 where the

non-parallel and parallel execution of a query are shown (IMs
and LBs not shown to simplify the picture). The transparent
IM would produce the window evolution shown in Figure
5.b independently of the relative speeds across the nodes of
a subcluster, thus resulting in different interleavings of the
different substreams. That is, despite the output streams of
each map instance are not coordinated, the IM guarantees that
tuples enter the CP window in timestamp order, thus, guaran-
teeing an equivalent execution to the non-parallel operator. The
scenario aforementioned for the parallel execution that resulted
in missing the production of the tuple (1, B) would be treated
as follows. The arrival order of tuples was (1, 2, D, B). At CP3

the IM receiving the numerical stream would receive first 1,
store it in buffer[1] (Figure 3 line 42). Since buffer[0] is empty
(line 44-49), it would not forward any tuple (line 50). When
tuple with value 2 arrives, it would be stored in buffer[0]. Now
tuple 1 (the one with smallest timestamp) would be forwarded
to CP3 (line 50). Then, the tuple with value D arrives at the
IM of the alphabetical stream and is stored in buffer[1]. Since
buffer[0] is empty, no tuple is forwarded to CP3. When a tuple
with value B is received, it is stored in buffer[0]. Now, tuple
B that has the smallest timestamp is forwarded to CP3. CP3

then produces the tuple (1, B). As can be seen, the transparent
IM input merger solves the issue of the missed tuple (1, B) in
the scenario that the best effort IM failed to produce.

F. Optimizations
The parallelization described so far splits a query into a set

of subqueries, each containing a stateful operator followed by
zero or more stateless operators (with the possible exception
of the first subquery that might be fully stateless). If two con-
secutive stateful subqueries, that is, with join and/or aggregate
operators, partitioned data in the same way (e.g. a join by
phone number and an aggregate with a group by also by phone
number), then the two subqueries may be merged in a single
one to avoid communication (and the associated processing
like splitting, balancing and merging the stream) between two
subclusters.
Since all subqueries contain an input merger at the begin-

ning and a load balancer at the end, unions at the beginning
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of a subquery are subsumed by the input merger, and filter
operators appearing just at the end of a subquery are removed
and its logic combined with the logic of the filter used in the
load balancer located at the end of the subquery.

G. Query Compiler

StreamCloud parallelizes queries automatically through its
query compiler. The process is shown in Figure 6. The com-
piler takes a regular query and splits the query into subqueries
according the aforementioned parallelization strategy. It then
applies the optimizations discussed in the previous section.
The output of the query compiler is the set of subqueries. To
instantiate the parallel query, the query instantiator takes the
number of available processors and the set of subqueries. It
evaluates the cost of each subquery and assigns proportionally
to this cost processors to each subcluster. The cost of each
subquery is measured as the time needed to process one tuple.
The output of the query instantiator is a concrete parallel
query that has placeholders for IPs and ports to be used by
each StreamCloud instance. The final component is the query
deployer that, given a deployment descriptor with the IPs and
ports of the processors to be used, deploys the concrete query
assigning IPs/ports to each StreamCloud instance and yielding
the deployed parallel query.

IV. EXPERIMENTAL EVALUATION

The evaluation targets to measure the scalability of the
StreamCloud approach. It evaluates the scalability with respect
to the computing power (number of processors) and window
size. The evaluation methodology is the following. Experi-
ments inject increasing input loads for different configurations.
StreamCloud instances process tuples at the input rates until
they get overloaded. No load shedding was used during the
evaluation. When the system gets overloaded, the input rate
becomes higher than the operator processing rate and tuples
start to be queued at all instances until they are processed.
Each experiment shows the evolution of the throughput (mea-
sured as processed tuples or comparisons performed by an
operator or complete query per second) for increasing loads.
The experiments also report the average CPU usage (average
use across all processors in the system) and the average
queue length (average queue length across all StreamCloud
instances in the evaluated configuration) to determine when
the system saturates. The first set of experiments (Sections
IV-B, IV-C) evaluates how increasing both the computing
power and window size by aggregating the computer power
and memory of multiple nodes enables to deal with higher
input loads. This set of experiments has been performed in

two stages. In the first stage, the scalability of each individ-
ual operator has been evaluated. This evaluation shows how
operator subclusters scale and the associated overhead. For
this purpose, the throughput of each operator is evaluated
individually for increasing loads (input tuples per second) and
different numbers of nodes. In the second stage, the scalability
of full queries has been evaluated. We compare our approach
with two other parallelization techniques: 1) Every node in
the cluster executes the full query for a subset of the data
(query-cluster approach), and 2) each operator is executed in
a subcluster of nodes (operator-cluster approach). This enables
to measure the scalability of the proposed parallelization
technique system in a real deployment.
A second set of experiments evaluates how, for computing

intensive operators, it is possible to scale the input load with
respect a fixed a global window size by increasing the system
size.
In the third set of experiments, we evaluate how Stream-

Cloud scales not only with respect to the overall number of
processors, but how it scales with respect to the number of
processors available per node, by deploying multiple instances
of StreamCloud per node. This demonstrates the ability of
StreamCloud to exploit the available CPUs, cores and hard-
ware threads of each node independently of the ability of the
underlying SPE to exploit them (e.g. Borealis does not fully
exploit the available processors on each node).

A. Evaluation Setup
The evaluation was performed in a cluster of 60 nodes

(blades) with 160 cores (processors). All blades are Supermi-
cro SYS-5015M-MF+ equipped with 2GB of RAM and 1Gbit
Ethernet and a directly attached 0.5TB hard disk. Blades are
distributed in 3 racks: Rack 1 has 20 blades with a dual-core
Intel PentiumD@2.8GHz. Rack 2 has 20 blades with dual-
core Intel Xeon 3040@1.86GHz. Rack 3 has 20 blades with
quad-core Intel Xeon X3220@2.40GHz. The cluster is shared-
nothing. Around half of the nodes were required to inject a
load able to saturate the larger configurations.
Since the blades are multi-core, we deployed multiple

instances of StreamCloud per node (one instance per core
available). We report in each experiment how many instances
were used. Collocated instances do not communicate among
them and thus, the experiments provide the scalability in terms
of number of processors.
Two baselines are used to compare the scalability of Stream-

Cloud: a) a centralized system consisting of one Borealis
instance deployed on a single dual-core node, and b) a
single dual-core node running two StreamCloud instances.
The former enables to compare the scalability of StreamCloud
with respect a centralized SPE. The latter enables to evaluate
the scalability of StreamCloud in a uniform way (different
configurations with the same number of instances deployed
per node, i.e. 2).
All the experiments have 3 phases: warm-up, steady-state,

cold-down. The evaluation was conducted during the steady-
state phase that lasted for 10 minutes. Each experiment was
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run three times, we report the average.

B. Scalability of Individual Operators

We have evaluated both stateless (map) and stateful opera-
tors (join, aggregate, and Cartesian product). All the experi-
ments share the same input schema: a call description record
consisting of calling and called number, call starting time and
duration, district, x and y coordinates and emission timestamp.
1) Map Operator: Figure 7.a shows the evolution of the

throughput for different input rates and number of processors.
The evaluation shows a linear evolution of the throughput.
20 processors manage an input rate of 30,000 tuples/second
(t/s) that is roughly 10 times the input rate managed by
two instances. 40 processors double the managed input rate,
reaching 60,000 t/s. The throughput curves have two clear
different regions separated by the point at which saturation
is reached (100% CPU usage). Before saturation, the queue
length is null. When saturation is reached, the queue length
grows very fast due to the high input rates.
2) Join Operator: The join operator matches phone calls

made by the same user and computes their distance in time and
space. The window size is one minute. Since Borealis does not
implement an equijoin operator, the Cartesian product operator
is used (called join in Borealis) to perform the equijoin.
This means that the number of comparisons is higher than
it would be in a real equijoin. As the throughput is given
in number of comparisons per second (c/s), this can give an
idea of how many comparisons a real equijoin would make.
Figure 7.b shows the evolution of the throughput in c/s for
all configurations. From 20 to 40 processors, the throughput
almost duplicates, which means that the scalability is almost
linear. An interesting observation is that when the load is
between 300 and 500 t/s, 40 processors do less comparisons
for the same input rate than 20 processors. StreamCloud by
distributing is removing the unnecessary comparisons per-
formed by the underlying Borealis join. For a given input
rate, the number of tuples that are on the time window of
each processor will be smaller for larger configurations, since
the tuples are split among a higher number of nodes. This
means that the unnecessary work performed by the Borealis
join - a Cartesian product - will be smaller, which results in
larger configurations making less unneeded comparisons than
smaller ones, therefore performing better.
Looking at the queue length in Figure 7.b, we can identify

three different regions. First, the flat region (value 0), then a
region with a mild slope and finally, another region with a
steeper slope. For 20 processors the second region goes from
300 to 400 t/s and for 40 processors goes from 500 to 700 t/s. If
we compare this graph with the one of the CPU usage, the end
of the second region matches the saturation point (i.e. 100%
CPU usage). This means that to reach full CPU utilization,
some queuing is needed. This effect is related to the imbalance
across processors that is higher for larger configurations. An
interesting fact is that the length of the queues is smaller
for larger configurations, which means that they have a more

Operator Set Cloud M1 J1 F1 J2 M2 A1 F2 M3

Operator Cloud M1 J1 F1 J2 M2 A1 F2 M3

M1: Map 1
J1: Join 1
F1: Filter 1
J2: Join 2

M2: Map 2
A1: Aggregate 1
F2: Filter 2
M3: Map 3

Query Cloud M1 J1 F1 J2 M2 A1 F2 M3

Intra-Cluster communication
Extra-Cluster communication

Cluster boundaries

Fig. 8. Query used for the evaluation

grateful degradation when getting close to saturation. This is
also true for input rates beyond the saturation point.
3) Aggregate Operator: The aggregate used in the eval-

uation calculates the number of calls and average duration,
grouping results by district over a one minute window which
advances every ten seconds. Figure 7.c shows the evolution
of the throughput of the aggregate operator with increasing
input rates for all configurations. The scalability is linear. 20
processors are able to handle 40,000 t/s, while 40 processors
handle, twice as much, 80,000 t/s. The growth of the queue
length upon saturation is very explosive due to the high input
rates handled.
4) Cartesian Product Operator: In the Cartesian product

(CP) experiments, the output and input schemas are the same,
every matching tuple is just forwarded as is. The predicate
checks whether the tuples of two input streams intersect in
time. The window size is one minute.
In Figure 7.d, we can see the evolution of the throughput

for increasing input rates. The scaleout is almost linear. 20
processors achieve close to 2,000 million c/s and 40 processors
4,000 million c/s. One difference between the CP operator
and all other operators is that, when saturation is reached, the
degradation is explosive as can be seen in the queue length
evolution in Figure 7.d. This more explosive degradation has
to do with the quadratic cost with respect the input load. The
explosion in the queue length happens exactly at the points at
which CPU usage gets close to 100% (Figure 7.d). With the
largest configuration the degradation is milder, which indicates
that large configurations are more tolerant to peaks.

C. Scalability of Queries
In this section, we compare the scalability for full queries

of the StreamCloud parallelization strategy, subquery-cluster
with the other two alternatives, query-cluster and operator-
cluster. The query used for the evaluation is depicted in Figure
8. In this figure, it is also shown how the query is split into
subclusters for the evaluated approaches. All operators (except
aggregate) share the same input and output schema, which
consists of an input stream with an integer. In this way, we
can stress the system with higher input rates.
We evaluated the three parallelization strategies for in-

creasing input rates with 60 processors. For the query-cluster
approach, we could only use up to 30 processors, since the
system crashed at deployment time with larger configurations.
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Fig. 7. Individual Operator and Query Scalability Evaluation Results

The use of resources of the query on each processor was
proportional to the number of processors in the cluster what
made impossible even to deploy the query for 60 processors.
For each approach, we used the optimal size for each cluster 1.
Figure 7.f shows the performance of the three parallelization
strategies. The throughput of StreamCloud is much higher than
the other alternatives. Far behind is the operator-cluster ap-
proach and at the bottom is located the query-cluster approach.
The main shortcoming of the query-cluster approach is that

it requires communication from all to all nodes three times
(one for each of the three stateful operators). As can be
seen in Figure 9 (to enable the comparison this profiling has
been made with 30 nodes for all approaches), the aggregated
communication cost and context switches reported as ”other”
is above 40%.
The performance difference between operator-cluster and

subquery-cluster (StreamCloud) is due to two reasons. The
first and most important reason is that, when setting the cluster
sizes, there is always some unused capacity per cluster due to
the inability of using a fractional number of processors. This
unused capacity (tagged as ”idle” in the figure) is proportional
to the number of subclusters that is higher in the operator-
cluster case. The subquery-cluster shows less than 10% of
unused capacity, while the operator-cluster shows close to

1The legends indicate the number of processors per subcluster of each ap-
proach. For instance, in Figure 7.f the operator-set approach uses a subcluster
per operator with 16, 12, 8, 8, 8, 4, 2, and 2 processors per subcluster.
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Fig. 9. Query Processing Costs

35% of unused capacity. The second reason is related to
the distribution overhead (i.e. communication related costs).
Figure 9 shows that the cost of distribution due to filters
and unions and underlying inter-node communication is much
higher in the operator-cluster than in the subquery-cluster
(reported as ”other” in the graph). This is because there are
more subclusters in the former case than in the latter one.
From the evaluation, we can conclude that the mapping of

operators to clusters is crucial for attaining high scalability.
StreamCloud approach (subquery-cluster) attains a perfor-
mance that is 2.5 to 5 times better than operator-cluster and
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query-cluster, respectively.

D. Scaling with Fixed-Size Windows

In some cases, the processing associated to each tuple is so
heavy that the only concern is to reduce the tuple processing
time and enable to process higher input rates for a given fixed
window size. For instance, in a Cartesian product (CP), the
number of comparisons to be made for each incoming tuple in
a large window (say 10s of thousands tuples and above) is very
high. In this experiment, we evaluate how much StreamCloud
can scale with a fixed window size (bounded in number of
tuples). The operator used was the CP with a window size
fixed to 20,000 tuples being each tuple 12 bytes long yielding
to a window of 240 KB. In a single site, this is translated into
a single window of the full size. Then, for a configuration with
N processors, each instance processes 1/

√
N of the incoming

streams. Thus, if there are 4 processors, each processor has a
window size of 1/

√
4 = 10, 000 tuples, for 16 processors

1/
√

16 = 5000 tuples, . . .
Figure 7.e depicts the evolution of the throughput. Since

windows are bounded by the number of tuples and the
selectivity is fixed, the throughput evolution shows how the
performance evolves with the number of processors. We can
make two observations in Fig. 7.e. First, the scalability is
super-linear. The reason is that the higher the number of
processors, the smaller the local windows, and thus the smaller
the amount of comparisons to be performed per tuple at each
processor. This results in processing more tuples per second
with configurations with larger numbers of processors. Second,
for a given system input rate the throughput is different for
each configuration. This is due to the aforementioned effect
of decreasing the amount of work per tuple for larger window
configurations.
In Figure 7.e, we can also see the evolution of CPU usage

and queue length. The CPU usage shows the saturation points
(i.e. when CPU usage reaches 100%). Then, if we compare
this against the queue length, we observe that the saturation
point is reached with very long queues. This means that, from
a pragmatic point of view, allowing a maximum queue length
of 200 tuples, 4 processors would deal with a system input
rate of around 200 t/s, 600 t/s with 16 processors, 1400 t/s
with 36 processors, and 2500 t/s with 64 processors.

E. Multi-Cores

We have evaluated so far how StreamCloud scales with
respect to the overall number of processors used. In this
experiment, we want to quantify the scalability with respect
to the number of available processors in each node. That is,
to evaluate whether StreamCloud is able to use effectively
the available CPUs/cores/hardware threads of each node by
increasing the number of instances allocated to each node.
For this experiment, we used the rack with quad-cores and
performed the scale-out evaluation with an equi-join from 1
to 4 instances of StreamCloud on each node and from 1 to 20
quad-core nodes.
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Figure 10 shows the results of the evaluation. We see that
the more instances of StreamCloud per node (until the 4
cores available per node), the higher throughput is obtained.
The reason is the following. Borealis, the underlying SPE, is
internally multi-threaded. However, the multi-threading is used
for different tasks of a pipeline, like receiving, processing and
sending tuples. It does not use multiple threads for processing
tuples. This multi-threading results in having active most of
the time a single thread, alternating among the receiving,
processing and sending ones. In practical terms, this multi-
threading uses one core most of the time. This means that
StreamCloud is able to overcome the lack of parallelism of
the underlying SPE by allocating multiple instances to multi-
processor nodes.

V. RELATED WORK

Distributed Stream Processing. Distributed SPEs (e.g.,
Borealis [7]) enable to allocate each operator to a different
node. The scalability with respect to the stream volume of
current distributed SPEs is limited by the capacity of a single
node, since all the data stream that goes through an operator
is processed necessarily by the single node that is hosting it.
StreamCloud overcomes this issue by never concentrating the
data stream in any single node.
Clusterized Stream Processing. To the best of our knowl-

edge Aurora* [8] and Flux [9] are the only efforts for
parallelizing data streaming in shared-nothing environments.
Aurora* provides two load sharing mechanisms, called box
sliding and box splitting. Box sliding enables to re-allocate
consecutive operators to the upstream or downstream node.
This enables to balance the load across nodes for changes
in the workload. Box splitting is a more powerful load
sharing mechanism that consists in splitting the load across
several nodes running the same operator. This approach can be
considered the closest to our approach. The main differences
stem from the fact that box splitting uses a single filter operator
node at the front and a single union operator node at the end.
This results in the whole data stream going through a single
node (the filter and the union), which bounds its scalability.
In contrast, in StreamCloud, a data stream never needs to go
through a single node. Instead, it goes through from a cluster
of nodes to another cluster of nodes in parallel.
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Flux extends the exchange operator [12] to a shared-
nothing environment for data streaming. This operator is
a parallelization operator for parallel databases for multi-
processors. The exchange operator has similar goals to our
load balancer, namely, parallelizing without having to cus-
tomize query operators. Both provide semantic awareness
(called content sensitive routing in Flux terminology). One
important difference between both approaches is that the
exchange operator needs to be implemented for each SPE,
while our load balancer is implemented via standard filters
(and unions for the input merger). Finally, Flux evaluation
was performed using a simulation and for a single operator,
while we evaluated StreamCloud in a real deployment with
both individual operators and full queries. These are important
issues to quantify the scalability of a parallelization approach.
Neither Aurora* nor Flux perform any evaluation of the
scalability of the proposed approaches unlike the present paper.
Load Balancing and load shedding. The correlation of

workloads to allocate sets of operators to different nodes to
avoid correlated load bursts hitting the same node is studied
in [13]. [9] repartitions data to balance the node across nodes
of an operator set in a shared-nothing architecture.
Load balancing enables to maximize the utilization of

available capacity but does not enable increasing the scalability
as parallelization does. In fact, it is an orthogonal technique
that is also used by StreamCloud.
Load shedding complements load balancing when the sys-

tem reaches saturation by either discarding tuples [11], [14]–
[16] or summarizing data tuples [15], [17]. Load shedding
enables to increase the scalability by trading off accuracy. In
contrast, the parallelization of StreamCloud enables to scale
without losing accuracy. [16] focuses on how shed load whilst
preserving the integrity of windows through the query plan by
being aware of the windows of stateful operators, the window
size and slide. [11] studies how to coordinate load shedding
to attain end-to-end control on the output data quality.
[17] performs semantic load shedding for joins. The output

of the operator is approximated by maximizing a user-defined
similarity metrics between the exact and approximate answer.
[15] presents a load shedding architecture for TelegraphCQ
[6] that summarizes tuples using synopses.
Continuous joins over DHTs. There has been recent work

on exploiting peer-to-peer networks, in particular, distributed
hash tables (DHTs) for processing Continuous multi-way joins
over data streams [18] [19]. Although these works exploit
hash-based join algorithms, the objective (increasing the size
of the sliding window with addition of peers) is different than
ours (scaling out) and the assumptions regarding the network
(clusters vs. WANs) are very different.
Hardware Stream Processing. In [20], it is proposed

to implement stream queries in hardware using Field Pro-
grammable Gate Arrays. The hardware implementation of
stream operators can dramatically increase the performance
by removing many of the software overheads. However, the
capacity of the system would still be bounded by the capacity
of a single node.

VI. CONCLUSIONS
We have presented StreamCloud a large scale data streaming

system. StreamCloud uses a novel parallelization strategy
for shared-nothing clusters. StreamCloud runs on top of a
distributed SPE, but is highly independent from it by im-
plementing the parallelization with standard stream operators.
The query compiler automatically parallelizes queries. It also
provides a parallelization strategy that is fully transparent, pro-
ducing executions equivalent to non-parallel SPEs. The evalu-
ation shows that close to linear scalability can be achieved
for a large number of processors (60) for both individual
operators and full queries. The evaluation demonstrates that
the parallelization strategy of StreamCloud maximizes the
scalability of the system, outperforming by a factor of 2.5-
5 the other two alternatives.
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