The Journal of Systems and Software 83 (2010) 1813-1822

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Security and privacy issues in the Portable Document Format™

Aniello Castiglione®*, Alfredo De Santis?, Claudio Soriente 2P

a Dipartimento di Informatica ed Applicazioni, Universita di Salerno, Via Ponte don Melillo 1, I-84084 Fisciano (Salerno), Italy
b Facultad de Informdtica, Universidad Politécnica de Madrid, Avenida de Monteprincipe, 28660 Boadilla Del Monte (Madrid), Spain

ARTICLE INFO

Article history:

Received 11 April 2008

Received in revised form 22 March 2010
Accepted 24 April 2010

Available online 15 June 2010

Keywords:

Compound document format
Document security

Electronic document
Information leakage

Portable Document Format (PDF)

ABSTRACT

The Portable Document Format (PDF) was developed by Adobe in the early nineties and today it is the de-
facto standard for electronic document exchange. It allows reliable reproductions of published materials
on any platform and it is used by many governmental and educational institutions, as well as companies
and individuals. PDF documents are also credited with being more secure than other document formats
such as Microsoft Compound Document File Format or Rich Text Format.

This paper investigates the Portable Document Format and shows that it is not immune from some
privacy related issues that affect other popular document formats. From a PDF document, it is possible
to retrieve any text or object previously deleted or modified, extract user information and perform some
actions that may be used to violate user privacy. There are several applications of such an issue. One of
them is relevant to the scientific community and it pertains to the ability to overcome the blind review
process of a paper, revealing information related to the anonymous referee (e.g., the IP address of the

Privacy referee).
Security

Information forensics

Digital forensics

Digital investigations

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The number of files that are published and exchanged through
the Internet is constantly growing and electronic document
exchange is becoming more and more popular among Internet
users. The diversity of platforms, formats and applications has
called for a common technology to overcome those differences and
produce universally readable documents to be exchanged without
limitations. Even though it is supported by nearly every applica-
tion on any machine, plain text ASCII has failed to become popular
because it does not allow text formatting, image embedding and
other features that are key to an efficient communication.

The Portable Document Format was developed by Adobe Sys-
tems Inc. to solve heterogeneity issues in electronic document
exchanges. It is a cross platform page description language that
has become the de-facto standard in document publishing and
exchange. According to Adobe, more than one billion PDF docu-

7 The research has been partially funded by the Spanish National Science Founda-
tion (MICINN) under grant TIN2007-67353-C02, and by the Madrid Research Council
(CAM) under grant S2009TIC-1692. This research has been partially performed when
Claudio Soriente was with the University of California, Irvine.

* Corresponding author. Tel.: +39 089 969594; fax: +39 089 969600.
E-mail addresses: castiglione@acm.org, castiglione@ieee.org (A. Castiglione),
ads@dia.unisa.it (A. De Santis), csoriente@fi.upm.es (C. Soriente).

0164-1212/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j,js5.2010.04.062

ments (Adobe Systems Inc., 2009a) are published using the Portable
Document Format and a large number of organizations, institutions
and companies rely on it to exchange and distribute their official
documents. The format has been constantly supported and updated
from its first version in 1991, until the last released version 1.7
which became a standard in July 2008, under the name ISO 32000
(AIIM, 2009). The ECM - Enterprise Content Management (formerly
known as AIIM - Association for Information and Image Manage-
ment) is the leading international non-profit organization focused
on helping users to understand the challenges associated with man-
aging documents, contents, records, and business processes. The
AIIM/ECM also holds the Secretariat for the ISO (International Orga-
nization for Standardization) Technical Committee (TC171) focused
on “Information Management Compliance” issues, responsible for
the standardization process of the Portable Document Format. They
also created a public wiki (PDF Standard Committees, 2010) for the
centralized management of the complex tasks among the various
Committees involved in the standardization process.

While there are several third-party applications that process
PDF files, the three main products developed by Adobe to create,
distribute and read those documents are:

e Adobe Acrobat, used to create, arrange and edit PDF documents;
e Adobe Distiller, used to convert documents written in PostScript
to PDF;

dx.doi.org/10.1016/j.jss.2010.04.062
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:castiglione@acm.org
mailto:castiglione@ieee.org
mailto:ads@dia.unisa.it
mailto:csoriente@fi.upm.es
dx.doi.org/10.1016/j.jss.2010.04.062

1814 A. Castiglione et al. / The Journal of Systems and Software 83 (2010) 1813-1822

e Adobe Reader, used to display PDF documents and allow small
amendments like annotations, text highlight, etc. This application
is freeware and is probably one of the most popular applications
among computer users.

The main advantage of the PDF format is that it allows docu-
ments created within any desktop publishing package to be viewed
in the original typeset design, regardless of the systems where it is
being displayed. Documents with texts, images, hyper-links and
other desirable features in document authoring, can be easily cre-
ated with the packages distributed by Adobe or with any other
authoring application (e.g., Microsoft Office, OpenOffice, LaTeX,
etc.) and then converted to the PDF format. The result is an easy
to distribute, small size document, that will be displayed exactly
in the way it was created, on any platform and using any viewer
application.

Besides being very flexible and portable, PDF documents are also
considered to be secure. Popular document formats like Microsoft
Compound Document File Format (MCDFF) have been proven to
have security flaws that can leak private user information (see
Castiglione etal. (2007)), while PDF documents are widely regarded
as immune to such problems. This is one of the reasons why many
governmental and educational institutions have chosen PDF as
their official document standard.

The paper will start giving a concise overview of the PDF format,
focusing on how data is stored and managed. It will then show how
some features of the PDF format, as well as some design criteria, can
be exploited to retrieve data that are not meant to be published, as
well as private information of both the document editors and read-
ers. In addition, some tools will be introduced in order to analyze
PDF documents and to show the results of the experiments. The
paper will also highlight that PDF standards include some features
that may be used by a malicious user to violate user privacy or to
compromise the security of the system on which the PDF document
is opened.

1.1. Organization

The rest of the paper is organized as follows. Section 2 surveys
related works while Section 3 analyzes the PDF format. Section 4
shows security and privacy issues related to PDF documents and
Section 5 introduces some tools developed by the authors for PDF
document analysis. Section 6 points out how the research con-
ducted in the paper may be used in a digital forensics investigation.
In Section 7 some security considerations and possible solutions are
given. Conclusions are given in Section 8.

2. Related work

Information about the Portable Document Format can be found
in (Adobe Systems Inc., 2010a; PDF Standard Committees, 2010).
Those documents are the main source of information on how PDF
documents are structured and managed by variuos PDF compliant
applications.

Even though information leakage in published documents is a
well known issue, only a few publications investigate the prob-
lem. Byers (Byers, 2004) showed how hidden text can be extracted
from Microsoft Word documents. He collected over 100,000 docu-
ments and compared the text that appears when each document is
opened with Microsoft Word, with the text extracted from the same
documents using widely known text extraction tools. Almost each
processed document had some hidden contents like previously
deleted texts, revisions, etc. Castiglione et al. (2007) conducted a
more extensive study on the popular document format, investi-
gating the way Microsoft Compound documents are created and

structured. The same authors developed some tools to extract doc-
ument hidden metadata as well as sensitive publisher information
and show how to use the slack space responsible of such threat as
a steganographic means.

Several companies and institutions have distributed guidelines
to avoid information leakage in published documents after that the
media reported news about documents published on the Web con-
taining sensitive information which were not supposed to become
public. For example, in May 2005 the Coalition Provisional Author-
ity in Iraq published a PDF document on the “Sgrena-Calipari
Incident”. Black boxes were used to conceal the names of some peo-
ple involved in the incident, but all of them were easily revealed
copying the text from the original document into a text editor
(Wikipedia the Online Encyclopedia, 2009). Several papers discuss
the PDF structure (King, 2004; Bagley et al.,2007) and some of them
introduce tools for content extraction from PDF documents (Chao
and Fan, 2004; Futrelle et al., 2003) or tools to use PDF documents
as a steganographic means (Zhong et al., 2007).

To the best of our knowledge, there is no paper addressing
security and privacy issues in the Portable Document Format.
Otherwise, PDF format (and some of the major products that imple-
ment it) is constantly monitored for security flaws and new patches
are regularly released on the developer website (Adobe Systems
Inc., 2009b). A comprehensive list of patches can be found in the
section “Security bulletins and advisories” of the Adobe website
(Adobe Systems Inc., 2009c¢). Recently, Adobe, aware of the secu-
rity issues due to the JavaScript code that can be embedded in a PDF
file, have alerted the community to disable JavaScript in order to
try to contain the vulnerability (Adobe, 2009) and to update their
products to the latest version (Adobe, 2010). Nevertheless, it is sur-
prising how some features of the format that can be used to expose
sensitive user information are not regarded as “security flaws” (or
at least as a possible problem) and are not addressed by any patch.

3. The Portable Document Format

This section will give a brief overview of the PDF format, high-
lighting the parts that are relevant to our work.

The Portable Document Format is based on the PostScript
(Adobe Systems Inc., 1999) page description language and has been
introduced to improve performances and provide some form of
user interactivity. APDF document consists of a collection of objects
which together describe the appearance of the document pages.
Objects and structural information are all encoded in a single, self
contained, sequence of bytes. The structure of a PDF file has four
main components:

¢ a header identifying the version of the PDF specification to which
the file complies;

e one or more body sections containing the objects that constitute
the document as it appears to the user;

e one or more cross-reference tables storing information and point-
ers to objects stored in the file;

e one or more trailers that provide the location of the cross-
reference tables in the file.

A newly created PDF document has only one body section, one
cross-reference table and one trailer. When a document is modi-
fied, its previous version is not updated, but any changes and new
contents are appended to the end of file, adding a new body sec-
tion, a new section of the cross-reference table and a new trailer.
The incremental update avoids rewriting the whole file, resulting
in a faster saving process, especially when only small amendments
are made to very large files. Objects stored in the body section
have an object number used to unambiguously identify the object

A. Castiglione et al. / The Journal of Systems and Software 83 (2010) 1813-1822 1815

Table 1
An example of cross-reference table.

xref

036

0000000000 65535 f
0000076327 00000 n
0000076478 00000 n
0000076624 00000 n
0000078478 00000 n
0000078629 00000 n
0000078775 00000 n
0000080488 00000 n
0000080639 00000 n

0000100661 00000 n

within the file,a non-zero generation number and a list of key-value
pairs enclosed between the keywords (obj) and (endobj). Genera-
tion numbers are used only when object numbers are reused, that
is, when the object number previously assigned to an object that has
been deleted is assigned to a new one. Due to incremental updates,
whenever an object is modified, a copy of the object with the latest
changes is stored in the file. The newly created copy will have the
same object number as the previous one. Thus, several copies of an
object can be stored in the file, each one reflecting the modifications
made to that object from the time it was created, onwards.

The cross-reference table is composed of several sections and
allows random access to file objects. When a document is created,
the cross-reference table has only one section and new sections
are added every time the file is updated. Each section contains one
entry per object, for a contiguous number of objects. An example of
cross-reference table sectionis given in Table 1. As shown, each sec-
tion starts with the keyword (xref) followed by the object number
of the first object that has an entry in that section and the number
of its entries. Table 1 shows a section with entries of 36 objects,
from object O to object 35. Each entry provides the following infor-
mation:

¢ the object offset in the file;

e the object generation number;

e the free/in-use flag with value n if the object is in use or fif the
object is free, that is, if the object has been deleted.

Object 0 is a special object and it is always marked as free, with
generation number 65535. The latest document (trailer) is stored
at the end of the file and points to the last section of the cross-
reference table. A PDF document is always read from the end (apart
when generated with the “Fast Web View” flag enabled), looking
for the offset relative to the last section of the cross-reference table,
required to identify the objects that constitute the latest version of
the document. Each time the document is updated - adding new
objects or modifying existing ones — a new body, cross-reference
table section and trailer are appended to the file. The body sec-
tion will contain the newly created objects or the updated version
of the existing ones, the cross-reference table section will store
information to retrieve those objects, while the trailer will have
a reference to the newly created cross-reference table section, as
well as a pointer to the previous one.

4. Security and privacy issues

Two main issues are investigated in this paper. The first one is
related to how changes made to PDF documents are handled, while
the second one concerns PDF interactive features.

4.1. Incremental updates

As introduced in Section 3, to speed up document saving, the
PDF standard allows the use of incremental updates. Whenever
an object is modified, a new version of the object is created and
appended to the PDF file. The old version is kept in the file contents
but it will not be parsed when rendering the document (for visual-
ization, printing, etc.). In a similar way, when an object is deleted,
it is not removed from the file contents but it is only marked as
deleted so that the viewer application will skip it when parsing the
file. Even though such design choices cause the PDF file to grow
in size at every modification, it allows for a fast document saving
(King, 2004).

In late December 2002, during one of their meetings, the PDF
Archive Committee raised interest on incremental updates, ques-
tioning the way changes to embedded objects in a PDF document
are handled and suggesting to warn users that “deleted pages are
not really gone” (PDF Working Group, 2002). An official note to
make users aware of the problem was never released and incre-
mental updates are still part of the PDF specification.

Due to old versions of modified or deleted objects not being
deleted from the PDF file contents, but only marked as “not to be
processed”, it is still possible to retrieve them. Deleted objects can
be extracted and visualized while it is possible to display all the
versions of a modified object, from its first version to the one actu-
ally displayed when rendering the document (for a maximum of 10
levels). Suppose that a company distributes among its managers a
PDF document with low confidentiality information, such as the
company’s layout, as well as sensitive information, such as market
strategies and expected balance. Later, the company decides to dis-
tribute the document on the Internet deleting all sensitive contents
by directly editing that PDF file. As the document will retain deleted
objects, it will be possible for anybody to extract those objects from
the file and retrieve the company sensitive data.

It is important to mention that, by using the Adobe Acrobat
products, it is possible to avoid the problems introduced with the
incremental updates by choosing the option “Save As...” instead
of “Save”, where the latter produces an incremental section but
the former completely rewrites the PDF file. By choosing the “Save
As...” option it is possible to set many other parameters which
are intended to remove several pieces of information and personal
data. Fig. 1 shows the options presentin the two sections interesting
for cleaning potentially dangerous information. To reach (and set)
such options the user should navigate in the menu “File” — “Save
As...” — “Format” — “Adobe PDF Files, Optimized” — “Settings” of
the Adobe products. Unfortunately, the default operation is “Save”
and consequently the PDF could be affected by such issue.

4.2. Interactive features

Adobe PDF specifications include a variety of interactive features
that make PDF documents interactive. Itis possible to jump to a spe-
cific location within the document being displayed or to other doc-
uments, run JavaScript code, open URIs or launch applications (see
Adobe Acrobat SDKv. 8.1,2007; Adobe Solutions Network, 2005a,b;
Adobe Acrobat 7.0, 2005). Actions are executed in response to sev-
eral trigger events such as document opening or closing, document
printing, etc. Not all the viewer applications implement interac-
tive features and they would not work if the document is opened
without one of them. Among applications that process interactive
features, not all readers display a dialog to inform the user when-
ever an action is being executed, with the result that, while reading
aPDF document, other programs might be executed or external link
might be resolved without user awareness.

In particular, Adobe products warn a user if a PDF tries to
connect to an external address. While a user can intentionally dis-

1816 A. Castiglione et al. / The Journal of Systems and Software 83 (2010) 1813-1822

Fig. 1. The two panels present in the Adobe products within the “Save As...” function which allow a user to remove some potentially dangerous information. (a) First panel

and (b) second panel.

able the security prompt, all the tests performed by the authors
have been conducted using the default value of this security
parameters, which is to check all the connections and ask the
user for an authorization. Fig. 2 shows the default values of the
configuration that control such security filter. To reach such config-
uration a user should go through the menu “Preferences” — “Trust
Manager” — “Internet Access from PDF Files outside the Web
browser” — “Change Settings...” — “Manager Internet Access” of
the Adobe products.

4.2.1. Interactive features: experimental results and basic attack

The authors have tested the criticality of this issue by prepar-
ing an harmful PDF document and sending it to their co-workers
and acquaintances asking them to open the document and see if
something unusual would happen.

The preparation of this test file has been a very simple task
because it consisted in inserting a “trigger” that will perform
an “action”. This task might be accomplished in a simple way
by using the Adobe Acrobat product and such a way has been
changed by Adobe during the time. Fig. 3 shows a screenshot
of such operation performed by Adobe Acrobat 9.2.0 under
Mac OS X. To achieve such a task it is enough to navigate in
the menu “Advanced” — “Document Processing” — “Document
JavaScripts...” and insert the proper code. As an example, the
following code performs a test on the version of the PDF reader
application (both standalone and browser plug-in) and, depending
on such version, opens the website of the EFF, if the version is less
than 7, or the FSF website otherwise. The example also shows that
the script works well even in presence of a different version of
PDF. This is obtained by using the appropriate JavaScript function
(i.e., getURL () for PDF prior to 1.7 and 1aunchURrL () for the other

A. Castiglione et al. / The Journal of Systems and Software 83 (2010) 1813-1822 1817

Fig. 3. An example of embedding JavaScript code into a PDF document by using Adobe Acrobat.

Fig. 2. The panel which controls the security warning message of Adobe products
(and their default values) resulting when a PDF file attempts to open an external
connection.

versions).

The people surveyed were also asked to answer a brief ques-
tionnaire (that was contained in the PDF document itself) about
their Operating System, PDF document reader, etc. On open, the
document was intended to connect to a target webpage that had
been previously set up. Surprisingly enough, many of the recipi-
ents were not warned about any abnormal behaviour by their PDF
reader application. Of course, some of them were using PDF read-
ers that do not implement interactive features, but others had their
machines connecting to an external link without their consent.

In detail, the PDF test file was sent to over 400 recipients and
almost all of them replied to the questionnaire. Recipients were
mainly university students, researchers and professors, resulting
in a well-educated and technology-savvy participant group. From
the experiments, Adobe Acrobat Reader warns the user about an
outgoing Internet connection only from version 7.0 or greater (not
the initial 7.0 version but all the 7.0.x updated versions). About
75% of the respondents had either Adobe Acrobat Reader version
7.x.x or 8.x.x installed on their machines. Around 20% of those 75%
(i.e., 6.66% of the total) opened the document through their Inter-
net browser (they were reading their email through a WebMail
client) and had it connected to the website silently. 20% of the
respondents opened the PDF document using either Foxit Reader
version 2.x (Foxit Software Company, 2010), Evince (The Evince
Team, 2009) or KPDF (The KPDF Team, 2008) for Linux or the Mac
OS X Preview.app, and no Internet connection was started at all.
Surprisingly, the remaining 5% of the respondents had installed a
very old PDF reader, i.e., Adobe Acrobat Reader versions 5.x.x and
6.X.X.

As previously mentioned, if the document is opened through
a browser, the URI is resolved without user warning and the
webpage contained therein is loaded, even if the latest version of
Acrobat Reader (ver. 9.3.1) is installed. In fact, with these results
in mind, the authors performed a comprehensive test with the
major browsers available on the market in order to check their
behaviour when dealing with such JavaScript code. The tests have
been conducted under Microsoft Windows (XP/Vista/7) and Mac
OS X 10.6.2. The results are shown in Table 2 and point out that
almost all browsers are still vulnerable to such attack even though
all the plug-ins are updated to the latest version (i.e., version 9.3.0
dated 22/12/2009) and an updated antivirus was running on the
machines. In greater detail, for each browser, the authors looked
for the plug-ins responsible for handling a PDF document (by using
the commands resumed in Table 2). The files that implement such

1818 A. Castiglione et al. / The Journal of Systems and Software 83 (2010) 1813-1822
Table 2
Browsers and their vulnerabilities to the PDF interactive features basic attack.
Browser Windows XP/Vista/7 Mac OS X 1.2 How to check plug-ins Version
Mozilla Firefox Vulnerable Ask action About:plugins 3.5.8
Opera Vulnerable Ask action About:plugins 10.10
Safari Vulnerable Vulnerable Help, installed plug-ins 4.0.4
Google Chrome Vulnerable Ask action About:plugins 4.0.249 Win; 5.0.307 Mac
Internet Explorer Vulnerable N/A Tools, manage add-ons 8.0.6001

plug-ins are located in:

for Safari under Mac OS X 10.6.2 and in:

forInternet Explorer 8.0 (AcroIEHelper.dll, AcroIEHelperShim.
d11) and the other four browsers that all share the same plug-in
(the one provided for Mozilla Firefox, nppd£32.d11).

For completeness, the authors checked the files responsible of
the warning message occurring when opening the test PDF docu-
ment with the Acrobat products. That files are located in:[3pt]

under Mac OS X 10.6.2 and Windows XP/Vista/7, respectively.

To sum up, regarding the Windows OS family the problem is not
a100% Windows OS flaw or a 100% PDF issue, but can be considered
mainly anissue related to the implementation of the PDF plug-in(s)
in use by the browsers running the Windows OS family.

Other PDF readers that have been tested did not always resolve
the URI embedded in the test PDF document. A more detailed eval-
uation of the major PDF applications is beyond the scope of this
paper.

4.2.2. Interactive features: an alternative attack

As previously discussed, not all the PDF readers can be exploited
with the attack presented in the previous section. In fact, either
the PDF reader warns the user with a dialog asking to authorize
a remote connection, or, a personal firewall may also warn (and
block) such outgoing connection. To overcome such a problem, this
paper will propose an alternative attack that makes use of DNS
resolver of the machine where the PDF document is opened. The
key idea is to bind a PDF document to a fake Fully Qualified Domain
Name.

These are the sample steps that must be performed in order to
implement such attack:

1. create a fake DNS zone on a machine operated by the malicious
(and controlling) user and enable the verbose log in that DNS
server (at least for the ad-hoc DNS zone) in order to read all the
requests that will arrive;

2. choice the PDF document W that one would like to “track” and
calculate an HMAC (NIST, 2002) of that file:

3. prepare the JavaScript code to embed inside the malicious PDF
file:

where cDate contains a kind of timestamp that is created when
the code is executed (i.e., when the document is opened);

4. inject the prepared JavaScript code inside the PDF file in the same
way as in subsection 4.2.1;

5. the resulting URL just constructed will be something like:
http://18304516092007 .a6e49bc20a12326ac590ef.fakezone.ev-
il.com if the PDF has a HMAC of a6e49bc20a12326ac590ef (by

using a 20-bytes SHA-1 function for the HMAC calculation) and
supposing that it was opened at 18:30:45 of the 16th September
2007.

The cpate and PDFhash are necessary to generate an always
different identifier that will result in an always different DNS query.
This is performed in order to avoid the caching name servers and
to uniquely identify the PDF file and the time when it was opened.

This attack does not warn the PDF reader and is not detected
by nearly the majority of the personal firewalls on the market. In
such a way, the DNS resolver capabilities can be used to trace a PDF
document and track every single user that opens it. It only requires
inserting an action in the document which would connect to a host
that logs the IP addresses of incoming connections.

4.2.3. Interactive features: scenarios

Many newspapers that sell their issues over the Internet in PDF
format might trace IP addresses to check whether a single copy of
an issue is read only by the customer who purchased it or if it has
been illegally redistributed over the Internet and it is read by mul-
tiple unauthorized users. Instead of distributing the newspaper in
PDF format, one customer may share his/her own account. There
are several existing methods to check if someone shares his own
account with other people. Shortly, the newspaper website admin-
istrators can substantially check the number of hits to their service
coming from different IP addresses in a given (short) time. An elec-
tronic newspaper system can make use of the idea by embedding
in each copy of the newspaper a call back action to the newspaper
server (or an ad-hoc system) revealing something that uniquely
identifies that copy. In such a way, administrators can discover
abuses and disable malicious accounts.

Another prominent example comes from the review process
of scientific papers submitted for publication (in a journal, a con-
ference or elsewhere), either if the papers are submitted in PDF
format or if a PDF file is generated upon the submission of docu-
ment sources (for example LaTeX sources). To guarantee fairness
in the selection criteria, many conference committees endorse a
double-blind review process where reviewers and authors keep
their identity hidden from each other (Snodgrass, 2007; Wikipedia
the Online Encyclopedia, 2010; McKinley, 2008). If the PDF doc-
ument opens a connection to an host controlled by the authors,
they will be able to identify the reviewers and later try to influence
their decision. As online review platforms are becoming popular,
PDF documents are more likely to be opened through a browser, for
example when a paper is opened for the first time from the review-
ing system. As stated in Section 4.2.1, even when using an updated
version of the Acrobat Reader, when opening a PDF document from
a link on a webpage, it does not warn the user of the outgoing con-
nection, letting the malicious PDF connect to the tracking website

http://18304516092007_a6e49bc20a12326ac590ef.fakezone.evil.com/

A. Castiglione et al. / The Journal of Systems and Software 83 (2010) 1813-1822 1819

Table 3
The MasterTable.log generated by the tool ModPDF.

Table 4
An example of the file MetadataList.dat generated by the tool ModPDF.

16: Type = [EmbeddedFile, subType = no type
0 - 0000006735 00000 n

17: Type = [Page, subType =no type
0 - 0000000018 00001 f

18: Type = /Page, subType =no type
0 - 0000000023 00001 f

19: Type = [Pages, subType = no type
0 - 0000010787 00000 n
1 - 0000183745 00000 n

20: Type =no type, subType =no type
0 - 0000010849 00000 n

created by the authors of the paper. Moreover, by using the attack
proposed in Section 4.2.2, a malicious author would probably result
ina more hidden action of tracking his paper. It is worth noting that,
even if a PC expert referee could be alerted - either by a connection
attempt or by the opening of a webpage without asking for it - such
actions, probably, would not alarm the average PC user.

5. Tools

The paper will introduce three tools to analyze PDF documents
and to retrieve hidden data and information regarding the past ver-
sion of a PDF document. They can be downloaded at the project
website http://www.dia.unisa.it/research/pdf. The tools, written in
Clanguage, are just a simple proof of concept and are not intended
to be a full application. The authors tested such tools on more than
35000 PDF files, downloaded from various Internet domains. All
the documents are publicly available and their download has been
automated using free Web downloader applications in conjunction
with popular search engines.

AnalyzePDF analyzes PDF documents and provides information
about the number of stored cross-reference table sections, that is
the number of times one or more document objects were modi-
fied. It takes as input a directory containing PDF documents and
produces a log file with the list of the processed PDF documents,
their size in bytes and the number of cross-reference table sections
found. From the experiments, more that 10% of analyzed docu-
ments had two or more cross-reference tables, that means that they
were edited at least one time.

Once PDF documents with two or more cross-reference table
sections have been identified, a further analysis is performed with
ModPDF. It takes a single PDF document as input and provides
information on all its objects with a list of their changes. ModPDF
produces three output files:

® MasterTable.log
® ModifiedObjects.log
® MetadataList.dat

MasterTable.log lists all the objects stored in a PDF docu-
ment. For each object, ModPDF provides the object number, its type,
subtype and a list with one entry for each time the object was mod-
ified. Each entry provides the offset where that copy of the object
is stored in the file, the object generation number and the free/in-
use flag. Objects which have never been modified will only have
one entry. Table 3 shows an example of MasterTable.log. It shows
that object 19 was modified once: its original version is stored at
offset 10787 while its updated version is stored at offset 183745.
Only the latter will be parsed by the PDF reader application during
rendering. Objects 16-18 and object 20 were never modified after
their creation.

Session #0

ModDate D:20060210171944 +01°00’
CreationDate D:20060210165921+01°00’
Title Indice

Creator QuarkXPress: pictwpstops filter 1.0
Author Gizzo

Producer Acrobat Distiller 6.0.1 for Macintosh

Session #1

ModDate D:20060212173149 +01°00’
CreationDate D:20060210165921 +01°00’
Title Indice

Creator QuarkXPress: pictwpstops filter 1.0
Author Gizzo

Producer Acrobat Distiller 6.0.1 for Macintosh

Fig. 4. Two different versions of the same paragraph of a PDF document. (a) First
version and (b) final version.

ModifiedObjects.log provides the same information as the
former log file, but only for objects that were modified at least once.

For each update to the PDF document, MetadataList .dat lists
the following information:

e date/time when modifications were applied to the document;
e date/time when the document was created;
e document title, creator, author, and producer.

Table 4 shows the content of MetadataList .dat resulting from
the analysis of one of the collected documents with ModPDF. It
shows that the file was created by user “Gizzo” on a Macintosh.
He started editing the file at 4:59 p.m. of the 10th February 2006
and saved his work at 5:19 p.m. on the same day. The document
was updated 2 days later and saved at 5:31 p.m.

The third and last tool, MakeOIdPDF takes as input a PDF docu-
ment and reconstructs all its previous versions, starting from the
original one. While previous tools (AnalyzePDF and ModPDF) iden-
tify objects that have been modified, with MakeOIdPDF it is possible
to recreate the different versions of the document and, of course,
the different versions of modified objects. Fig. 4 shows two different
versions of the same paragraph within a PDF document. The second
one is a noticeable example of the MakeOIdPDF which produced
13 different versions. Fig. 4(a) shows a paragraph as it appeared
when the document was created, while Fig. 4(b) shows the same
paragraph as it appears in the final version of the document. After
several modifications, the link that originally appeared at the end
of the paragraph was removed before publication on the Internet.

6. Information forensics

The issues illustrated in the paper may also be used for a good
reason and not only to undermine the security and privacy of users.
Nowadays, most of the investigations carried out by Public Prose-
cutor’s Officers or Law Enforcement Agencies entwine with digital
information. The simplest type of digital information is “the file”
and, among such countless vastness of files, PDF files are the com-
monest. Thus, the studies performed in this paper may be of great
help to investigators and forensic analysts who day by day come
across such files.

http://www.dia.unisa.it/research/pdf

1820 A. Castiglione et al. / The Journal of Systems and Software 83 (2010) 1813-1822

The way in which PDF files are managed, with the consequential
problem of incremental updates (see Section 4.1), and the metadata
contained therein, may be used during a digital forensics analy-
sis to look for circumstantial evidence which, linked together with
other data, may give useful directions to ascertain the causes of a
crime/offence. For example, by using the tools introduced in Sec-
tion 5, an investigator may extract a lot of information regarding
the time a given PDF file has been created/modified, the Operat-
ing System running on the machine that produced that document
together with therelative application that has been used to create it,
the author name of the document which, if not explicitly modified,
is the same of the logon name, and other useful information. Fur-
thermore, the possibility to reconstruct all the versions of a given
PDF file may be very helpful in the case of a dispute in which there
is the eventuality that a file has been deliberately tampered with.

The interactive features shown in Section 4.2 may be used during
adigital investigation to root out a criminal who is hiding behind an
Internet connection. An investigator should prepare a well-crafted
PDF document that in some way should be obtained by the prose-
cuted person. The PDF file will act as a bait and, depending on what
kind of attack will be successful (the one in subsection 4.2.1 or the
one in subsection 4.2.2), would provide the investigators with the
IP address of the crook together with all the data that a browser
can provide such as Operating System, browser type, browser plug-
ins, time-zone, language, etc. (see Electronic Frontier Foundation,
2010; Gemal, 2010 for the latest information on how to acquire
a very large quantity of user data just “looking” at the browser’s
behaviour). It is important to highlight that with the second kind of
attack (subsection 4.2.2) an investigator will find out the IP address
of the criminal even if the connection if performed by means of a
proxy or a chain of proxies because the logged IP address will be the
one resulting from the DNS query and not from the HTTP connec-
tion. To overcome such attack, a criminal should use a DNS-proxy
which, to our knowledge, is not so familiar and simple to find/use.

The information forensics is not the main topic of the paper but
the authors would like to encourage the digital forensics commu-
nity to focus their attention on a more detailed analysis of the file
contents and not only on the information enclosed on the filesystem
that hosts that file.

7. Security considerations and possible solutions

The scenarios illustrated in Section 4.2.3 are given only as exam-
ples. We can go far with our imagination by creating other kinds
of attacks trying to embed a malicious executable code into a PDF
file! thatin a given moment (as always triggered by an event) drops
an executable code into the filesystem of the machine on which
the PDF file was opened. It is like a virus-dropper, popular in the
nineties (the MS-DOS age). This kind of attack is possible only with
very early versions of Adobe Acrobat (until version 4.x.x) because
Adobe released patches to limit the access to the filesystem by a PDF
file. This flaw resulted in the proliferation of some worms/virus for
PDF files that has been in the wild until few years (see F-Secure
Corporation, 2001; US-CERT, 2000; Shankland, 2001; Avira GmbH,
2008). Aslightly different kind of attack, similar to the previous one,
is to consider the PDF file as a “container” in which private informa-
tion (i.e., IP address and so on) may be stored. The key idea is that
the PDF file itself steals and stores the information to be carried out.
When the PDF file travels out from the victim machine, it will leak
the stolen information. Like the previous attack, even this cannot
be performed due to limitations provided by recent modifications
to the PDF standard.

1 The executable file may be encoded in Base64 and embedded in a section marked
as “deleted” in the PDF file in order to not be processed by the PDF reader.

Of course firewalls, NAT devices and anonymizers would pre-
vent such scenarios, but, as the experiments show, many users
are not enough concerned with privacy to set up necessary coun-
termeasures. Moreover, while users are suspicious about opening
executables or Microsoft Office files, PDF documents are not (yet)
regarded as harmful files.

The paper does not give comprehensive solutions to the threats
shown by the authors because their main intention is to raise the
awareness of the security and privacy issues that may occur by
using the PDF standard. Moreover, it is not easy to suggest possible
solutions because of the complexity of the problem and due to the
wide diffusion of the format. Also, the features that are exploited
as possible problems has been introduced to improve the format,
and removing such features would not be a good idea. The hope
is that the Standardization Committee (AIIM, 2009) will consider
such privacy and security issues. This is the direction that the Com-
mittee has already taken with of the creation of several type of
PDF (PDF Standard Committees, 2010) according to the area of
use (PDF/A [Archive], PDF/E [Engineering], PDF/UA [Universal Acces-
sibility], PDF/H [Healthcare], PDF/X [Exchange/Production Printing],
PDF/VT [Variable & Transactional Printing]).

It is worth noting that, starting from Acrobat 8, it seems pos-
sible to remove sensitive information from a PDF file. This can
be achieved by using the “Examine Document...” function in the
“Document” menu within the Acrobat application (Adobe Systems
Inc., 2010b). Unfortunately, even after having performed such a
cleaning operation, the problem still remains unresolved with the
resulting file again having the same “functionality” of the input
file. The motivations of such behaviour are not clear but it could
depend on the fact that the cleaning operation performed by the
“Examine Document...” does not inspect in the proper way the
PDF document. Other data such as author information and com-
ment references are removed in the right way after the sanitization
process performed by the previously described operation. A knowl-
edgable user, aware of the problem, can easily remove (almost) all
this unwanted information by using the redaction tool provided
by Adobe Acrobat (see Adobe Inc., 2010) and by saving the PDF file
with the function “Save As. . .” in place of “Save”. Moreover, the vast
majority of PDF files are created and never manipulated, or at most
they contain comments and annotations that (usually) do not have
security or privacy implications.

It is fair to say that the problem of information leakage with
many file formats usually depends on the application that is con-
suming them that does not behaves sensibly and not depends on the
file format itself. The same considerations also apply to the problem
introduced by the execution of JavaScript code, at least for the first
kind of attack. In order to avoid the second attack, the Operating
System or any firewall - that possibly could be in use on the Oper-
ating System where the PDF consumer’s application runs - should
be in charge of the protection.

Despite the statistics resulting from the conducted experiments,
which show that only few users have encountered the problem
of the automatic webpage opening, it is important to recall that
today most of the users, open a PDF file during a Web surfing and
in consequence they are mostly still vulnerable to such issues.

To successfully contain, and possibly avoid, problems related
to the review process of scientific papers (see Section 4.2.3), the
online Conferencing Systems should take measures to control (and
eventually “clean”) the content of a PDF file upon submission or
just after the automatic compilation from the source (for example
in presence of LaTeX sources). This is the direction undertaken by
some major scientific publishers (i.e., the IEEE PDF-eXpress system
at IEEE, 2008) which established a service that aims to perform
many checks to a paper before the final submission. Unfortunately
such checks are only carried out when submitting the final camera-
ready version of the paper and not before the review phase, in which

A. Castiglione et al. / The Journal of Systems and Software 83 (2010) 1813-1822 1821

the papers are dispatched to the referees and when anonymity is
the key factor to guarantee the fairness of the review process.

Another example of the awareness that a PDF file can be “dan-
gerous” inthe review process of a paperis the sanitization operation
that the publisher Elsevier has introduced in the EES (Elsevier Edito-
rial System) in which, in order to maintain the reviewer anonymity,
the system EES sanitize the reviewer attachment (Elsevier B.V.,
2009) by removing personal information from Microsoft Office and
PDF files uploaded by Reviewers with their reviews. While, on one
hand, this method sanitizes the file(s) containing the review (i.e.,
the Reviewers comments), on the other hand it does not sanitize the
file containing the manuscript uploaded by the authors. It is worth
noting that, at least for the Journal of Systems and Software, the EES
does not allow authors to upload a PDF file but only the source files
(i.e., the LaTeX sources) and as a consequence it is immune from
such kind of attacks.

8. Conclusions

Portable Document Format is the most popular standard for
document exchange over the Internet. Besides its portability, it
provides its own security features such as encryption and digital
signature and it is regarded as a secure document standard if com-
pared to other popular document file formats. The paper discusses
that the reputation of secure format for the PDF documents is not
completely right and shows that the standard is not immune to
some privacy issues that affect its competitors. Given a PDF file, it
is possible to retrieve a previous version of the document and dis-
play information not meant to be published. The authors developed
some simple tools that can provide sensitive document informa-
tion as well as any version of the document, from its creation to
its most up-to-date version. Another security issue, is the possibil-
ity to trigger events when a PDF document is opened, printed, etc.
The experiments showed that it is possible to trace the reader of
a PDF document any time it is accessed, provided that the device
where the file is read is connected to the Internet. The authors also
give some cues on how to use their findings in a digital forensics
investigation.

The authors consider such threats of great interest to the whole
community due to the large use of electronic documents in today
communications. In particular, they think that the scientific com-
munity have to consider such issues because it might compromise
the fairness of the review process of scientific papers for journal or
conference publication.

Acknowledgments

The authors wish to thank people who participated in the sur-
vey. They also wish to thank Vincenzo Spina and Antonio Fiorillo for
their valuable discussions and help. A special thank goes to the JSS
anonymous reviewers for their beneficial comments and directions.

References

Adobe, 2009. Security Advisory for Adobe Reader and Acrobat.
http://www.adobe.com/support/security/advisories/apsa09-07.html (Decem-
ber 15 2009).

Adobe, 2010. Security Updates Available for Adobe Reader and Acrobat.
http://www.adobe.com/support/security/bulletins/apsb10-07.html (February
17 2010).

Adobe Acrobat 7.0, 2005. Acrobat JavaScript Scripting Reference.
http://partners.adobe.com/public/developer/en/acrobat/sdk/Acro]S.pdf (June
2005).

Adobe Acrobat SDK v. 8.1, 2007. JavaScript for Acrobat API Reference.
http://www.adobe.com/devnet/acrobat/pdfs/js-api-reference.pdf (April 2007).

Adobe Inc., 2010. Adobe 9 Pro Extended, Removing sensitive content.
http://help.adobe.com/en_US/Acrobat/9.0/3D/WS4E397D8A-B438-4b93-
BB5F-E3161811C9C0.w.html (February 2010).

Adobe Solutions Network, 2005. Acrobat JavaScript Scripting Guide.
http://partners.adobe.com/public/developer/en/acrobat/sdk/pdf/javascript/Ac-
roJSGuide.pdf (September 2005).

Adobe Solutions Network, 2005. Adobe Acrobat 7.0: PDF Open Parameters.
http://partners.adobe.com/public/developer/en/acrobat/PDFOpenParameters.
pdf (July 2005).

Adobe Systems Inc., 1999. PostScript Language Reference, Third Edition. http://
partners.adobe.com/public/developer/ps/index_specs.html (February 1999).
Adobe Systems Inc., 2009. Adobe Portable Document Format. http://
www.adobe.com/products/acrobat/adobepdf.html (Last updated December

2009).

Adobe Systems Inc., 2009. Latest Product Updates. http://[www.adobe.
com/downloads/updates/ (Last updated December 2009).

Adobe Systems Inc., 2009. Security bulletins and advisories. http://www.adobe.com
[support/security/ (Last updated December 2009).

Adobe Systems Inc., 2010. Adobe PDF Reference Archives. http://www.adobe.
com/devnet/pdf/pdf_reference_archive.html (Last updated January 2010).

Adobe Systems Inc, 2010. Examine a PDF for hidden content.
http://help.adobe.com/en_-US/Acrobat/8.0/Professional/help.html?content=WS
7E9FA147-10E3-4391-9CB6-6E44FBDA8856.html.

AlIM, 2009. PDF Reference Bibliography. http://www.aiim.org/standards/article.asp
x?ID=33223 (Last updated December 2009).

Avira GmbH, 2008. Avira issues a warning about polymorphous harmful PDFs.
http://www.avira.com/en/security_news/polymorphous_harmful_pdfs.html
(November 2008).

Bagley, S.R., Brailsford, D.F,, Ollis, J.A., 2007. Extracting reusable document com-
ponents for variable data printing. In: DocEng’'07: Proceedings of the ACM
Symposium on Document Engineering. ACM Press, New York, NY, USA, pp.
44-52.

Byers, S., 2004. Information leakage caused by hidden data in published documents.
IEEE Security and Privacy 2 (2), 23-27.

Castiglione, A., De Santis, A., Soriente, C., 2007. Taking advantages of a disadvan-
tage: digital forensics and steganography using document metadata. Journal of
Systems and Software, Elsevier 80, 750-764.

Chao, H., Fan,]., 2004. Layout and Content Extraction for PDF Documents. Lecture
Notes in Computer Science LNCS 3163, 213-224.

Electronic Frontier Foundation, 2010. How Unique - and Trackable - Is Your
Browser? http://panopticlick.eff.org/ (January 2010).

Elsevier B.V., 2009. Customer Support, Reviewer Attachments Not Sanitised by
EES. http://epsupport.elsevier.com/al/12/1/article.aspx?aid=2090 tab=browse
bt=4n (December 2009).

Foxit Software Company, 2010. Foxit Reader. http://www.foxitsoftware.com (Febru-
ary 2010).

F-Secure Corporation, 2001. F-Secure Virus Descriptions: PDF Worm. http://www.f-
secure.com/v-descs/pdf.shtml (August 2001).

Futrelle, R.P., Shao, M., Cieslik, C., Grimes, A.E., 2003. Extraction, layout analysis and
classification of diagrams in PDF documents. In: ICDAR’03: Proceedings of the
Seventh International Conference on Document Analysis and Recognition. IEEE
Computer Society, Washington, DC, USA, pp. 1007-1013.

Gemal, H., 2010. Browser Spy. http://www.browserspy.dk/ (January 2010).

King, J.C., 2004. A format design case study: PDF. In: HYPERTEXT'04: Proceedings of
the Fifteenth ACM Conference on Hypertext and Hypermedia. ACM Press, New
York, NY, USA, pp. 95-97.

McKinley, K.S., 2008. Improving Publication Quality by Reducing Bias with
Double-Blind Reviewing and Author Response, ACM SIGPLAN Notices.
http://www.cs.utexas.edu/users/mckinley/notes/blind.html (August 2008).

National Institute of Standards and Technology (NIST), 2002. The
Keyed-Hash Message Authentication Code (HMAC) (FIPS PUB 198).
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf (March 2002).

PDF Standard Committees, 2010. PDF Standards Implementations Wiki.
http://pdf.editme.com/ (Last updated February 2010).

PDF Working Group, 2002. PDF-Archive Draft Meeting Minutes.
http://www.aiim.org/documents/standards/pdf-a2003-001_dec_min.pdf
(December 2002).

Shankland, S., 2001. New virus travels in PDF files. http://www.news.com
[New+virus+travels+in+PDF+files/2100-1001-3-271267.html (August 2001).

Snodgrass, R.T., 2007. Editorial: single versus double-blind reviewing. ACM Trans-
actions on Database Systems 32 (1), 1.

The Evince Team, 2009. Evince—Simply a Document Viewer.
http://www.gnome.org/projects/evince/ (Last updated September 2009).

The Institute of Electrical and Electronics Engineers, 2008. IEEE PDF-eXpress.
http://www.pdf-express.org/ (August 2008).

The KPDF Team, 2008. KPDF Reader. http://kpdf.kde.org/ (Last updated August
2008).

United States Computer Emergency Readiness Team (US-CERT), 2000. Vulnerability
Note VU#31554. http://www.kb.cert.org/vuls/id/31554 (November 2000).
Wikipedia the Online Encyclopedia, 2009. The Calipari Incident. http://
en.wikipedia.org/wiki/Nicola_Calipari/, http://en.wikipedia.org/wiki/Rescue_of

_Giuliana_Sgrena/ (Last updated December 2009).

Wikipedia the Online Encyclopedia, 2010. Peer Review
http://en.wikipedia.org/wiki/Peer._review (Last updated January 2010).

Zhong, S., Cheng, X., Chen, T., 2007. Data hiding in a kind of PDF texts for secret
communication. International Journal of Network Security 4 (1), 17-26.

Process.

Aniello Castiglione joined the Dipartimento di Informatica ed Applicazioni “R. M.
Capocelli” of Universita di Salerno in February 2006. He received a degree in Com-

http://www.adobe.com/support/security/advisories/apsa09-07.html
http://www.adobe.com/support/security/bulletins/apsb10-07.html
http://partners.adobe.com/public/developer/en/acrobat/sdk/AcroJS.pdf
http://www.adobe.com/devnet/acrobat/pdfs/js_api_reference.pdf
http://help.adobe.com/en_US/Acrobat/9.0/3D/WS4E397D8A-B438-4b93-BB5F-E3161811C9C0.w.html
http://partners.adobe.com/public/developer/en/acrobat/sdk/pdf/javascript/AcroJSGuide.pdf
http://partners.adobe.com/public/developer/en/acrobat/PDFOpenParameters.pdf
http://partners.adobe.com/public/developer/ps/index_specs.html
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.adobe.com/downloads/updates/
http://www.adobe.com/support/security/
http://www.adobe.com/devnet/pdf/pdf_reference_archive.html
http://help.adobe.com/en_US/Acrobat/8.0/Professional/help.html?content=WS7E9FA147-10E3-4391-9CB6-6E44FBDA8856.html
http://www.aiim.org/standards/article.aspx%3FID=33223
http://www.avira.com/en/security_news/polymorphous_harmful_pdfs.html
http://panopticlick.eff.org/
http://epsupport.elsevier.com/al/12/1/article.aspx%3Faid=2090%20tab=browse%20bt=4n
http://www.foxitsoftware.com/
http://www.f-secure.com/v-descs/pdf.shtml
http://www.browserspy.dk/
http://www.cs.utexas.edu/users/mckinley/notes/blind.html
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://pdf.editme.com/
http://www.aiim.org/documents/standards/pdf-a2003-001_dec_min.pdf
http://www.news.com/New+virus+travels+in+PDF+files/2100-1001_3-271267.html
http://www.gnome.org/projects/evince/
http://www.pdf-express.org/
http://kpdf.kde.org/
http://www.kb.cert.org/vuls/id/31554
http://en.wikipedia.org/wiki/Nicola_Calipari/
http://en.wikipedia.org/wiki/Rescue_of_Giuliana_Sgrena/
http://en.wikipedia.org/wiki/Peer_review

1822 A. Castiglione et al. / The Journal of Systems and Software 83 (2010) 1813-1822

puter Science and his Ph.D. in Computer Science from the same university. He is a
reviewer for several international journals (Elsevier, Hindawi, IEEE, Springer) and he
has been a member of international conference committees. He is a Member of var-
ious associations, including: IEEE (Institute of Electrical and Electronics Engineers),
of ACM (Association for Computing Machinery), of IEEE Computer Society, of IEEE
Communications Society, of GRIN (Gruppo di Informatica) and of [ISFA (International
Information System Forensics Association, Italian Chapter). He is a Fellow of FSF
(Free Software Foundation) as well as FSFE (Free Software Foundation Europe). For
many years, he has been involved in forensic investigations, collaborating with sev-
eral Law Enforcement agencies as a consultant. His research interests include Data
Security, Communication Networks, Digital Forensics, Computer Forensics, Security
and Privacy, Security Standards and Cryptography.

Alfredo De Santis received a degree in Computer Science (cum laude) from the
Universita di Salerno in 1983. Since 1984, he has been with the Dipartimento di
Informatica ed Applicazioni of the Universita di Salerno. Since 1990 he is a Professor
of Computer Science. From November 1991 to October 1995 and from November

1998 to October 2001 he was the Chairman of the Dipartimento di Informatica
ed Applicazioni, Universita di Salerno. From November 1996 to October 2003 he
was the Chairman of the PhD Program in Computer Science at the Universita di
Salerno. From September 1987 to February 1990 he was a Visiting Scientist at IBM
T. J. Watson Research Center, Yorktown Heights, New York. He spent August 1994
at the International Computer Science Institute (ICSI), Berkeley CA, USA, as a Vis-
iting Scientist. From November 2009 he is in the Board of Directors of Consortium
GARR (the Italian Academic & Research Network). His research interests include
Algorithms, Data Security, Cryptography, Information Forensics, Communication
Networks, Information Theory, and Data Compression.

Claudio Soriente received a Ph.D. in Computer Science from the Universita di
Salerno and a Ph.D. in Networked Systems from University of California, Irvine. He
is currently a post-doctoral researcher at the Facultad de Informatica of the Univer-
sidad Politécnica de Madrid. His research interests include Security of Distributed
Systems, and Wireless Sensor Networks.

	Security and privacy issues in the Portable Document Format
	Introduction
	Organization

	Related work
	The Portable Document Format
	Security and privacy issues
	Incremental updates
	Interactive features
	Interactive features: experimental results and basic attack
	Interactive features: an alternative attack
	Interactive features: scenarios

	Tools
	Information forensics
	Security considerations and possible solutions
	Conclusions
	Acknowledgments
	References

