
A Parametrized Algorithm that Implements

Sequential, Causal, and Cache Memory

Consistencies

Ernesto Jiménez b, Antonio Fernández a, Vicent Cholvi c,∗

aUniversidad Rey Juan Carlos, 28933 Móstoles, Spain

bUniversidad Politécnica de Madrid, 28031 Madrid, Spain

cUniversitat Jaume I, 12071 Castellón, Spain

Abstract

In this paper we present an algorithm that can be used to implement sequential,
causal, or cache consistency in distributed shared memory (DSM) systems. For
this purpose it has a parameter that allows to choose the consistency model to
be implemented. We can also use our algorithm such that not all processes have
the same value in this parameter (we have shown the resulting consistency). This
characteristic allows to choose a concrete consistency model but implementing it
with the algorithm more efficient in each case (in function of the requirements
of the applications). As far as we know, this is the first algorithm proposed that
implements cache coherence.

In our algorithm, when implementing causal and cache consistency all read and
write operations are executed locally (i.e., are fast). It is known that no sequential
algorithm has only fast memory operations. However, in our algorithm, when im-
plementing sequential consistency all write operations and some read operations are
fast. The algorithm uses propagation and full replication, where values written by
a process are propagated to the rest of processes. It works in a cyclic turn fashion,
with each process of the DSM system broadcasting one message in its turn. The
values written by the process are sent in the message (instead of sending one mes-
sage for each write operation), but unnecessary values are excluded. All this allows
to control the amount of message traffic due to the algorithm.

Key words: Distributed shared memory, causal consistency, sequential
consistency, distributed systems, coherency models.

∗ Corresponding author. Address: Departamento de Lenguajes y Sistemas In-
formáticos, Universitat Jaume I, Campus de Riu Sec, 12071 Castellón (Spain).
Email: vcholvi@uji.es

Preprint submitted to Elsevier Science 20 December 2006



1 Introduction

Distributed shared memory (DSM) is a well-known mechanism for inter-
process communication in a distributed environment [1,2]. Roughly speaking,
it consists of using read and write operations for inter-process communication
thus hiding from the programmer the particular communication technique em-
ployed so that they do not need to be involved in the management of messages.

In general, in order to increase concurrency, most DSM protocols support
replication of data. With replication, there are copies (replicas) of the same
variables in the local memories of several processes of the system, which al-
lows these processes to use the variables simultaneously. However, in order to
guarantee the consistency of the shared memory, the system must control the
replicas when the variables are updated. That control can be done by either
invalidating outdated replicas or by propagating the new variable values to
update the replicas. When propagation is used, a replica of the whole shared
memory is usually kept in each process.

An interesting property of any algorithm implementing a consistency model is
how long can a memory operation take. If a memory operation does not need
to wait for any communication to finish, and can be completed based only on
the local state of the process that issued it, it is said that the operation is
fast, which is a very desirable feature. An algorithm is fast if all its operations
are fast. For instance, one of the most widely known memory models, the
causal consistency model [3], has been implemented in a fast way a number
of times [3–5]. On the contrary, another of the widely known memory models,
the sequential [6], has been shown that cannot be implemented in a fast man-
ner [7]. This impossibility result restricts the efficiency of any implementation
of sequential consistency[8,9].

Our Work

In this paper, we introduce a parametrized algorithm that implements sequen-
tial, causal, and cache consistency [10] and allows us to change the model it
implements on-line. The main reasons to choose these three models of con-
sistency are the following. It has been shown that many practical distributed
applications require competing operations (i.e., operations that need synchro-
nization among them) ([11]). We have chosen to implement the sequential
consistency model because it is the most popular proposed model that pro-
vides competing operations (beside atomic consistency model ([12]), which
is more restrictive). However, it has also been shown that there are several
classes of applications which when executed with algorithms that implement

2



causal consistency behave as sequentially consistent ([3,13]). Hence, we have
also chosen to implement the causal consistency model with an algorithm
where all memory operations are fast, and in this manner to avoid the effi-
ciency problems of sequential consistency algorithms ([7]). The cache model
is also included, even though it is not so popular, because it is extremely sim-
ply integrated in our algorithm and it has an interest (at least theoretical)
for applications that require competing operations but only on the same vari-
able. Furthermore, as far as we know, this is the first algorithm proposed to
implement cache consistency.

In order to increase concurrency, most DSM algorithms support replication
of data. With replication, there are copies (replicas) of the same variables
in the local memories of several processes of the system, which allows these
processes to use the variables simultaneously. However, in order to guarantee
the consistency of the shared memory, the system must control the replicas
when the variables are updated. That control can be done by either invali-
dating outdated replicas or by propagating the new variable values to update
the replicas. When propagation is used, a replica of the whole shared memory
is usually kept in each process. Our algorithm uses full propagation and uses
broadcasts to perform such a task. It works as follows: a write operations is
propagated from the process that issues it to the rest of processes so that
they can apply it locally. However, write operations are not propagated im-
mediately. The algorithm works on a cyclic turn fashion, with each process
broadcasting one message in its turn. This scheme allows a very simple control
of the load of messages in the network, since only one message is sent by each
process at its turn. That makes several write operations to be grouped in a
single propagation message, thus reducing the network load.

When implementing causal and cache consistency, all the operations in our
algorithm are fast. Obviously, this is not the case for the sequential model
(remember that, from the results in [7], it is derived the impossibility of having
all the memory operations fast). However, even in the case of the sequential
model, all write operations are always fast. In turn, this does not happen for
read operations, but there is only one situation where read operations must
be non–fast: when the process that issues that read operation has not issued,
since its last turn, any write operations on the variable being read and has
issued some write operation on another variable. In this case, the process must
wait until reaching its turn.

Comparison with Previous Work

From the set of algorithms that implement DSM, two of them have features
similar to those presented in this paper. The first one, which has been pro-

3



posed by Afek et al. [14] (for sequential memory), they also ensure that write
operations will be fast. Also, read operations are fast except for some situa-
tions. But those situations are more general than that in our algorithm, which
makes our algorithm more ”fast”. Furthermore, we do not send each variable
update in a single message as it is done in [14] and we can also bound the
number of messages sent. Finally, in [14] it is assumed that there is a com-
munication medium among all processes (and with the shared memory) that
guarantees total order among concurrent write operations. In our case, we do
not have such a restriction and enforce the order of the operations by using a
cyclic turn technique.

On the other hand, in [13], the authors propose an algorithm that implements
three consistency models (sequential, causal and a hybrid between both mod-
els). Such an algorithm can dynamically switch among these three consistency
models. However, there are a number of differences with the algorithm we pro-
pose. First, their algorithm is designed separating the propagation mechanism
from the consistency policy. On the contrary, in our algorithm the propaga-
tion mechanism is enough to maintain the consistency model. Furthermore,
in their implementation they use an adaptation of vector clocks [15] (called
version vectors) which results in a big waste of memory in each node, and big-
ger messages to send through the network. Finally, their implementation also
forces several restrictions to achieve a total order: a) two update transactions
can not be executed concurrently, and b) no update transaction is allowed
whenever query transactions are ongoing.

The rest of the paper is organized as follows. In Section 2 we introduce basic
definitions. In Section 3 we introduce the algorithm we propose. In Sections 4,
5, and 6 we prove the correctness of our algorithm. In Section 7 we provide
an analysis of the complexity of our algorithm. In Section 8 we show the
consistency when not all processes are executing our algorithm with the same
parameter, and in Section 9 we present our concluding remarks.

2 Definitions

In this paper we assume a distributed system that consists of a set of n

processes (each uniquely identified by a value in the range 0...n−1). Processes
do not fail and are connected by a reliable message passing subsystem. These
processes use their local memory and the message passing system to implement
a shared memory abstraction. This abstraction is accessed through read and
write operations on variables of the memory. The execution of these memory
operations must be consistent with the particular memory consistency model .

Each memory operation acts on a named variable and has an associated value.

4



A write operation by process p, denoted wp(x)v, stores the value v in the
variable x. Similarly, a read operation, denoted rp(x)v, reports to the process
p that issued it the value v stored in the variable x by write operation. When it
doesn’t matter the process that performs the operation, we simply will denote
them as w(x)v and r(x)v. To simplify the analysis, we assume that a given
value is written at most once in any given variable and that the initial values
of the variables are set by using write operations.

In this paper we present an algorithm that uses replication and propagation.
We assume each process holds a copy of the whole set of variables in the shared
memory. When needed, we use xp to denote the local copy of variable x in
process p. Different copies of the same variable can hold different values at
the same time.

We call α to the set of read and write operations obtained in an execution of
the memory algorithm.

Now we define an order among the operations observed by the processes in an
execution of the memory algorithm.

Definition 1 (Execution Order) Let op and op ′ ∈ α. Then op precedes
op ′ in the execution order, denoted op ≺ op ′, if:
1. op and op ′ are operations from the same process and op is issued before
op ′,
2. op = w(x)v and op ′ = r(x)v, or
3. ∃op ′′ ∈ α : op ≺ op ′′ ≺ op ′

From this last definition, we also derive the non-transitive execution order
(denoted as ≺nt) as a restriction of the execution order if the transitive closure
(i.e., the third condition) is not applied. Note that if op ≺nt op ′, then op has
been executed before op ′. Hence, if op ≺ op ′, then op has also been executed
before op ′. If op ≺ op ′, we define by related sequence between op and op ′

a sequence of operations op1, op2, . . . , opm such that op1 = op, opm = op ′,
and opj ≺nt opj+1 for 1 ≤ j < m.

We say that αp is the set of operations obtained by removing from α all read
operations issued by processes other than p. We also say that α(x) is the set of
operations obtained by removing from α all the operations on variables other
than x.

Definition 2 (View) We denote by system view β, process view βp or vari-
able view β(x) a sequence formed with all operations of α, αp or α(x), respec-
tively, such that this sequence preserves the execution order ≺.

Note that, due to the existence of operations that are not affected by the
execution order, there can be a lot of sequences on α, αp or α(x), not only β,

5



βp or β(x), that preserve ≺.

We use op→ op ′ to denote that op precedes op ′ in a sequence of operations.
Abusing the notation, we will also use set1 → set2, where set1 and set2 are
set of operations, to denote that all the operations in set1 precede all the
operations in set2.

Definition 3 (Legal View) A view β on α is legal if ∀r(x)v ∈ α, @w(x)u ∈
α :

w(x)v→ w(x)u→ r(x)v in β.

Definition 4 (Sequential, Causal or Cache Algorithm)

• An algorithm implements sequential consistency if for each execution α

there exists a legal view of it.
• An algorithm implements causal consistency if for each execution α there

exists a legal view βp of each αp, ∀p

• An algorithm implements cache consistency if for each execution α there
exists a legal view β(x) of each α(x), ∀x.

3 The Algorithm

In this section we present the parametrized algorithm A that implements
causal, cache and sequential consistency. Figure 1 presents the algorithm in
detail. As it can be noted, it is run with a parameter model, which defines the
consistency model that the algorithm must implement. Hence, the parameter
must take one of the values causal, sequential, or cache.

In Figure 1 it can be seen that all write operations are fast. When a process
p issues a write operation wp(x)v, the algorithm changes the local copy of
variable x (which we denote by xp) to the value v, includes the pair (x, v) in
a local set of variable updates (which we call updatesp), and returns control.
This set updatesp will later be asynchronously propagated to the rest of
processes. Note that, if a pair with the variable x was already in updatesp, it is
removed before inserting the new pair, since it does not need to be propagated
anymore.

Processes propagate their respective sets updatesp in a cyclic turn fashion,
following the order of their identifiers. To maintain the turn, each process
p uses a variable turnp which contains the identifier of the process whose
set must be propagated next (from p’s view). When turnp = p, process p

itself uses the communication channels among processes to send to the rest
of processes its local set of updates updatesp. This is done in the algorithm

6



Initialization ::
begin

turnp← 0

updatesp← ∅
end

wp(x)v :: atomic function
begin

xp← v

if ((x, ·) ∈ updatesp) then
remove (x, ·) from updatesp

include (x, v) in updatesp

end

rp(x) :: atomic function
begin

if (model = sequential) and (updatesp 6= ∅) and ((x, ·) /∈ updatesp)

then
wait until turnp = p

return(xp)
end

send updates() :: atomic task activated whenever turnp = p

begin
/* send to all processes, except itself */
broadcast(updatesp)
updatesp← ∅
turnp← (turnp + 1) mod n

end

apply updates() :: atomic task activated whenever turnp = q, p 6= q, and
the set updatesq from process q is in the receiving buffer of process p

begin
take updatesq from the receiving buffer
while updatesq 6= ∅ do

extract (x, v) from updatesq

if (model = causal) or ((x, ·) /∈ updatesp) then
xp← v

turnp← (turnp + 1) mod n

end

Fig. 1. The algorithm A(model) for process p. It is invoked with the parameter
model, which defines the consistency model that it must implement.

7



. . .

updates0process 0

process 2

process n − 1

process 1

round

.

.

.

updates1

updates0

updates2

updatesn−1

Fig. 2. Cyclic turn fashion.

with a generic broadcast call, which could be simply implemented by sending
n−1 point-to-point messages if the underlying message passing subsystem does
not provide a more appropiate communication primitive. All this is done by
the atomic task send updates(), which also empties the set updatesp. The
message sent implicitly passes the turn to the next process in order (turnp +

1) mod n (see Figure 2).

The atomic task apply updates() is the one in charge of applying the updates
received from another process q in updatesq. This task is activated whenever
turnp = q and the set updatesq is in the receiving buffer of process p. Note
that, when implementing sequential and cache consistency, after a local write
operation has been performed in some variable, this task will stop applying
the write operations on the same variable from other processes. That allows
the system to “view” those writes as if they were overwritten with the write
value issued by the local process.

Read operations are always fast with causal and cache consistencies. When
implementing sequential consistency, a read operation rp(x)u is fast unless
updatesp contains a pair with a variable different from x. That is, the read
operation is not fast only if, since the latest time it held the turn, process p has
not issued write operations on x and has issued write operations on other vari-
ables. In this case, and only in this case, it is necessary to delay such a read op-
eration until turnp = p for the next time (see Fig. 3). Note that this condition
is the same as the condition to execute the task send updates(). We enforce a
blocked read operation to have priority over the task send updates(). Hence,
when turnp = p, a blocked read operation finished before send updates() is
executed.

We have labeled the code of the read operation as atomic because we do not
want it to be executed while the variable updatesp is manipulated by some
other task. However, if the read operation blocks, other tasks are free to access
the algorithm variables. In particular, it is necessary that apply updates()

8



process 0

process 2

process 1

delay read

w2(y)z r2(x) r2(x)v

w1(x)v

updates0

updates1

updates2

Fig. 3. An example of “non fast” read operation.

updates the variable turnp for the operation to finish eventually.

4 A(causal) Implements Causal Consistency

In this section, we show that the algorithm A, executed with the parameter
causal, implements causal consistency. In the rest of this section we assume
that α is the set of operations obtained in the execution of the algorithm
A(causal), and αp is the set of operations obtained by removing from α all
read operations issued by processes other than p.

Definition 5 The ith writes of process q, denoted writesi
q, i > 0, is the

sequence of all write operations of process q in αp, in the order they are
issued, after send updates() is executed for the ith time in this process q,
and before it is executed for the i + 1st time.

For simplicity, we assume that no write operation is issued by any process
before it executes send updates() for the first time. This allows us to consider
writes0

p as the empty sequence. Observe in A(causal) that the i + 1st set
updatesq broadcasted by process q contains, for each variable, the last (if
any) write operation in writesi

q on that variable.

Then, we construct a sequence βp that we will show in the following lemmas
that preserves ≺ and is legal.

Definition 6 We denote by βp the sequence formed with all operations of αp

as follows. Given the sequence of operations issued by p, in the order they are
issued, we insert the sequence writesi

q in the point of the sequence in which
apply updates() is executed with the set updatesq for the i + 1st time, for
all q 6= p and i ≥ 0.

Since the execution of apply updates() is atomic, it does not overlap any of
the operations issued by p, and the placement of every sequence writesi

q can
be easily found.

9



Lemma 1 Let op and op ′ be two write operations in αp issued by different
processes. If op ≺ op ′, then op→ op ′ in βp.

PROOF. From Definition 1, we know there is a related sequence of operations
op1, op2, . . . , opm such that op1 = op, opm = op ′, and opj ≺nt opj+1 for
1 ≤ j < m. This sequence can be divided in r subsequences of consecutive
operations , s1, ..., sr, such that the operations in each subsequence si are issued
by the same process, the first operation of s1 is op, the last operation of sr

is op ′, and for two consecutive subsequences si and si+1, the last operation
of si writes the value read by the first operation of si+1. Then, from the
algorithm A(causal) it can be seen that the last operations of two consecutive
subsequences si and si+1, i ≤ r − 1, belong, from Definition 6, to sequences
writei

q and writej
s such that either j > i, or j = i and s > q. Then, op→ op ′

in βp. 2

Lemma 2 βp preserves the order ≺

PROOF. Let op and op ′ be two operations of βp such that op ≺ op ′. Let
us assume by way of contradiction that op ′

→ op.
Case 1. op and op ′ are issued by the same process. Let us suppose that
they are issued by process q. Recall that αp only contains write operations
of a process different of p. From Definition 5, if op ′

→ op is because op ′ is
executed before op, but as we know, from Definition 1, if op ≺ op ′, op must
be executed before op ′. Hence, we reach a contradiction. Similarly, now let us
suppose that op and op ′ are issued by p. From Definition 6, if op ′

→ op is
because op ′ is executed before op, but, from Definition 1, if op ≺ op ′, then
op must be executed before op ′. Hence, we also reach a contradiction.
Case 2. op and op ′ are issued by different processes. First, let us suppose
that op and op ′ are operations issued by processes other than p, and differents
between them. Then, as αp only contains read operations of process p, op and
op ′ must be write operations. Therefore, from Lemma 1, op → op ′, and we
reach a contradiction.

Now, let us suppose that op is a read operation issued by p, and, as as αp

only contains write operations of processes other than p, op ′ must be a write
operation of a process different of p. We know that if op ≺ op ′, we have
a related sequence op = op1 ≺nt op2 ≺nt . . . ≺nt opn = op ′ = w(y)v.
If opi is the first write operation after op, from Definition 1, opi has to be
issued by p, and op has to be issued before opi. Therefore, from Definition 6,
op → opi, and, from Lemma 1, opi

→ op ′. Hence, op → op ′, and we reach
a contradiction.

10



Finally, let us suppose that op ′ is a read operation issued by p, and, as as
αp only contains write operations of processes other than p, op must be a
write operation of a process different of p. We know that if op ≺ op ′, we
have a related sequence op = op1 = w(x)v ≺nt . . . ≺nt opn−1 ≺nt op ′. If
opj = wq(y)v is the last write operation before op ′, from Definition 1, opj

has to be executed before op ′. This implies, with our algorithm A(causal),
that opj is propagated to process p before op ′ is issued. Then, this is because
apply updates() is executed in process p with the set updatesq containing
opj before op ′ is issued. Therefore, from Definition 6, opj

→ op ′, and, from
Lemma 1, op→ opj. Hence, op→ op ′, and we reach a contradiction. 2

Lemma 3 βp is legal.

PROOF. Let us assume, by way of contradiction, that βp is ilegal because
there exists op ′ = wq(x)u → op ′′ = ws(x)v → op = rp(x)u in βp. From
Definition 6, if op ′ precedes op ′′ and op ′′ precedes op, then we have in process
p that: first, op ′ is issued (or applied if q 6= p), next, op ′′ is issued (or applied
if s 6= p), and finally, op is issued. From our algorithm A(causal) we can see
that, due to these write operations op ′ and op ′′, the local copy xp of x will
have the value u and later the value v. We can also see that in A(causal) a
read operation always returns the value of the local copy of a variable. Then,
it is not possible to have op in βp after op ′′, since it would mean that op

would have found the value v in xp, instead of the value u. Hence, we reach a
contradiction, and βp is legal. 2

Theorem 1 The algorithm A(causal) implements causal consistency.

PROOF. From Lemma 2 and Lemma 3, every execution of the algorithm
A(causal) has a view βp of αp, ∀p, that preserves ≺ and legal. Hence, from
Definition 4, the algorithm A(causal) is causal. 2

5 A(sequential) Implements Sequential Consistency

In this section, we show that the algorithm A, executed with the parameter
sequential, implements sequential consistency. In the rest of this section
we assume that α is the set of operations obtained in the execution of the
algorithm A(sequential). Any time reference in this section has to do with
the time in which the operations of α are executed. Now we first introduce
some definitions of subsets of α.

11



Definition 7 The ith iteration of process p, denoted iti
p, i > 0, is the subset

of α that contains all the operations issued by process p after send updates()

is executed for the ith time, and before it is executed for the i + 1st time.

Observe that any operation in iti
p finishes before send updates() is executed

for the i + 1st time, since all write and most read operations are fast, and
we assume that blocked read operations have priority over the execution of
send updates().

Definition 8 The ith iteration tail of process p, denoted taili
p, is the subset

of iti
p that includes all the operations from the first write operation (included)

until the end of iti
p. If iti

p does not contain any write operation, taili
p is the

empty sequence.

Observe that all write operations in iti
p are in taili

p. Furthermore, it is easy to
check in A(sequential) that the i+1st set updatesp broadcasted by process
p contains, for each variable, the last (if any) write operation in taili

p.

Definition 9 The ith iteration header of process p, denoted headi
p, is the

subset of iti
p that contains all the operations in iti

p that are not in taili
p.

It should be clear that all the operations in headi
p precede all the opera-

tions in taili
p in the execution of A. We use now the time instants sets

received from other processes are applied to partition the sequence headi
p.

Note that between the ith and the i + 1st execution of send updates() by
p (which defines the operations that are in iti

p, and hence in headi
p) the

task apply updates() is executed n − 1 times, with sets from processes
(p + 1) mod n, ..., n − 1, 0, ..., (p − 1) mod n (in this order).

Definition 10 The iteration subheader q of headi
p, denoted subheadi

p,q, is
the subset of headi

p that contains the following operations.

• If q = p, then subheadi
p,p contains all the operations issued before

apply updates() is executed with the set updates(p+1) mod n.
• If q = (p − 1) mod n, then subheadi

p,q contains all the operations issued
after apply updates() is executed with the set updatesq.

• Otherwise, subheadi
p,q contains all the operations issued after

apply updates(messq) is executed with the set updatesq and before it is
executed with the set updates(q+1) mod n.

Clearly, if the first write operation in iti
p is issued before apply updates() is

executed with the set updatesq, then subheadi
p,q is the empty sequence (see

iti−1
2 in Fig. 4).

To simplify the notation and the analysis, we assume that no operation is
issued by any process before it executes send updates() for the first time.

12



process 0

process 2

process 1

ti
0

ti−1
0

si
0,0

si
0,2

si
0,1

ti−1
2

si
1,2

si
1,1

ti
1

si
1,0

ti
2

si
2,2

si
2,0

si
2,1

si−1
2,0

si+1
2,2

si+1
2,0

si+1
0,0

si+1
0,1

si+1
0,2

ti+1
0

si+1
1,1

si+1
1,2

si+1
1,0

ti+1
1

si+2
0,0

si−1
1,0

ti−1
1

slice αi

iteration iti
0

headi+1

0

Fig. 4. Iterations and slices. We have abbreviated tail with t and subhead with s.

This allows us to define, for any p and q, the sequences it0
p, tail0

p, head0
p,

and subhead0
p,q as empty sets of operations.

With these definitions, we divide now the set of operations α in in slices. This
division is done in such a way that preserves the order in the execution of α

(see Fig. 4).

Definition 11 The ith slice of α, denoted αi, i ≥ 0, is the subset of α

formed by the sets of operations taili
p, ∀p, subheadi

p,q, ∀p, q : p > q, and
subheadi+1

p,q, ∀p, q : p ≤ q.

Note that, if we consider α0 the first slice, every operations in α is in one
and only one slice. There are subheaders of iteration 0 that are not assigned
to any slice, but since by definition they are empty, they do not need further
consideration.

The slice is the basic unit that we will use to define the sequential order that
our algorithm enforces. We present now the sequential order for each slice
separately. The order for the whole execution is obtained by simply concate-
nating the slices in their numerical order. However, to complete this sequential
order, we yet need to define an order into each subset of operations in tails
and subheads that constitute the slice αi. Then, from now to the rest of this
section, we suppose that the operations into any taili

p and subheadi
q,p are

ordered among them as they were issued by process p. Hence, we define now,
for each slice αi, the sequence βi which contains all the operations of the slice
in the sequential order.

Definition 12 The sequence βi is obtained by ordering the operations into
each taili

p and subheadj
p of αi in the order as they were issued by process p,

13



and by concatenating the set of tails and subheads of αi as follows.

taili
0→ subheadi+1

0,0 → subheadi
1,0→ subheadi

2,0→ ...→ subheadi
n−1,0→

taili
1→ subheadi+1

0,1 → subheadi+1
1,1 → subheadi

2,1→ ...→ subheadi
n−1,1→

· · ·

taili
p→ subheadi+1

0,p → ...→ subheadi+1
p,p → subheadi

p+1,p→ ...→ subheadi
n−1,p→

· · ·

taili
n−1→ subheadi+1

0,n−1→ subheadi+1
1,n−1→ subheadi+1

2,n−1→ ...→ subheadi+1
n−1,n−1

In fact, this is only one of many ways to order the sequences of the slice
to obtain a sequential order. All the subheaders that appear above in the
same line could be permuted in any possible way, since they only contain read
operations and each contains operations from a different process. We choose
the above order for simplicity.

We define now the sequence β.

Definition 13 β is the sequence of α obtained by the concatenation of all
sequences βi in order (i.e., βi

→ βi+1, ∀i ≥ 0).

From the above definitions, in β, we have that taili
p → tailj

q if and only if
either i < j or i = j and p < q. This is exactly the order in which the sets
associated with each tail are processed and applied in the algorithm.

We show in the following lemmas that β is in fact a view that preserves the
order ≺ and is legal.

Lemma 4 β preserves the order ≺.

PROOF. Let op and op ′ be two operations of β such that op ≺ op ′.
From Definition 1, we know that there is a related sequence of operations
op1, op2, . . . , opm such that op1 = op, opm = op ′, and opj ≺nt opj+1 for
1 ≤ j < m. If β preserves ≺, then opj

→ opj+1, ∀j, and, hence, op → op ′.
We consider several cases.
Case 1. opj and opj+1 are operations issued by the same process. If opj ≺
opj+1, from Definition 1, opj must be issued before opj+1. Then, it is easy to
check from the above definitions of β and βi that operations from the same
process appear in the same order in β as they were issued. Then, opj

→ opj+1,
∀j. Hence, op→ op ′.

14



Case 2. opj and opj+1 are a write operation and a read operation, respec-
tively, issued by different processes. Let us suppose that, from Definition 1,
opj = wq(x)u and opj+1 = rs(x)u. We know that if opj ≺ opj+1, then opj

must be executed before opj+1. From our algorithm A(sequential) and from
the above definitions of β and βi, we can see that opj always belongs to
taili

q, and in the case of opj+1 we have two possibilities: a) opj+1 belongs to

subheadj
s,l, i < j, or if i = j q ≤ l; or b) opj+1 belongs to tailj

p, i < j. In
both cases, opj

→ opj+1, ∀j. Hence, op→ op ′. 2

Lemma 5 β is legal.

PROOF. Let us suppose that there exists op ′ = w(x)v → op = r(x)v in
β. From definition Definition 3, β is legal if @op ′′ = w(x)u ∈ α such that
op ′
→ op ′′

→ op in β. Then, this is equivalent to say that β is legal if for
every read operation op = r(x)v in β, the nearest previous write operation in
β on the variable x is op ′ = w(x)v.

Let us assume op is issued by process p. Note first that the order in which the
iteration tails appear in β is exactly the order imposed by the token passing
procedure. Then, in p, the order in β reflects exactly the order in which the
sets updatesq are applied in the local memory of p. The only exceptions are
the sets updatesp, since the write operations of p itself, are applied in its
local memory immediately, and do not wait until p holds the token. However,
note that any update from other processes on a variable written locally is not
applied (see apply updates()). This gives the illusion that the local write
operations have in fact been applied at the time of p’s token possession. Then
we consider several cases.
Case 1. Both op and op ′ belong to the same iteration tail taili

p. When issued
by p, op ′ sets the value of the local local copy xp of x. After op ′ is executed,
(x, ·) ∈ updatesp, and no update applied from other process changes this
value (see apply updates()). Hence, if op returns the value v is because op ′

wrote the value v in x.
Case 2. op belongs to an iteration subheader subheaderi

p,q. The value v

returned by op is the value of xp after locally applying the write operations
in the following tails.

• If p > q, tailj
r for each j < i, and for each r ≤ q when j = i.

• If p ≤ q, tailj
r for each j < i − 1, and for each r ≤ q when j = i − 1.

These are the tails that precede subheaderi
p,q in β As we said above, these

tails are applied in the order they appear in β. Then, v has to be the value
written by the nearest write operation on x that precedes op in β, which by
definition is op ′.
Case 3. op belongs to an iteration tail taili

p, while op belongs to a different

15



iteration tail. Then the read operation op was issued when p had already
issued a write operation (since it belong to a tail) on a variable different from
x (by definition of op ′). Then, op was blocked until the token was assigned
to p. The value v returned by op is the value of xp after locally applying the
write operations in the tails tailj

q for each j < i and for each q < p when
j = i, which are the tails that precede taili

p in β. As we said above, these
tails are applied in the order they appear in β. Then, v has to be the value
written by the nearest write operation on x that precedes op in β, which by
definition is op ′.

Thus, in the above three cases we have shown that op ′ = w(x)v is the nearest
write operation on variable x previous to op = r(x)v in β. Hence, β is legal. 2

Theorem 2 The algorithm A(sequential) implements sequential consis-
tency.

PROOF. From Lemma 4 and From Lemma 5, every execution of the algo-
rithm A(sequential) has a view β of α that preserves the order ≺ and legal.
Hence, from Definition 4, the algorithm A(sequential) is sequential. 2

6 A(cache) Implements Cache Consistency

In this section, we show that the algorithm A, executed with the parameter
cache in each process, implements cache consistency. In the rest of this section
we assume that α is a set of operations produced in the execution of the
algorithm A(cache), and α(x) is a set of operations formed by all operations
in α on the variable x.

The proof of correcteness follows the same lines as the proof of correctness
for A(sequential), but on α(x) instead of α. First we define the sequences
it(x)i

p, tail(x)i
p, head(x)i

p, subhead(x)i
p,q, and the slice α(x)i of α(x). Then

we construct the sequence β(x) from these sequences in a similar way as the
sequence β was defined in Section 5. A version for β(x) of Lemma 4 is directly
derived. In a version for β(x) of Lemma 5 with the above sequences the case
3 dissapears. Hence we have that β(x) is a view of α(x) that preserves the
order α and legal. Since this is true for any variable x, we have the following
theorem.

Theorem 3 The algorithm A(cache) implements cache consistency.

PROOF. From Lemma 4 (but only with operations of α(x)) and From
Lemma 5 (only with operations of α(x)), every execution of the algorithm

16



A(cache) has a view β(x) of α(x), ∀x, that preserves the order ≺ and legal.
Hence, from Definition 4, the algorithm A(cache) is cache. 2

7 Complexity Measures

7.1 Worst-Case Response Time

In this section we consider that local operations are executed instantaneously
(i.e., in 0 time units) and that any communication takes d time units. In the
algorithm A executed with parameter causal or cache all operations are
executed locally, while when executed with parameter sequential all write
and some read operations are also executed locally. Therefore, the response
time for them is always 0.

Let us now consider a read operation that is blocked in algorithm
A(sequential). To obtain the maximum response time for such a read oper-
ation, we will consider the worst case. This can happen if the operation blocks
(almost) immediately after the process that issued it sent a message. Then,
the read operation will be blocked until the turn of this process again, which
can take up to n message transmissions. Therefore, in the worst case, a process
will have to wait nd time units.

The previous analysis assumes that the messages are never delayed at the
processes. However, the protocol allows the processes to control when to send
the messages. For instance, it is possible for a process p, when turnp = p, to
wait a time T before executing its task send updates() (see Fig. 1). Thus,
we can reduce the number of messages sent by this process per unit of time.
Obviously, this can increase the response time, since in this case the delay
time of a message sent by p, in the worst case, will be T + d.

7.2 Message Size

It is easy to check in Fig. 1 that the size of the list updatesp of process p

depends on the number of write operations performed by p during each round,
which can be very high. However, the number of pairs (x, v) in updatesp will
be, at most, the same as the number of shared variables, since we only hold
at most one pair for each variable.

The bound obtained may seem extremely bad. However, note that the real
number of pairs in a set updatesp really depends on the frequency f of write
operations and the rotation time nd. Hence if we have a write operation on a

17



variable every milisecond, in a system with 100 processes and 1 milisecond of
delay, we will have at most 100 pairs in the set updatesp broadcasted, which
is a reasonable number.

Furthermore, note that most algorithms that implement propagation and full
replication send a message for every write operation that is performed. This
would mean that 100 messages would have to be sent. With our algorithm,
only one pair per variable is sent, and all of them are grouped into one single
message. With the overhead per message in current networks, this implies a
significant saving in bandwidth.

7.3 Memory Space

Finally, note that we do not require the communication channels among pro-
cesses to deliver messages in order. Hence, a process could have received mes-
sages that are held until the message from the appropriate process arrives. It
is easy to check that the maximum number of messages that will ever be held
is n − 2.

8 Consistency in A with different parameters

In this section we show that the algorithm A, executed in some processes
with the parameter sequential and with causal in the rest of processes,
implements causal consistency. Also we prove in this section that if there
are processes executig A(sequential) and others A(cache), the algorithn A

implements cache consistency.

In this part of this section we assume that α is the set of operations obtained
in the execution of the algorithm A(sequential) and A(causal), and αp is
the set of operations obtained by removing from α all read operations issued
by processes other than p.

Theorem 4 The algorithm A implements causal consistency when there exist
processes executing A(sequential) and others A(causal).

PROOF. We can see in the Figure 1 that A(causal) and A(sequential)

have the same mechanism to propagate the write operations. Besides, in both
algorithms read operations are always done locally (without generating mes-
sages) in the process where they were issued.

18



Recall that a sequence βp is formed with every write operation issued by
any process and with every read operation issued only by process p. Hence,
from the point of view of each process executing A(causal), the existence
of processes executing A(sequential) neither include nor modify the set of
operations αp to order in βp different from other process executing A(causal).
Therefore, if we now construct βp for each process p executing A(causal) as
we did in Definition 6, βp will remain legal and preserving the order ≺.

Now, in the following two definitions, we redefine βp for each process p ex-
ecuting A(sequential). After that, we will show that this new sequence βp

preserves ≺ and is legal.

For construct βp we use, from Section 5, the notation of slice, but now on αp

instead of α, to see how the set of operations of αp is divided. We also use
writesi

p and subheadi
p,q as we defined in Section 4 and Section 5, respectively,

to see how the set of operations of αi
p is ordered.

Definition 14 The ith slice of αp, denoted αi
p, i ≥ 0, is the subset of αp

formed by the sets of operations writesi
q, ∀q, subheadi

q,p, ∀q : q > p, and
subheadi+1

q,p, ∀q : q ≤ p.

We denote by βi
p the sequence of all operations of the slice αi

p, and by βp

the sequence of αp formed by the concatenation of βi
p in increasing numerical

order

Definition 15 The sequence βi
p, ∀p executing A(sequential), is obtained

by ordering the operations into each writesi
p and subheadj

p of αi
p in the

order as they were issued by process p, and by concatenating the set of writes
and subheads of αi

p as follows.
writesi

0→ subheadi
p,0→

writesi
1→ subheadi

p,1→

· · ·
taili

p→ subheadi+1
p,p →

· · ·
writesi

n−1→ subheadi+1
p,n−1

Definition 16 The sequence βp, ∀p executing A(sequential), is the se-
quence of α obtained by the concatenation of all sequences βi

p in order (i.e.,
βi

p→ βi+1
p , ∀i ≥ 0).

As we can see comparing Definition 12 and Definition 15, βi
p is the same

sequence that βi (and, therefore, βp and β) but with the following two differ-
ences:

• writesi
q, q 6= p, is the same sequence that iti

q where we have removed every

19



read operation issued by q.
• We have removed every subhead with operations other than process p. That

is to say, every subheadj
q,n such that q 6= p, j = i or j = i + 1, and ∀n.

As we can see, we have constructed βp in a similar way as the sequence β was
defined in Section 5. Then, all operations belonging to βp are in in the same
order as in the definition of β, and a version for βp of Lemma 4 is directly
derived. Hence, βp preserves the order ≺.

Similarly, we know that all write operations are in βp in the same order as in
the definition of β. Then, a version for βp of Lemma 5 is also directly derived.
Hence, βp is legal.

Thus, we have for each process p executing A(causal) a βp formed as we de-
scribed in Section 4. We also have for each process q executing A(sequential)

a βq formed as Definition 16. As in both cases βp is legal and preserves ≺,
we can affirm that A implements causal consistency when there are processes
executing A(sequential) and others A(causal). 2

In this part of this section we assume that α is the set of operations obtained
in the execution of the algorithm A(sequential) and A(cache), and α(x) is
the set of operations of α on variable x.

Theorem 5 The algorithm A implements cache consistency when there exist
processes executing A(sequential) and others A(cache).

PROOF. We can see in the Figure 1 that A(cache) and A(sequential)

are the same algorithm except in one case: when a read operation is not fast.
Therefore, they use the same mechanism to propagate the write operations,
and read operations do not add new messages because they are done locally
in the process where it is invoked.

Hence, from the point of view of each process executing A(cache), the exis-
tence of processes executing A(sequential) neither include nor modify the set
of operations to order in β(x) different from other process executing A(cache).
Therefore, if we now construct β(x) for each process p executing A(cache)

as we did in Section 6, β(x) will remain legal and preserving ≺.

Now, we are going to use the same definition and way of construction of
β(x) from Section 6 for all processes that executes A(sequential). Then, the
difference between the sequence β(x) for processes executing A(sequential)

with respect to processes executing A(cache) is what happen when a non–fast
read operation occurs. To analyse this case, we use the same notation from
Section 6 to define a slice αi(x), a tail taili

p(x), and a subhead subheadj
q,p(x).

20



Then, let us suppose that a non–fast read operation happens in a process p

executing A(sequential) in the slice αi(x). We know, by definition of β(x),
that this read operation belongs to taili

p(x). We are also going to suppose,
that the first operation of taili

p(x) is done just after subheadj
q,p(x), i = j if

q > p, or j = i + 1 if q ≤ p. Hence, in this case, the unique difference with
respect to an execution in a process A(cache) is that each subhead subsequent
to subheadj

q,p(x) in αi(x) is always empty. Therefore, as the sequence β(x)

of a process executing A(cache) from Section 6, A version of Lemma 4 and
Lema 5 for β(x) of a process executing A(sequential) are directly derived.
Hence, β(x) of a process executing A(sequential) is legal and preserves the
order ≺.

Thus, we have shown for each process p executing A(cache) or
A(sequential) that there is a β(x), ∀x, formed as we described in Section 6,
such that preserves the order ≺ and legal. Therefore, A implements cache
consistency when there exist processes executing A(sequential) and others
A(cache). 2

9 Conclusions and Future Work

In this paper, we have presented a parametrized algorithm that implements se-
quential, causal, and cache consistency on a distributed system. To our knowl-
edge, this is the first algorithm that implements cache consistency.

The algorithm presented in this paper guarantees fast operations in its causal
and cache executions. It is proven in [7] that it is imposible to have a sequen-
tial algorithm with all operations fast. The algorithm presented in this paper
guarantees in its sequential execution fast writes and reduces to only one case
the reads that can not be executed locally.

Considering possible extensions of this work for the sequential version, we
would like to know how many read operations are fast in real applications
with several system parameters. Our belief is that most read operations will
be fast. A second line of work has to do with the scalability of the protocol.
The worst case response time is linear on the number of processes. Hence, it
will not scale well, since it may become high when the system has a large
number of processes. It would be nice to remove this dependency. Finally,
the protocol works in a token passing fashion, which can be very risky in an
environment with failures, since a single failure can block the whole system.
It would be interesting to extend the protocol with fault tolerance features.

21



References

[1] R. C. Steinke, G. J. Nutt, A unified theory of shared memory consistency, J.
ACM 51 (5) (2004) 800–849.

[2] C. Manovit, S. Hangal, Efficient algorithms for verifying memory consistency,
in: SPAA’05: Proceedings of the 17th annual ACM symposium on Parallelism
in algorithms and architectures, ACM Press, New York, NY, USA, 2005, pp.
245–252.

[3] M. Ahamad, G. Neiger, J. Burns, P. Kohli, P. Hutto, Causal memory:
Definitions, implementation and programming, Distributed Computing 9 (1)
(1995) 37–49.

[4] R. Prakash, M. Raynal, M. Singhal, An adaptive causal ordering algorithm
suited to mobile computing environments, Journal of Parallel and Distributed
Computing 41 (1997) 190–204.

[5] M. Raynal, M. Ahamad, Exploiting write semantics in implementing partially
replicated causal objects, in: Proceedings of the 6th EUROMICRO Conference
on Parallel and Distributed Computing, 1998, pp. 157–163.

[6] L. Lamport, How to make a multiprocessor computer that correctly executes
multiprocess programs, IEEE Transactions on Computers 28 (9) (1979) 690–
691.

[7] H. Attiya, J. Welch, Sequential consistency versus linearizability, ACM
Transactions on Computer Systems 12 (2) (1994) 91–122.

[8] M. Raynal, Token-based sequential consistency., Comput. Syst. Sci. Eng. 17 (6)
(2002) 359–365.

[9] M. Raynal, K. Vidyasankar, A distributed implementation of sequential
consistency with multi-object operations., in: ICDCS, 2004, pp. 544–551.

[10] V. Cholvi, J. Bernabéu, Relationships between memory models., Inf. Process.
Lett. 90 (2) (2004) 53–58.

[11] H. Attiya, R. Friedman, A correctness condition for high-performance
multiprocessors, in: Proceedings of the 24th Annual ACM Symposium on the
Theory of Computing, 1992, pp. 679–690.

[12] J. Misra, Axioms for memory access in asynchronous hardware systems, ACM
Transactions on Programming Languages and Systems 8 (1) (1986) 142–153.

[13] M. Raynal, A. Schiper, From causal consistency to sequential consistency in
shared memory systems, Tech. Rep. 926, IRISA (May 1996).

[14] G. B. Yehuda Afek, M. Merritt, Lazy caching, ACM Transactions on
Programming Languages and Systems 15 (1) (1993) 182–205.

[15] A. Singh, Bounded timestamps in process networks, Parallel Processing Letters
6 (2) (1996) 259–264.

22


