
The Iterated Restricted Immediate Snapshot
Model

Sergio Rajsbaum1, Michel Raynal2, and Corentin Travers3

1 Instituto de Matemáticas, UNAM, D.F. 04510, Mexico
2 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

3 Facultad de Informática, UPM, Madrid, Spain
rajsbaum@math.unam.mx, raynal@irisa.fr, ctravers@fi.upm.es

Abstract. In the Iterated Immediate Snapshot model (IIS) the mem-
ory consists of a sequence of one-shot Immediate Snapshot (IS) objects.
Processes access the sequence of IS objects, one-by-one, asynchronously,
in a wait-free manner; any number of processes can crash. Its interest lies
in the elegant recursive structure of its runs, hence of the ease to analyze
it round by round. In a very interesting way, Borowsky and Gafni have
shown that the IIS model and the read/write model are equivalent for
the wait-free solvability of decision tasks.

This paper extends the benefits of the IIS model to partially syn-
chronous systems. Given a shared memory model enriched with a failure
detector, what is an equivalent IIS model? The paper shows that an ele-
gant way of capturing the power of a failure detector and other partially
synchronous systems in the IIS model is by restricting appropriately its
set of runs, giving rise to the Iterated Restricted Immediate Snapshot
model (IRIS).

1 Introduction

A distributed model of computation consists of a set of n processes communicat-
ing through some medium (some form of message passing or shared memory),
satisfying specific timing assumptions (process speeds and communication de-
lays), and failure assumptions (their number and severity). A major obstacle
in the development of a theory of distributed computing is the wide variety
of models that can be defined – many of which represent real systems – with
combinations of parameters in both the (a)synchrony and failure dimensions
[4].Thus, an important line of research is concerned with finding ways of unify-
ing results, impossibility techniques, and algorithm design paradigms of different
models.

An early approach towards this goal has been to derive direct simulations
from one model to another, e.g., [3],[2],[6]. A more recent approach has been to
devise models of a higher level of abstraction, where results about various more
specific models can be derived (e.g., [12],[15]).Two main ideas are at the heart
of the approach, which has been studied mainly for crash failures only, and is
the topic of this paper.

X. Hu and J. Wang (Eds.): COCOON 2008, LNCS 5092, pp. 487–497, 2008.
© Springer-Verlag Berlin Heidelberg 2008

488 S. Rajsbaum, M. Raynal, and C. Travers

Two bedrocks: wait-freedom and round-based execution It has been discovered
[6],[16],[21] that the wait-free case is fundamental. In a system where any number
of processes can crash, each process must complete the protocol in a finite num-
ber of its own steps, and “wait statements” to hear from another process are not
useful. In a wait-free system it is easy to consider the simplicial complex of global
states of the system after a finite number of steps, and various papers have ana-
lyzed topological invariants about the structure of such a complex, to derive im-
possibility results. Such invariants are based on the notion of indistinguishability,
which has played a fundamental role in nearly every lower bound in distributed
computing. Two global states are indistinguishable to a set of processes if they
have the same local states in both. In the figure on the right, there is a complex
with three triangles, each one is a simplex representing a global state; the corners
of a simplex represent local states of processes in the global state. The center
simplex and the rightmost simplex represent global states that are indistinguish-
able to p1 and p2, which is why the two triangles
share an edge. Only p3 can distinguish between the
two global states.

Most attempts at unifying models of various degrees of asynchrony restrict
attention to a subset of well-behaved, round-based executions. The approach in
[7] goes beyond that and defines an iterated round-based model (IIS), where
each communication object can be accessed only once by each process. These
objects, called Immediate Snapshot objects [5], are accessed by the processes with
a single operation denoted write snap(), that writes the value provided by the
invoking process and returns to it a snapshot [1] of its content. The sequence of
IS objects are accessed asynchronously, and one after the other by each process.
It is shown in [7] that the IIS model is equivalent (for bounded wait-free task
solvability) to the usual read/write shared memory model.

Thus, the runs of the IIS model are not a subset of the runs of a standard (non-
iterated) model as in other works, and the price that has to be payed is an inge-
nious simulation algorithm showing that the model is equivalent to a read/write
shared memory model (w.r.t. wait-free task solvability). But the reward is a model
that has an elegant recursive structure: the complex of global states after i + 1
rounds is obtained by replacing each simplex by a one round complex (see Figure
1). Indeed, the IIS model was the basis for the proof in [7] of the main character-
ization theorem of [16], and was instrumental for the results in [13].

Context and Goals of the Paper. The paper introduces the IRIS model, which
consists of a subset of runs of the IIS model of [7], to obtain the benefits of the
round by round and wait-freedom approaches in one model, where processes run
wait-free but the executions represent those of a partially synchronous model.
As an application, new, simple impossibility results for set agreement in several
partially synchronous systems are derived.

In the construction of a distributed computing theory, a central question has
been understanding how the degree of synchrony of a system affects its power
to solve distributed tasks. The degree of synchrony has been expressed in various
ways, typically either by specifying a bound t on the number of processes that can

The Iterated Restricted Immediate Snapshot Model 489

crash, as bounds on delays and process steps [11], or by a failure detector [8]. It
has been shown multiple times that systems with more synchrony can solve more
tasks. Previous works in this direction have mainly considered an asynchronous
system enriched with a failure detector that can solve consensus. Some works have
identified this type of synchrony in terms of fairness properties [22]. Other works
have considered round-based models with no failure detectors [12]. Some other
works [17] focused on performance issues mainly about consensus. Also, in some
cases, the least amount of synchrony required to solve some task has been identi-
fied, within some paradigm. A notable example is the weakest failure detector to
solve consensus [9] or k-set agreement [24]. Set agreement [10] represents a desired
coordination degree to be achieved in the system, requiring processes to agree on
at most k different values (consensus is 1-set agreement), and hence is natural
to use it as a measure for the synchrony degree in the system. The fundamental
result of the area is that k-set agreement is not solvable in a wait-free, i.e. fully
asynchronous system even for k = n − 1 [6],[16],[21]. However, a clear view of
what exactly “degree of synchrony” means is still lacking. For example, the same
power as far as solving k-set agreement can be achieved in various ways, such as
via different failure detectors [18] or t-resilience assumptions. A second goal for
introducing the IRIS model, is to have a mean of precisely representing the degree
of synchrony of a system, and this is achieved with the IRIS model by considering
particular subsets of runs of the IIS model.

Capturing Partial Synchrony with a Failure Detector. A failure detector [8] is
a distributed oracle that provides each process with hints on process failures.
According to the type and the quality of the hints, several classes of failure
detectors have been defined (e.g., [18],[24]).

As an example, this paper focuses on the family of limited scope accuracy
failure detectors, denoted �Sx [14],[23]. These capture the idea that a process
may detect failures reliably on the same local-area network, but less reliably over
a wide-area network. They are a generalization of the class denoted �S that has
been introduced in [8] (�Sn is �S). Informally, a failure detector �Sx ensures
that there is a correct process that is eventually never erroneously suspected by
any process in a cluster of x processes.

Results of the Paper. The paper starts by describing the read/write computation
model enriched with a failure detector C of the class �Sx, and the IIS model, in
Section 2. Then, in Section 3, it describes an IRIS model that precisely captures
the synchrony provided by the asynchronous system equipped with C. To show
that the synchrony is indeed captured, the paper presents two simulations in
Section 4. The first is a simulation from the shared memory model with C to
the IRIS model. The second shows how to extract C from the IRIS model, and
then simulate the read/write model with C. From a technical point of view,
this is the most difficult part of the paper. We had to develop a generalization
of the wait-free simulation described in [7] that preserved consistency with the
simulated failure detector.

The simulations prove Theorem 1: an agreement task is wait-free solvable in
the read/write model enriched with C if and only if it is wait-free solvable in

490 S. Rajsbaum, M. Raynal, and C. Travers

the corresponding IRIS model. Then, using a simple topological observation, it
is easy to derive the lower bound of [14] for solving k-set agreement in a system
enriched with C. In the approach presented in this paper, the technically difficult
proofs are encapsulated in algorithmic reductions between the shared memory
model and the IRIS model, while in the proof of [14] combinatorial topology
techniques introduced in [15] are used to derive the topological properties of the
runs of the system enriched with C directly1.

2 Computation Model and Failure Detector Class

This section presents a quick overview of the background needed for the rest of
the paper, more detailed descriptions can be found elsewhere, e.g., [4],[7],[8].

2.1 Shared Memory Model Enriched with a F.D. of the Class �Sx

The paper considers a standard asynchronous system made up of n processes,
p1, . . . , pn, of which any of them can crash. A process is correct in a run if it
takes an infinite number of steps. The shared memory is structured as an array
SM [1..n] of atomic registers, such that only pi can write to SM [i], and pi can
read any entry. Uppercase letters are used to denote shared registers. It is often
useful to consider higher level abstractions constructed out of such registers,
that are implementable on top of them, such as snapshots objects. In this case,
a process can read the entire memory SM [1..n] in a single atomic operation,
denoted snapshot() [1].

A failure detector of the class �Sx, where 1 ≤ x ≤ n, provides each process pi

with a variable trustedi that contains identities of processes that are believed to
be currently alive. The process pi can only read trustedi. When j ∈ trustedi

we say “pi trusts pj”. By definition, a crashed process trusts all processes. The
failure detector class �Sx is defined by the following properties: (Strong com-
pleteness) There is a time after which every faulty process is never trusted by
every correct process and, (Limited scope eventual weak accuracy) There is a set
Q of x processes containing a correct process p�, and a (finite) time after which
each process of Q trusts p�.

The following equivalent formulation of �Sx [18] is used in Section 4, assuming
the local variable controlled by the failure detector is repri : (Limited eventual
common representative) There is a set Q of x processes containing a correct
process p�, and a (finite) time after which, for any correct process pi, we have
i ∈ Q ⇒ repri = � and i /∈ Q ⇒ repri = i.

2.2 The Iterated Immediate Snapshot (IIS) Model

A one-shot immediate snapshot object IS is accessed with a a single operation
denoted write snap(). Intuitively, when a process pi invokes write snap(v) it is
1 A companion technical report [19] extends the results presented here to other failure

detector classes.

The Iterated Restricted Immediate Snapshot Model 491

as if it instantaneously executes a write IS [i] ← v operation followed by an
IS .snapshot() operation.

The semantics of the write snap() operation is characterized by the three fol-
lowing properties, where vi is the value written by pi and smi, the value (or
view) it gets back from the operation, for each pi invoking the operation. A view
smi is a set of pairs (k, vk), where vk corresponds to the value in pk’s entry of
the array. If SM [k] = ⊥, the pair (k, ⊥) is not placed in smi. Moreover, we have
smi = ∅, if the process pi never invokes write snap() on the corresponding object.
The three properties are :(Self-inclusion) ∀i : (i, vi) ∈ smi, (Containment) ∀i, j :
smi ⊆ smj ∨ smj ⊆ smi and, (Immediacy) ∀i, j : (i, vi) ∈ smj ⇒ smi ⊆ smj .

These properties are represented in the first image of Figure 1, for the case
of three processes. The image represents a simplicial complex, i.e. a family of
sets closed under containment; each set is called a simplex, and it represents
the views of the processes after accessing the IS object. The vertices are the
0-simplexes, of size one; edges are 1-simplexes, of size two; triangles are of size
three (and so on). Each vertex is associated with a process pi, and is labeled
with smi (the view pi obtains from the object).

The highlighted 2-simplex in the figure represents a run where p1 and p3
access the object concurrently, both get the same views seeing each other, but
not seeing p2, which accesses the object later, and gets back a view with the 3
values written to the object. But p2 can’t tell the order in which p1 and p3 access
the object; the other two runs are indistinguishable to p2, where p1 accesses the
object before p3 and hence gets back only its own value or the opposite. These
two runs are represented by the corner 2-simplexes.

p1 p1

p3

p2

p3

p2

p3

p1

p3

p2

p2

p1

Fig. 1. One, two and three rounds in the IIS model

In the iterated immediate snapshot model (IIS) the shared memory is made
up of an infinite number of one-shot immediate snapshot objects IS [1], IS [2], . . .
These objects are accessed sequentially and asynchronously by each process. In
Figure 1 one can see that the IIS complex is constructed recursively by replacing
each simplex by the one round complex.

On the Meaning of Failures in the IIS Model. Consider a run where processes,
p1, p2, p3, execute an infinite number of rounds, but p1 is scheduled before p2, p3
in every round. The triangles at the left-bottom corners of the complexes in

492 S. Rajsbaum, M. Raynal, and C. Travers

Figure 1 represent such a situation; p1, at the corner, never hears from the two
other processes. Of course, in the usual (non-iterated read/write shared memory)
asynchronous model, two correct processes can always eventually communicate
with each other. Thus, in the IIS model, the set of correct processes of a run,
CorrectIIS , is defined as the set of processes that observe each other directly or
indirectly infinitely often (a formal definition is given in [20]).

2.3 Tasks and Equivalence of the Two Models

An algorithm solves a task if each process starts with a private input value, and
correct processes (according to the model) eventually decide on a private output
value satisfying the task’s specification. In an agreement task, the specification
is such that, if a process decides v, it is valid for any other process to decide v
(or some other function of v). The k-set agreement task is an agreement task,
where processes start with input values of some domain of at least n values, and
must decide on at most k of their input values.

It was proved in [7] that a task (with a finite number of inputs) is solvable
wait-free in the read/write memory model if and only if it is solvable in the
IIS model. As can be seen in Figure 1, the IIS complex of global states at any
round is a subdivided simplex, and hence Sperner’s Lemma implies that k-set
agreement is not solvable in the IIS model if k < n. Thus, it is also unsolvable
in the wait-free read/write memory model.

3 The IRIS Model

This section presents the IRIS model associated with a failure detector
class C, denoted IRIS (PRC). It consists of a subset of runs of the IIS model,
that satisfy a corresponding PRC property. To distinguish the write-snapshot
operation in the IIS model and its more constrained counterpart of the IRIS
model, the former is denoted R[r].write snap(), while the latter is denoted
IS [r].write snapshot().

3.1 The Model IRIS(PRC) with C = �Sx

Let smr
j be the view obtained by the process pj when it returns from the

IS [r].write snapshot() invocation. As each process pi is assumed to execute
rounds forever, smr

i = ∅ means that pi never executes the round r, and is conse-
quently faulty. The property states that there is a set Q of x processes containing
a process p� that does not crash, and a round r, such that at any round r′ ≥ r,
each process pi ∈ Q \ {�} either has crashed (smr′

i = ∅) or obtains a view smr′

i

that contains strictly smr′

� . Formally, the property PR�Sx is defined as follows:
PR�Sx ≡ ∃Q, � : |Q| = x ∧ � ∈ Q, ∃r :

∀r′ ≥ r : (smr′

� �= ∅) ∧
(
i ∈ Q \ {�} ⇒ (smr′

i = ∅ ∨ smr′

� � smr′

i)
)
.

Figure 2 shows runs of the IRIS (PR�Sx) model for x = 2. The complex
remains connected in this case and consequently consensus is unsolvable in that
model.

The Iterated Restricted Immediate Snapshot Model 493

p1 p1

p3

p2

p3

p2

p3

p1

p3

p2

p2

p1

Fig. 2. One, two and three rounds in IRIS(PR�Sx) with x = 2 and r = 2

Theorem 1 (main). An agreement task is solvable in the read/write model
equipped with a failure detector of the class �Sx if and only if it is solvable in
the IRIS(PR�Sx) model.
We prove this theorem in Section 4 by providing a transformation from the
read/write model enriched with �Sx to the IRIS (PR�Sx) model and the inverse
transformation from the IRIS(PR�Sx) model to the read/write model with �Sx.

3.2 The k-Set Agreement with �Sx

The power of the IRIS model becomes evident when we use it to prove the lower
bound for k-set agreement in the shared memory model equipped with a failure
detector of the class �Sx.

Theorem 2. In the read/write shared memory model, in which any number of
processes may crash, there is no �Sx-based algorithm that solves k-set agreement
if k < n − x + 1.

The proof consists of first observing that, if we partition the n processes in two
sets: the low-order processes L = {p1, . . . , pn−x+1} and the high-order processes
H = {pn−x+2, . . . , pn}, and consider all IIS runs where the processes in H never
take any steps, these runs trivially satisfy the PR�Sx property. Therefore, as
noticed at the end of Section 2.3, k-set agreement is unsolvable in the IIS model
when k < n − x + 1, and hence unsolvable in our IRIS (PR�Sx) model. By
Theorem 1 it is unsolvable in the read/write shared memory model equipped
with a failure detector of the class �Sx.2

4 Simulations

4.1 From the Read/Write Model with �Sx to IRIS(PR�Sx)

This section presents a simulation of the IRIS(PR�Sx) model from the read/
write model equipped with a failure detector �Sx. The aim is to produce sub-
sets of runs of the IIS model that satisfy the property PR�Sx . The algorithm is
2 In the full paper, we show how to re-derive the more general result of [14] in the

IRIS framework.

494 S. Rajsbaum, M. Raynal, and C. Travers

operation IS [r].write snapshot()(< i, vi >):
(1) repeat mi ← R[r].snapshot(); rpi ← repri

(2) until
(
(< rpi, − >∈ mi) ∨ rpi = i)

)
end repeat;

(3) smi ← R[r].write snap(< i, vi >);
(4) return (smi).

Fig. 3. From the read/write model with �Sx to the IRIS(PR�Sx) model (code for pi)

described in Figure 3. It uses the �Sx version based on the representative vari-
able repri. Each round r is associated with an immediate snapshot object R[r]
that can in addition be read in snapshot. Sets returned by R[r].snapshot() and
R[r].write snap() are ordered by containment, and the operations can be consis-
tently ordered. Objects R[r] can be wait-free implemented from base read/write
operations [1],[5].

At each round r, each process pi repeatedly reads R[r] until it observes its
representative has already written or it discovers that it is its own representative
(rpi = i). This simple rule guarantees that processes that share the same repre-
sentative p� eventually always return a view sm that contains the view returned
by p�. Thus, the set of sequences of views produced by the algorithm satisfies
the property PR�Sx .

4.2 From IRIS(PR�Sx) to the Read/Write Model Equipped with
�Sx

We first show how to simulate the basic operations of an IIS model, namely
write() and snapshot(). This simulation works for any IRIS(PR) model, as its
runs are a subset of the IIS runs. Then a complete simulation that encompasses
the failure detector �Sx is given.

Simulating the write() and snapshot() Operations. The algorithm described in
Figure 4 is based on the ideas of the simulation of [7]. Without loss of general-
ity, we assume that (as in [7]) the kth value written by a process is k (conse-
quently, a snapshot of the shared memory is a vector made up of n integers).
To respect the semantics of the shared memory, vectors v returned as result of
simulate(snapshot()) should be ordered and contain the integers written by the
last simulate(write()) that precedes it.

As in [7], each process pi maintains an estimate vector esti of the current state
of the simulated shared memory. When pi starts simulating its k-th write(), it
increments esti[i] to k to announce that it wants to write the shared memory
(line 1). At each round r, pi writes its estimate in IS [r] and updates its estimate
by taking the maximum component-wise, denoted maxcw, of the estimates in the
view smi it gets back (line 6). The main difference with [7] is the way processes
compute valid snapshots of the shared memory. In [7], pi returns a snapshot when
all estimates in its view are the same. Here, for any round r, we define a valid
snapshot as the maximum component-wise (denoted sm minr) of the estimates

The Iterated Restricted Immediate Snapshot Model 495

init ri ← 0; last snapi[1..n] ← [−1, . . . , −1]; esti[1..n] ← [0, . . . , 0]; viewi[1..] ← [∅, ..]
function simulate(op()) % op ∈ {write(), snapshot()}
(1) if op() = write() then esti[i] ← esti[i] + 1 endif ; r starti ← ri;
(2) repeat ri ← ri + 1;
(3) smi ← IS [ri].write snapshot(< i, esti, viewi[1..(ri − 1)] >);
(4) viewi[ri] ←

{
< i, {< j, estj > such that < j, estj, − >∈ smi} >

}
;

(5) for each ρ ∈ {1, . . . , ri − 1} do
viewi[ρ] ←

⋃
viewj such that <j,−,viewj>∈smi

viewj [ρ] endfor;
(6) esti ← maxcw{estj such that < j, estj , − >∈ smi};
(7) if

(
∃ρ > r starti | ∃ < −, smin >: ∀j ∈ smin : < j, smin >∈ viewi[ρ]

)

% there is a smallest snapshot in viewi[r starti + 1..ri] known by pi

(8) then let ρ′ be the greatest round ≤ ri that satisfies predicate of line 7;
(9) smini ← the smallest snapshot in viewi[ρ′];
(10) last snapi ← maxcw{estj such that < j, estj >∈ smini};
(11) if last snapi[i] = esti[i] then
(12) if op = snapshot() then return (last snapi) else return() endif endif
(13) endif endrepeat

Fig. 4. Simulation of the write() and snapshot() operations in IRIS(PR�Sx) (pi’s code)

that appear in the smallest view (denoted sminr) returned by IS [r]. Due to the
fact that estimates are updated maximum component-wise, it follows from the
containment property of views that ∀r, r′ : r < r′ ⇒ sm minr ≤ sm minr′

. As
each snapshot returned is equal to sm minr for some r, it follows that any two
snapshots of the shared memory are equal or one is greater than the other.

In order to determine smallest views, each process pi maintains an array
viewi[1, ..] that aggregates pi’s knowledge of the views obtained by other pro-
cesses. This array is updated at each round (lines 4-5) by taking into account
the knowledge of other processes (that appear in smi).

Then, pi tries to determine the last smallest view that it can know by ob-
serving the array viewi (line 7). If there is a recent one (it is associated with
a round greater than the round r starti at which pi has started simulating its
current operation), pi keeps it in smini (lines 8-9), and computes in last snapi

the corresponding snapshot value of the shared memory (line 10). Finally, if pi

observes that its last operation announced (that is identified esti[i]) appears in
this vector, it returns last snapi (line 11). In the other cases, pi starts a new
iteration of the loop body.

From IRIS (PR�Sx) to a Failure Detector of the Class �Sx. In a model equipped
with a failure detector, each process can read at any time the output of the fail-
ure detector. We denote
fd query() this operation. A
trivial algorithm that sim-
ulates �Sx-queries in the
IRIS(PR�Sx) is described
in the figure on the right.

init ri ← 0; trustedi ← Π
function simulate(fd query())
(1) ri ← ri + 1; smi ← IS [ri].write snapshot(i);
(2) trustedi ← {j : j ∈ smi}; return(trustedi)

Simulation of fd query() in IRIS(PR�Sx)

496 S. Rajsbaum, M. Raynal, and C. Travers

General Simulation. Given an algorithm A that solves a task T in the read/write
model equipped with �Sx, we show how to solve T in the IRIS(PR�Sx) model.
Algorithm A performs local computation, write(), snapshot() and fd query(). In
the IRIS(PR�Sx) model, processes run in parallel the algorithms described in
Figures 4 and below in order to simulate these operations. More precisely, what-
ever the operation op ∈ {write(), snapshot(), fd query()} being simulated, each
immediate snapshot object is used to update both the estimate of the shared
memory and the output of the failure detector.

The simulations are proved correct in [20]. Theorem 1 then follows from the
two simulations presented in Section 4.1 and Section 4.2.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snap-
shots of Shared Memory. J. ACM 40(4), 873–890 (1993)

2. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing Memory Robustly in Message Passing
Systems. J. ACM 42(1), 124–142 (1995)

3. Awerbuch, B.: Complexity of network synchronization. J. ACM 32, 804–823 (1985)
4. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and

Advanced Topics. Wiley, Chichester (2004)
5. Borowsky, E., Gafni, E.: Immediate Atomic Snapshots and Fast Renaming. In:

Proc. of PODC 1993, pp. 41–51 (1993)
6. Borowsky, E., Gafni, E.: Generalized FLP Impossibility Results for t-Resilient

Asynchronous Computations. In: Proc. 25th ACM STOC, pp. 91–100 (1993)
7. Borowsky, E., Gafni, E.: A Simple Algorithmically Reasoned Characterization of

Wait-free Computations. In: Proc. 16th ACM PODC, pp. 189–198 (1997)
8. Chandra, T., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Sys-

tems. J. ACM 43(2), 225–267 (1996)
9. Chandra, T., Hadzilacos, V., Toueg, S.: The Weakest Failure Detector for Solving

Consensus. J. ACM 43(4), 685–722 (1996)
10. Chaudhuri, S.: More Choices Allow More Faults: Set Consensus Problems in Totally

Asynchronous Systems. Information and Computation 105, 132–158 (1993)
11. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the Presence of Partial Syn-

chrony. J. ACM 35(2), 288–323 (1988)
12. Gafni, E.: Round-by-round Fault Detectors: Unifying Synchrony and Asynchrony.

In: Proc. 17th ACM Symp. on Principles of Distributed Computing, pp. 143–152
(1998)

13. Gafni, E., Rajsbaum, S., Herlihy, M.: Subconsensus Tasks: Renaming is Weaker
than Set Agreement. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 329–338.
Springer, Heidelberg (2006)

14. Herlihy, M., Penso, L.D.: Tight Bounds for k-Set Agreement with Limited Scope
Accuracy Failure Detectors. Distributed Computing 18(2), 157–166 (2005)

15. Herlihy, M.P., Rajsbaum, S., Tuttle, M.: Unifying Synchronous and Asynchronous
Message-Passing Models. In: Proc. 17th ACM PODC, pp. 133–142 (1998)

16. Herlihy, M., Shavit, N.: The Topological Structure of Asynchronous Computability.
J. ACM 46(6), 858–923 (1999)

17. Keidar, I., Shraer, A.: Timeliness, Failure-detectors, and Consensus Performance.
In: Proc. 25th ACM PODC, pp. 169–178 (2006)

The Iterated Restricted Immediate Snapshot Model 497

18. Mostefaoui, A., Rajsbaum, S., Raynal, M., Travers, C.: Irreducibility and Additiv-
ity of Set Agreement-oriented Failure Detector Classes. In: Proc. PODC 2006, pp.
153–162 (2006)

19. Rajsbaum, S., Raynal, M., Travers, C.: Failure Detectors as Schedulers. Tech Re-
port # 1838, IRISA, Université de Rennes, France (2007)

20. Rajsbaum, S., Raynal, M., Travers, C.: The Iterated Restricted Immediate Snap-
shot Model. Tech Report # 1874, IRISA, Université de Rennes, France (2007)

21. Saks, M., Zaharoglou, F.: Wait-Free k-Set Agreement is Impossible: The Topology
of Public Knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)

22. Völzer, H.: On Conspiracies and Hyperfairness in Distributed Computing. In: Fraig-
niaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 33–47. Springer, Heidelberg (2005)

23. Yang, J., Neiger, G., Gafni, E.: Structured Derivations of Consensus Algorithms
for Failure Detectors. In: Proc. 17th ACM PODC, pp. 297–308 (1998)

24. Zieliński, P.: Anti-Omega: the Weakest Failure Detector for Set Agreement. Tech
Rep # 694, University of Cambridge (2007)

	The Iterated Restricted Immediate Snapshot Model
	Introduction
	Computation Model and Failure Detector Class
	Shared Memory Model Enriched with a F.D. of the Class Sx
	The Iterated Immediate Snapshot (IIS) Model
	Tasks and Equivalence of the Two Models

	The IRIS Model
	The Model $\mathit{IRIS(PR_C)}$ with $C=\Diamond {\cal S}_x$
	The k-Set Agreement with $\Diamond\mathcal{S}_{x}$

	Simulations
	From the Read/Write Model with $\Diamond {\cal S}_x$
to $\mathit{IRIS(PR_{\Diamond {\cal S}_x})}$
	From $\mathit{IRIS(PR_$ to the Read/Write Model Equipped with ${\Diamond {\cal S}_x}$

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

