
Electing an Eventual Leader
in an Asynchronous Shared Memory System �

Antonio FERNÁNDEZ�� Ernesto JIMÉNEZ� Michel RAYNAL�

� LADyR, GSyC, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
� EUI, Universidad Politécnica de Madrid, 28031 Madrid, Spain

� IRISA, Université de Rennes, Campus de Beaulieu 35 042 Rennes, France

anto@gsyc.escet.urjc.es ernes@eui.upm.es raynal@irisa.fr

Abstract

This paper considers the problem of electing an eventual
leader in an asynchronous shared memory system. While
this problem has received a lot of attention in message-
passing systems, very few solutions have been proposed
for shared memory systems. As an eventual leader can-
not be elected in a pure asynchronous system prone to pro-
cess crashes, the paper first proposes to enrich the asyn-
chronous system model with an additional assumption. That
assumption, denoted ��� , requires that after some time
(1) there is a process whose write accesses to some shared
variables are timely, and (2) the timers of the other pro-
cesses are asymptotically well-behaved. The asymptotically
well-behaved timer notion is a new notion that generalizes
and weakens the traditional notion of timers whose dura-
tions are required to monotonically increase when the val-
ues they are set to increase. Then, the paper presents two
���-based algorithms that elect an eventual leader. Both
algorithms are independent of the value of � (the maximal
number of processes that may crash). The first algorithm
enjoys the following noteworthy properties: after some time
only the elected leader has to write the shared memory,
and all but one shared variables have a bounded domain,
be the execution finite or infinite. This algorithm is conse-
quently optimal with respect to the number of processes that
have to write the shared memory. The second algorithm en-
joys the following property: all the shared variables have
a bounded domain. This is obtained at the following addi-
tional price: all the processes are required to forever write
the shared memory. A theorem is proved which states that

�The work of A. Fernández and E. Jiménez was partially supported by
the Spanish MEC under grants TIN2005-09198-C02-01, TIN2004-07474-
C02-02, and TIN2004-07474-C02-01, and the Comunidad de Madrid un-
der grant S-0505/TIC/0285. The work of Michel Raynal was supported by
the European Network of Excellence ReSIST.

�The work of this author was done while on leave at IRISA, supported
by the Spanish MEC under grant PR-2006-0193.

this price has to be paid by any algorithm that elects an
eventual leader in a bounded shared memory model. This
second algorithm is consequently optimal with respect to
the number of processes that have to write in such a con-
strained memory model. In a very interesting way, these
algorithms show an inherent tradeoff relating the number
of processes that have to write the shared memory and the
bounded/unbounded attribute of that memory.

1 Introduction

Equipping an asynchronous system with an oracle An
asynchronous system is characterized by the absence of a
bound on the time it takes for a process to proceed from a
step of its algorithm to the next one. Combined with process
failures, such an absence of a bound can make some syn-
chronization or coordination problems impossible to solve
(even when the processes communicate through a reliable
communication medium). The most famous of these “im-
possible” asynchronous problems is the well-known con-
sensus problem [7]. Intuitively, this impossibility comes
from the fact that a process cannot safely distinguish a
crashed process from a very slow process.

One way to address and circumvent these impossibilities
consists on enriching the underlying asynchronous systems
with an appropriate oracle [27]. More precisely, in a system
prone to process failures, such an oracle (sometimes called
failure detector) provides each process with hints on which
processes are (or are not) faulty. According to the quality
of these hints, several classes of oracles can be defined [3].
So, given an asynchronous system prone to process failures
equipped with an appropriate oracle, it becomes possible to
solve a problem that is, otherwise, impossible to solve in
a purely asynchronous system. This means that an oracle
provides processes with additional computability power.

Fundamental issues related to oracles for asynchronous
systems Two fundamental questions can be associated

with oracles. The first is more on the theoretical side and
concerns their computability power. Given a problem (or
a family of related problems), which is the weakest oracle
that allows solving that problem in an asynchronous system
where processes can experience a given type of failures?
Intuitively, an oracle �� is the weakest for solving a prob-
lem � if it allows solving that problem, and any other oracle
��� that allows solving� provides hints on failures that are
at least as accurate as the ones provided by �� (this means
that the properties defining ��� imply the ones defining
��, but not necessarily vice-versa). It has been shown that,
in asynchronous systems prone to process crash failures, the
class of eventual leader oracles is the weakest for solving
asynchronous consensus, be these systems message-passing
systems [4] or shared memory systems [20]1. It has also
been shown that, for the same type of process failures, the
class of perfect failure detectors (defined in [3]) is the weak-
est for solving asynchronous interactive consistency [14].

The second important question is on the algo-
rithm/protocol side and concerns the implementation of or-
acles (failure detectors) that are designed to equip an asyn-
chronous system. Let us first observe that no such ora-
cle can be implemented on top of a purely asynchronous
system (otherwise the problem it allows solving could be
solved in a purely asynchronous system without additional
computability power). So, this fundamental question trans-
lates as follows. First, find “reasonably weak” behavioral
assumptions that, when satisfied by the underlying asyn-
chronous system, allow implementing the oracle. “Reason-
ably weak” means that, although they cannot be satisfied by
all the runs, the assumptions are actually satisfied in “nearly
all” the runs of the asynchronous system. Second, once such
assumptions have been stated, design efficient algorithms
that implement correctly the oracle in all the runs satisfying
the assumptions.

Content of the paper Considering the asynchronous
shared memory model where any number of processes can
crash, this paper addresses the construction of eventual
leader oracles [4]. Such an oracle (usually denoted�) 2 pro-
vides the processes with a primitive �������� that returns a
process identity, and satisfies the following “eventual” prop-
erty in each run �: There is a time after which all the in-
vocations of �������� return the same identity, that is the
identity of a process that does not crash in the run �.

As already indicated, such an oracle is the weakest to
solve the consensus problem in an asynchronous system
where processes communicate through single-writer/multi-
readers (1W�R) atomic registers and are prone to crash

1Let us also notice that the Paxos fault-tolerant state machine replica-
tion algorithm [18] is based on the � abstraction. For the interested reader,
an introduction to the family of Paxos algorithms can be found in [12].

2Without ambiguity and according to the context, � is used to denote
either the class of eventual leader oracles, or an oracle of that class.

failures [20].

The paper has three main contributions.

� It first proposes a behavioral assumption that is partic-
ularly weak. This assumption is the following one. In
each run, there are a finite (but unknown) time � and
a process � (not a priori known) that does not crash in
that run, such that after � :

– (1) There is a bound � (not necessarily known)
such that any two consecutive write accesses to
some shared variables issued by � are separated
by at most � time units, and

– (2) Each correct process � �� � has a timer that
is asymptotically well-behaved. Intuitively, this
notion expresses the fact that eventually the du-
ration that elapses before a timer expires has to
increase when the timeout parameter increases.

It is important to see that the timers can behave ar-
bitrarily during arbitrarily long (but finite) periods.
Moreover, as we will see in the formal definition, their
durations are not required to strictly increase according
to their timeout periods. After some time, they have
only to be lower-bounded by some monotonously in-
creasing function.

It is noteworthy to notice that no process (but �) is re-
quired to have any synchronous behavior. Only their
timers have to eventually satisfy some (weak) behav-
ioral property.

� The paper then presents two algorithms that construct
an � oracle in all the runs that satisfy the previous
behavioral assumptions, and associated lower bounds.
All the algorithms use atomic 1W�R atomic registers.
The algorithms, that are of increasing difficulty, are
presented incrementally.

– In the first algorithm, all (but one of) the shared
variables have a bounded domain (the size of
which depends on the run). More specifically,
this means that, be the execution finite or infinite,
even the timeout values stop increasing forever.

Moreover, after some time, there is a single pro-
cess that writes the shared memory. The algo-
rithm is consequently write-efficient. It is even
write-optimal as at least one process has to write
the shared memory to inform the other processes
that the current leader is still alive.

– The second algorithm improves the first one in
the sense that all the (local and shared) variables
are bounded. This nice property is obtained by

using two boolean flags for each pair of pro-
cesses. These flags allow each process � to in-
form each other process � that it has read some
value written by �.

� The third contribution is made up of lower bound re-
sults are proved for the considered model. Two theo-
rems are proved that state (1) the process that is even-
tually elected has to forever write the shared memory,
and (2) any process (but the eventual leader) has to
forever read from the shared memory. Another the-
orem shows that, if the shared memory is bounded,
then all the processes have to forever write into the
shared memory. These theorems show that both the
algorithms presented in the paper are optimal with re-
spect to these criteria.

Why shared memory-based � algorithms are important
Multi-core architectures are becoming more and more de-
ployed and create a renewed interest for asynchronous
shared memory systems. In such a context, it has been
shown [10] that � constitutes the weakest contention man-
ager that allows transforming any obstruction-free [15] soft-
ware transactional memory into a non-blocking transac-
tional memory [16]. This constitutes a very strong moti-
vation to look for requirements that, while being “as weak
as possible”, are strong enough to allow implementing � in
asynchronous shared memory environments prone to pro-
cess failures.

On another side, some distributed systems are made up
of computers that communicate through a network of at-
tached disks. These disks constitute a storage area network
(SAN) that implements a shared memory abstraction. As
commodity disks are cheaper than computers, such archi-
tectures are becoming more and more attractive for achiev-
ing fault-tolerance. The � algorithms presented in this pa-
per are suited to such systems [9].

Related work As far as we know, a single shared
memory � algorithm has been proposed so far [13]. This
algorithm considers that the underlying system satisfies the
following behavioral assumption: there is a time � after
which there are a lower bound and an upper bound for
any process to execute a local step, or a shared memory
access. This assumption defines an eventually synchronous
shared memory system. It is easy to see that it is a stronger
assumption than the assumption previously defined here.

The implementation of � in asynchronous message-
passing systems is an active research area. Two main ap-
proaches have been been investigated: the timer-based ap-
proach and the message pattern-based approach.

The timer-based approach relies on the addition of tim-
ing assumptions [5]. Basically, it assumes that there are

bounds on process speeds and message transfer delays, but
these bounds are not known and hold only after some finite
but unknown time. The algorithms implementing � in such
“augmented” asynchronous systems are based on timeouts
(e.g., [1, 19]). They use successive approximations to even-
tually provide each process with an upper bound on trans-
fer delays and processing speed. They differ mainly on the
“quantity” of additional synchrony they consider, and on the
message cost they require after a leader has been elected.

Among the protocols based on this approach, a protocol
presented in [1] is particularly attractive, as it considers a
relatively weak additional synchrony requirement. Let � be
an upper bound on the number of processes that may crash
(� � � � �, where � is the total number of processes). This
assumption is the following: the underlying asynchronous
system, which can have fair lossy channels, is required to
have a correct process � that is a ��-source. This means
that � has � output channels that are eventually timely: there
is a time after which the transfer delays of all the messages
sent on such a channel are bounded (let us notice that this
is trivially satisfied if the receiver has crashed). Notice that
such a ��-source is not known in advance and may never
be explicitly known. It is also shown in [1] that there is no
leader protocol if the system has only ���� ��-sources. A
versatile adaptive timer-based approach has been developed
in [21].

The message pattern-based approach, introduced in [22],
does not assume eventual bounds on process and communi-
cation delays. It considers that there is a correct process �
and a set 	 of � processes (with �
� 	, moreover 	 can
contain crashed processes) such that, each time a process
� � 	 broadcasts a query, it receives a response from �
among the first ��� �� corresponding responses (such a re-
sponse is called a winning response). It is easy to see that
this assumption does not prevent message delays to always
increase without bound. Hence, it is incomparable with the
synchrony-related ��-source assumption. This approach
has been applied to the construction of an � algorithm in
[24].

A hybrid algorithm that combines both types of assump-
tion is developed in [25]. More precisely, this algorithm
considers that each channel eventually is timely or satisfies
the message pattern, without knowing in advance which as-
sumption it will satisfy during a particular run. The aim
of this approach is to increase the assumption coverage,
thereby improving fault-tolerance [26].

Roadmap The paper is made up of 5 sections. Section
2 presents the system model and the additional behavioral
assumption. Then, Sections 3 and 4 present in an incremen-
tal way the two algorithms implementing an � oracle, and
show they are optimal with respect to the number of pro-
cesses that have to write or read the shared memory. Finally,

Section 5 provides concluding remarks.
Due to page limitation, the proofs of some lemmas and

theorems are omitted. The reader can find them in [6].

2 Base Model, Eventual Leader and
Additional Behavioral Assumption

2.1 Base asynchronous shared memory model

The system consists of �, � � �, processes denoted
��� � ��. The integer � denotes the identity of ��. (Some-
times a process is also denoted �, � or �.) A process can
fail by crashing, i.e., prematurely halting. Until it possi-
bly crashes, a process behaves according to its specification,
namely, it executes a sequence of steps as defined by its al-
gorithm. After it has crashed, a process executes no more
steps. By definition, a process is faulty during a run if it
crashes during that run; otherwise it is correct in that run.
There is no assumption on the maximum number � of pro-
cesses that may crash, which means that up to ��� process
may crash in a run.

The processes communicate by reading and writing
a memory made up of atomic registers (also called
shared variables in the following). Each register is one-
writer/multi-reader (1W�R). “1W�R” means that a single
process can write into it, but all the processes can read it.
(Let us observe that using 1W�R atomic registers is par-
ticularly suited for cached-based distributed shared mem-
ory.) The only process allowed to write an atomic register is
called its owner. Atomic means that, although read and write
operations on the same register may overlap, each (read or
write) operation appears to take effect instantaneously at
some point of the time line between its invocation and re-
turn events (this is called the linearization point of the op-
eration) [17]. Uppercase letters are used for the identifiers
of the shared registers. These registers are structured into
arrays. As an example, �������� ��� denotes a shared
register that can be written only by ��, and read by any pro-
cess.

Some shared registers are critical, while other shared
registers are not. A critical register is a an atomic register on
which some constraint can be imposed by the additional as-
sumptions that allow implementing an eventual leader. This
attribute allows restricting the set of registers involved in
these assumptions.

A process can have local variables. They are denoted
with lowercase letters, with the process identity appearing
as a subscript. As an example, ����������� denotes a local
variable of ��.

This base model is characterized by the fact that there is
no assumption on the execution speed of one process with
respect to another. This is the classical asynchronous crash
prone shared memory model. It is denoted �� ���� in the
following.

2.2 Eventual leader service

The notion of eventual leader oracle has been informally
presented in the introduction. It is an entity that provides
each process with a primitive �������� that returns a process
identity each time it is invoked. A unique correct leader is
eventually elected but there is no knowledge of when the
leader is elected. Several leaders can coexist during an ar-
bitrarily long period of time, and there is no way for the
processes to learn when this “anarchy” period is over. The
leader oracle, denoted �, satisfies the following property
[4]:

� Validity: The value returned by a �������� invocation
is a process identity.

� Eventual Leadership3: There is a finite time and
a correct process �� such that, after that time, every
�������� invocation returns �.

� Termination: Any �������� invocation issued by a cor-
rect process terminates.

The � leader abstraction has been introduced and for-
mally developed in [4] where it is shown to be the weakest,
in terms of information about failures, to solve consensus
in asynchronous systems prone to process crashes (assum-
ing a majority of correct processes). Several �-based con-
sensus protocols have been proposed (e.g., [11, 18, 23] for
message-passing systems, and [8] for shared memory sys-
tems)4.

2.3 Additional behavioral assumption

Underlying intuition As already indicated, � cannot
be implemented in pure asynchronous systems such as
������. So, we consider the system is no longer fully asyn-
chronous: its runs satisfy the following assumption denoted
��� (for �symptotically�ell-�ehaved). The resulting sys-
tem is consequently denoted ������� �.

Each process �� is equipped with a timer denoted ������.
The intuition that underlies ��� is that, once a process ��
is defined as being the current leader, it should not to be
demoted by a process �� that believes �� has crashed. To that
end, constraints have to be defined on the behavior of both
�� and ��. The constraint on �� is to force it to “regularly”
inform the other processes that it is still alive. The constraint
on a process �� is to prevent it to falsely suspect that �� has
crashed.

There are several ways to define runs satisfying the pre-
vious constraints. As an example, restricting the runs to

3This property refers to a notion of global time. This notion is not
accessible to the processes.

4It is important to notice that, albeit it can be rewritten using � (first
introduced in 1992), the original version of Paxos, that dates back to 1989,
was not explicitly defined with this formalism. The first paper where Paxos
is explained as an �-based algorithm is [2].

be “eventually synchronous” would work but is much more
constraining than what is necessary. The aim of the ���

additional assumption is to state constraints that are “as
weak as possible”5. It appears that requiring the timers to
be eventually monotonous is stronger than necessary (as we
are about to see, this is a particular case of the ��� as-
sumption). The ��� assumption is made up of two parts
���� and ���� that we present now. ��� � is on the
existence of a process whose behavior has to satisfy a syn-
chrony property. ��� � is on the timers of the other pro-
cesses. ���� and ���� are “matching” properties.

The assumption���� The���� assumption requires
that eventually a process does not behave in a fully asyn-
chronous way. It is defined as follows.

����: There are a time ���, a bound �, and a
correct process �� (���, � and �� may be never
explicitly known) such that, after ���, any two
consecutive write accesses issued by �� to (its
own) critical registers, are completed in at most
� time units.

This property means that, after some arbitrary (but finite)
time, the speed of �� is lower-bounded, i.e., its behavior
is partially synchronous (let us notice that, while there is a
lower bound, no upper bound is required on the speed of � �,
except the fact that it is not �).

The assumption ���� In order to define ��� �, we
first introduce a function ��� with monotonicity properties
that will be used to define an asymptotic behavior. That
function takes two parameters, a time � and a duration �,
and returns a duration. It is defined as follows. There are
two (possibly unknown) bounded values �� and �� such
that:
� (f1)
��� �� 	 �� � �� � �� ,
��� �� 	 �� � �� � �� :
����� ��� � ����� ���. (After some point, ��� is not
decreasing with respect to � and �).

� (f2)
������ ���� � �� � �	. (Eventually, ��� al-
ways increases6.)

We are now in order to define the notion of asymptoti-
cally well-behaved timer. Considering the timer ����� � of
a process �� and a run �, let � be a real time at which the
timer is set to a value �, and � � be the finite real time at
which that timer expires. Let ����� �� � � � � � , for each �
and � . Then timer ������ is asymptotically well-behaved in

5Of course, the notion of “as weak as possible” has to be taken with
its intuitive meaning. This means that, when we want to implement �
in a shared memory system, we know neither an assumption weaker than
��� , nor the answer to the question: Is ��� the weakest additional
assumption?

6If the image of ��� is the set of natural numbers, then this condition
can be replaced by �� � �� �� ���� � ��� � ���� � ���.

a run �, if there is a function ����, as defined above, such
that:

� (f3)
� 	 � � �� ,
� 	 � � �� : ����� �� � ����� ��.

This constraint states the fact that, after some point, the
function ���� is always above the function ����. It is im-
portant to observe that, after ��� � �� �, the function ����� ��
is not required to be non-decreasing, it can increase and de-
crease. Its only requirement is to always dominate ����.
(See Figure 1.)

����: The timer of each correct process (except
possibly ��) is asymptotically well-behaved.

When we consider ��� , it is important to notice that
any process (but �� constrained by a speed lower bound)
can behave in a fully asynchronous way. Moreover, the lo-
cal clocks used to implement the timers are required to be
neither synchronized, nor accurate with respect to real-time.

����� ��

����� ��

����� ��

��� ��

����� ��

Figure 1. ���� asymptotically dominates ����

3 An � algorithm for ������� �

3.1 Principles of the algorithm

The first algorithm implementing � in �� ����� � that
we present, relies on a very simple idea that has been used in
several algorithms that build� in message-passing systems.
Each process �� handles a set (�����������) containing the
processes that (from its point of view) are candidates for
being the leader. When it suspects one of its candidates ��
to have crashed, �� makes public the fact that it suspects ��
once more. (This is done by �� increasing the shared register
�	��
�
��� � � � �.)

Finally, a process �� defines its current leader as the least
suspected process among its current candidates. As sev-
eral processes can be equally suspected, �� uses the function
lexmin��� that outputs the lexicographically smallest pair
in the set parameter � , where � is the set of (number of
suspicions, process identity) pairs defined from �������� � ,
and ��� �� � ��� �� iff �� � �� � �� � � � � ��.

3.2 Description of the algorithm

The algorithm, based on the principles described just
above, that builds � in ������� � is depicted in Figure 2.

Shared variables The variables shared by the processes
are the following:

� �	��
�
��� ���� ��� is an array of natural reg-
isters. �	��
�
��� �� � � � � � means that, up to
now, �� has suspected � times the process �� to have
crashed. The entries �	��
�
��� �� � � �, � � � � �
can be written only by �� .

� �������� ���� is an array of natural registers.
Only �� can write �������� ���. (It does it only
when it considers it is the leader.)

� ���� ���� is an array of boolean registers. Only ��
can write ���� ���. It sets it to ����� to indicate it
considers itself as leader, and sets it to ���� to indicate
it stops considering it is the leader.

The initial values of the previous shared variables could be
arbitrary7. To improve efficiency, we consider that the nat-
ural integer variables are initialized to � and the boolean
variables to ����.

Each shared register �������� ��� or ���� ���,
� � � � � is critical. Differently, none of the registers
�	��
�
��� �� � � �, � � �� � � �, is critical. This means
that, for a process �� involved in the assumption ��� �,
only the write accesses to its registers �������� ��� and
���� ��� are concerned.

Let us observe that, as the shared variables
�������� ���, ���� ��� and �	��
�
��� � � � �,
� � � � �, are written only by ��, that process can save
their values in local memory and, when it has to read any
of them, it can read instead its local copy. (We do not do
it in our description of the algorithms to keep simpler the
presentation.)

Process behavior The algorithm is made up of three
tasks. Each local variable ��������� is initialized to any
set of process identities containing �.

The task �� implements the leader�� primitive. As in-
dicated, �� determines the least suspected among the pro-
cesses it considers as candidates (lines 02-04), and returns
its identity (line 05).

7This means that the algorithm is self-stabilizing with respect to the
shared variables. Whatever their initial values, it converges in a finite
number of steps towards a common leader, as soon as the additional as-
sumption is satisfied. When these variables have arbitrary initial val-
ues (that can be negative), line 27 of Figure 2 has to be “set ������ to
�����������	�
����� ��� �	��������” in order a timer be never
set to a negative value.

The task � is an infinite loop. When it considers it is the
leader, (line 07), �� repeatedly increases �������� ��� to
inform the other processes that it is still alive (lines 07-10).
If it discovers it is no longer leader, �� sets ���� ��� to ����
(line 11) to inform the other processes it is no longer com-
peting to be leader.

task 	�:
(01) when leader() is invoked:
(02) for each � � ����������� do
(03)
�
����	�
������	�
����� �� �	 end for;
(04) let ��� �� � lex min���
�
����	� ����������������);
(05) return���

task 	�:
(06) repeat forever
(07) while �leader() � �� do
(08)
������ ��	�
������ ��	 � �;
(09) if ��
 ��	 then ��
��	� ����� end if
(10) end while;
(11) if �� ��
 ��	� then ��
 ��	� ���� end if
(12) end repeat

task 	:
(13) when ������ expires:
(14) for each � � ��� ���� �� 	 ��� do
(15) ���� �� � ��
 ��	�
(16) �������� �� �
������ ��	;
(17) if (�������� ��
� ��
����) then
(18) ����������� � ����������� � ���;
(19) ��
����	 � �������� ��
(20) else if (���� ��) then
(21) ����������� � ����������� 	 ���
(22) else if (� � ����������� � then
(23) �	�
����� ��� �	� �	�
����� ��� �	 � �;
(24) ����������� � ����������� 	 ���
(25) end if
(26) end for;
(27) set ������ to ������	�
����� ��� �	�������

Figure 2. Write-efficient, all variables are
1WMR, bounded except a single entry of the
shared array �������� ���� (code for ��)

Each process �� has a local timer (denoted ������), and
manages a local variable �������� where it saves the greatest
value that it has ever read from �������� ���. The task
�� is executed each time that timer expires (line 13). Then,
�� executes the following statements with respect to each
process �� (but itself, see line 14). First, �� checks if �� did
some progress since the previous timer expiration (line 17).
Then, it does the following.

� If�������� ��� has progressed, �� considers �� as a
candidate to be leader. To that end it adds � to the local
set ���������� (line 18). (It also updates ��������, line
19.)

� If �������� ��� has not progressed, �� checks the

value of ���� ��� (line 20). If it is true, �� voluntarily
demoted itself from being a candidate. Consequently,
�� suppresses � from its local set ���������� (line 21).
If ���� ��� is false and �� is candidate from ��’s point
of view (line 22), �� suspects �� to have crashed (line
23) and suppresses it from ���������� (line 24).

Then, �� resets its local timer (line 27). Let us observe that
no variable of the array �	��
�
��� can decrease and
such an entry is increased each time a process is suspected
by another process. Thanks to these properties, we will see
in the proof that ������	��
�
��� ��� ��������� can be
used as the next timeout value. Note that to compute this
value only variables owned by �� are accessed.

3.3 Proof of the algorithm

Lemma 1 [6] Let �� be a faulty process and �� a correct
process. Eventually, the predicate �
� ���������� remains
true forever.

Given a run� and a process ��, let�� denote the largest
value ever taken by �������	��
�
��� ��� ��. If there is
no such value (i.e., �������	��
�
��� ��� �� grows for-
ever), let�� � �	. Finally, let be the set of correct pro-
cesses �� such that�� �� �	 (stands for “bounded”).

Lemma 2 [6] Let us assume that the behavioral assump-
tion ��� is satisfied. Let �� be a process that satisfies
assumption ���� . Then, � � and, hence, �� �.

Let ���� !� � lexmin����� �� � � � ��.

Lemma 3 [6] There is a single process �� and it is correct.

Lemma 4 [6] There is a time after which �� permanently
executes the loop defined by the lines 07-10 of task �.

Theorem 1 There is a time after which a correct process is
elected as the eventual common leader.

Proof We show that �� is the eventual common leader.
From Lemma 3 �� is unique and correct. Moreover, due
the definitions of the bound �� and the set , there is
a finite time � after which, for each correct process � �,
� �� !, we have

�
�������	��
�
��� ��� ��� �

�
� ���� !�.

Moreover, due to Lemma 1, there is a time after which, for
each correct process �� and each faulty process �� we have
�
� ��������� . It follows from these observations, that
proving the theorem amounts to show that eventually the
predicate ! � ��������� remains permanently true at each
correct process ��.

Let us notice that the predicate � � ��������� is al-
ways true for any process ��. This follows from the fact
that initially � belongs to ��������� , and then �� does not
execute the tasks �� for � � �, and consequently cannot

withdraw � from ��������� . It follows that we always
have ! � ���������. So, let us examine the case � �� !.

It follows from Lemma 4 that there is a time � af-
ter which �� remains permanently in the while loop of
task �. Let � � � � be a time at which we have
�������	��
�
��� ��� !� � ��, and �� has executed
line 09 (i.e., ���� �!� remains false forever).

After � �, because �� is forever increasing
�������� �!�, the test of line 17 eventually eval-
uates to true and (if not already done) � � adds ! to
��������� . We claim that, after that time, the task �� of ��
is always executing the lines 18-19 (for � � !), from which
it follows that ! remains forever in ��������� .

Proof of the claim. Let us assume by contradiction that
the test of line 17 is false when evaluated by ��. It fol-
lows that ! is withdrawn from ��������� , and this oc-
curs at line 24. (It cannot occur at line 21 because
after � we always have ���� �!� � ����� .) But line
23 is executed before 24, from which we conclude that
�	��
�
��� ��� !� has been increased, which means that
we have now �������	��
�
��� ��� !� � �� � �, con-
tradicting the definition of the bound��. End of the proof
of the claim. �	
���� �

Theorem 2 [6] Let �� be the eventual common leader. All
shared variables (but �������� �!�) are bounded.

Theorem 3 [6] After a finite time, only one process (the
eventual common leader) writes forever into the shared
memory. Moreover, it always writes the same shared vari-
able.

3.4 Optimality Results

Let � be any algorithm that implements � in
������� � with up to � faulty processes. We have the fol-
lowing lower bounds.
Lemma 5 Let � be any run of � with less than � faulty
processes and let �� be the leader chosen in �. Then ��
must write forever in the shared memory in �.

Lemma 6 [6] Let � be any run of � with less than � faulty
processes and let �� be the leader chosen in �. Then every
correct process ��, � �� !, must read forever from the shared
memory in �.

The following theorem follows immediately from the pre-
vious lemmas.

Theorem 4 [6] The algorithm described in Figure 2 is op-
timal in with respect to the number of processes that have to
write the shared memory. It is quasi-optimal with respect to
the number of processes that have to read the shared mem-
ory.

The “quasi-optimality” comes from the fact that the al-
gorithm described in Figure 2 requires that each pro-
cess (including the leader) reads forever the shared
memory (all the processes have to read the array
�	��
�
��� ���� ���).

3.5 Discussion

Using multi-writer/multi-reader (�W�R) atomic reg-
isters If we allow �W�R atomic variables, each col-
umn �	��
�
��� ��� �� can be replaced by a single
�	��
�
��� ���. Consequently vectors of �W�R atomic
variables can be used instead of matrices of �W�R atomic
variables.

Eliminating the local clocks The timers (and conse-
quently the local clocks used to implement them) can be
eliminated as follows. Each ������ is now a local vari-
able managed by �� as follows (where each execution of the
statement ������ � ������ � � is assumed to take at least
one time unit). The code of task �� becomes accordingly:

task ��: ������ � �;
while ������ do

������ � ������ � �;
if (������ � �)

then Line 14 until Line 26 of Figure 2 or 3;
������ � ������������	
� 	�� �
�������

end if
end while.

4 An � algorithm for ������� �
with Bounded Variables Only

4.1 A Lower Bound Result

This section shows that any algorithm that implements
� in ������� � with only bounded memory requires all
correct processes to read and write the shared memory for-
ever. As we will see, it follows from this lower bound that
the algorithm described in Figure 3 is optimal with respect
to this criterium.

Let� be an algorithm that implements� in�� ����� �
such that, in every run � of �, the number of shared mem-
ory bits used is bounded by a value "� (which may depend
on the run). This means that in any run there is time after
which no new memory positions are used, and each mem-
ory position has bounded number of bits. To make the result
stronger, we also assume that� knows � (maximum number
of processes that can fail in any run of �).

Theorem 5 [6] The algorithm� has runs in which at least
�� � processes write forever in the shared memory.

The system model defined in this paper assumes � � �� �.
Hence the following corollary.

Corollary 1 Any algorithm that implements � in
������� � with bounded shared memory has runs
in which all processes write the shared memory forever.

4.2 An algorithm with only bounded variables

Principles and description As already indicated, we are
interested here in an algorithm whose variables are all
bounded. To attain this goal, we use a hand-shaking
mechanism. More precisely, we replace the shared array
�������� ���� and all the local arrays ���������, � �
� � �, by two shared matrices of �W�R boolean values,
denoted �������� ���� ��� and ���� ���� ���.

The hand-shaking mechanism works a follows. Given
a pair of processes �� and ��, �������� ��� �� and
���� ��� �� are used by these processes to send signals to
each other. More precisely, to signal �� that it is alive,
�� sets �������� ��� �� equal to ����� ��� ��. In the
other direction, �� indicates that it has seen this “signal”
by cancelling it, namely, it resets ���� ��� �� equal to
�������� ��� ��. It follows from the essence of the hand-
shaking mechanism that both �� and �� have to write shared
variables, but as shown by Corollary 1, this is the price that
has to be paid to have bounded shared variables.

Using this simple technique, we obtain the algorithm de-
scribed in Figure 3. In order to capture easily the parts
that are new or modified with respect to the previous al-
gorithm, the line number of the new statements are suffixed
with the letter R (so the line 08 of the previous protocol is
replaced by three new lines, while each of the lines 16, 17
and 19 is replaced by a single line). This allows a better
understanding of the common principles on which both al-
gorithms rely.

Proof of the algorithm The statement of the lemmas
1, 2, 3 and 4, and Theorem 1 are still valid when
the shared array �������� ���� and the local arrays
���������, � � � � � are replaced by the shared matri-
ces �������� ���� ��� and ���� ���� ���.

As far as their proofs are concerned, the proofs of the
lemmas 3 and 4 given in Section 3.3 are verbatim the same.
The proofs of the lemmas 1 and 2, and the proof of Theorem
1 have to be slightly modified to suit to the new context. Ba-
sically, they differ from their counterparts of Section 3.3 in
the way they establish the property that, after some time, no
correct process �� misses an “alive” signal from a process
that satisfies the assumption ����. (More specifically,
the sentence “there is a time after which �������� ���
does no longer increase” has to be replaced by the sentence
“‘there is a time after which�������� ��� �� remains for-
ever equal to ���� ��� ��”.) As they are very close to the
previous ones and tedious, we don’t detail these proofs.
(According to the usual sentence, “They are left as an ex-
ercise to the reader”.)

task 	�:
(01) when leader() is invoked:
(02) for each � � ����������� do
(03)
�
����	�
������	�
����� �� �	 end for;
(04) let ��� �� � lex min���
�
����	� ����������������);
(05) return���

task 	�:
(06) repeat forever
(07) while �leader() � �� do
(08.R1) for each � � ��� ���� �� 	 ��� do
(08.R2) if (
������ ��� �	 � ���	 ��� �) then
(08.R3)
������ ��� �	� ����	 ��� �	 end if
(08.R4) end for;
(09) if ��
 ��	 then ��
 ��	� ����� end if
(10) end while;
(11) if �� ��
 ��	� then ��
 ��	� ���� end if
(12) end repeat

task 	:
(13) when ������ expires:
(14) for each � � ��� ���� �� 	 ��� do
(15) ���� �� � ��
 ��	�
(16.R1) �������� �� �
������ ��� �	;
(17.R1) if (�������� ��
� ���	 ��� �) then
(18) ����������� � ����������� � ���;
(19.R1) ���	 ��� �	 � �������� ��
(20) else if (���� ��) then
(21) ����������� � ����������� 	 ���
(22) else if (� � ����������� � then
(23) �	�
����� ��� �	� �	�
����� ��� �	 � �;
(24) ����������� � ����������� 	 ���
(25) end if
(26) end for;
(27) set ������ to ������	�
����� ��� �	�������

Figure 3. All variables are 1WMR and bounded
(code for ��)

The same reasoning as the one done in the proof
of the Theorem 2 shows that each shared variable
�	��
�
��� ��� ��, � �� � � �, is bounded. Com-
bined with the fact that the variables �������� ��� �� and
���� ��� �� are boolean, we obtain the following theorem.

Theorem 6 All the variables used in the algorithm de-
scribed in Figure 3 are bounded.

The following theorem is the counterpart of Theorem 3.

Theorem 7 Let �� be the process elected as the eventual
common leader, and ��, � �� !, any correct process. There is
a time after which the only variables that may be written are
�������� �!� �� (written by ��) and ���� �!� �� (written
by ��).

Proof The proof that the variables �������� �!� ��, � �
� � �, are infinitely often written, and the proof that there

is a time after which the variables ���� ���, � � � � �,
and the variables �	��
�
��� ��� ��, � � �� � � �, are no
longer written is the same as the proof done in Theorem 3.

The fact that there is a time after which
�������� ��� ��, � � �� � � �, � �� !, are no
longer written follows from the fact that, after �� has been
elected, no process �� executes the body of the while loop
of task �.

Let us now consider any variable ���� ��� #�, � ��
!. As, after �� has been elected, no correct process ��,
� �� !, updates �������� ��� #� (at line 08.R2), it
follows that there is a time after which ���� ��� #� �
�������� ��� #� remains forever true for � � �� # � �
and � �� !. Consequently, after a finite time, the test of line
17.R1 is always false for ��, � �� !, and ���� ��� #� is no
longer written. �	
���� �

Finally, the next theorem follows directly from Corollary 1.

Theorem 8 The � algorithm described in Figure 3 is op-
timal with respect to the number of processes that have to
write the shared memory.

5 Conclusion

This paper has addressed the problem of electing an
eventual leader in an asynchronous shared memory system.
It has three main contributions.

� The first contribution is the statement of an assump-
tion (a property denoted ���) that allows electing
a leader in the shared memory asynchronous systems
that satisfy that assumption. This assumption requires
that after some time (1) there is a process whose write
accesses to some shared variables are timely, and (2)
the other processes have asymptotically well-behaved
timers. The notion of asymptotically well-behaved
timer is weaker than the usual notion of timer where
the timer durations have to monotonically increase
when the values to which they are set increase. This
means that ��� is a particular weak assumption.

� The second contribution is the design of two al-
gorithms that elect an eventual leader in any asyn-
chronous shared memory system that satisfies the as-
sumption ��� . In addition of being independent
of � (the maximum number of processes allowed to
crash), and being based only on one-writer/multi-
readers atomic shared variables, these algorithms en-
joy noteworthy properties. The first algorithm guaran-
tees that (1) there is a (finite) time after which a sin-
gle process writes forever the shared memory, and (2)
all but one shared variables have a bounded domain.
The second algorithm uses (1) a bounded memory but
(2) requires that each process forever writes the shared
memory.

� The third contribution shows that the previous trade-
off (bounded/unbounded memory vs number of pro-
cesses that have to write) is inherent to the leader elec-
tion problem in asynchronous shared memory systems
equipped with ��� . It follows that both algorithms
are optimal, the first with respect to the number of
processes that have to forever write the shared mem-
ory, the second with respect to the boundedness of the
memory.

Several questions remain open. One concerns the first al-
gorithm. Is it possible to design a leader algorithm in which
there is a time after which the eventual leader is not required
to read the shared memory? Another question is the fol-
lowing: is the second algorithm optimal with respect to the
size of the control information (bit arrays) it uses to have a
bounded memory implementation?

References
[1] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and

Toueg S., Communication-Efficient Leader Election and
Consensus with Limited Link Synchrony. Proc. 23th PODC
pp. 328-337, 2004.

[2] Boichat R., Dutta P., Frølund S. and Guerraoui R., Decon-
structing Paxos. ACM Sigact News, Distributed Computing
Column, 34(1):47-67, 2003.

[3] Chandra T. and Toueg S., unreliable Failure Detectors
for Resilient Distributed Systems. Journal of the ACM,
43(2):225-267, 1996.

[4] Chandra T., Hadzilacos V. and Toueg S., The Weakest Fail-
ure Detector for Solving Consensus. Journal of the ACM,
43(4):685-722, 1996.

[5] Dwork C., Lynch N. and Stockmeyer L., Consensus in
the Presence of Partial Synchrony. Journal of the ACM,
35(2):288-323, 1988.

[6] Fernández A., Jiménez E. and Raynal M., Electing an Even-
tual Leader in an Asynchronous Shared Memory System.
Tech Report #1821, 18 pages, Université de Rennes, France,
November 2006.

[7] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of
Distributed Consensus with One Faulty Process. Journal of
the ACM, 32(2):374-382, 1985.

[8] Gafni E. and Lamport L., Disk Paxos. Distributed Comput-
ing, 16(1):1-20, 2003.

[9] Gibson G.A. et al., A Cost-effective High-bandwidth Stor-
age Architecture. Proc. 8th Int’l Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS’98), ACM Press, pp. 92-103, 1998.

[10] Guerraoui R., Kapalka M. and Kouznetsov P., The Weakest
failure Detectors to Boost Obstruction-Freedom. Proc. 20th
Symposium on Distributed Computing (DISC’06), Springer-
Verlag LNCS #4167, pp. 376-390, 2006.

[11] Guerraoui R. and Raynal M., The Information Structure
of Indulgent Consensus. IEEE Transactions on Computers,
53(4):453-466, 2004.

[12] Guerraoui R. and Raynal M., The Alpha of Asynchronous
Consensus. The Computer Journal, To appear, 2007.

[13] Guerraoui R. and Raynal M., A Leader Election Protocol
for Eventually Synchronous Shared Memory Systems. 4th
Int’l IEEE Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems (SEUS’06), IEEE Com-
puter Society Press, pp. 75-80, 2006.

[14] Hélary J.-M., Hurfin M., Mostefaoui A., Raynal M. and
Tronel F., Computing Global Functions in Asynchronous
Distributed Systems with Perfect Failure Detectors. IEEE
TPDS, 11(9):897-909, 2000.

[15] Herlihy M.P., Luchangco V. and Moir M., Obstruction-
free Synchronization: Double-ended Queues as an Example.
Proc. 23th IEEE Int’l Conference on Distributed Computing
Systems (ICDCS’03), pp. 522-529, 2003.

[16] Herlihy M.P., Luchangco V., Moir M. and Scherer III W.N.,
Software Transactional Memory for Dynamic Sized Data
Structure. Proc. 21th ACM Symposium on Principles of Dis-
tributed Computing (PODC’03), pp. 92-101, 2003.

[17] Herlihy M.P. and Wing J.M, Linearizability: a Correctness
Condition for Concurrent Objects. ACM Transactions on
Progr. Languages and Systems, 12(3):463-492, 1990.

[18] Lamport L., The Part-Time Parliament. ACM Transactions
on Computer Systems, 16(2):133-169, 1998.

[19] Larrea M., Fernández A. and Arévalo S., Optimal Imple-
mentation of the Weakest Failure Detector for Solving Con-
sensus. Proc. 19th Symposium on Resilient Distributed Sys-
tems (SRDS’00), pp. 52-60, 2000.

[20] Lo W.-K. and Hadzilacos V., Using failure Detectors to solve
Consensus in Asynchronous Shared Memory Systems. Proc.
8th Int’l Workshop on Distributed Computing (WDAG’94),
Springer Verlag LNCS #857, pp. 280-295, 1994.

[21] Malkhi D., Oprea F. and Zhou L., � Meets Paxos: Leader
Election and Stability without Eventual Timley Links. Proc.
19th Int’l Symposium on DIStributed Computing (DISC’05),
Springer Verlag LNCS #3724, pp. 199-213, 2005.

[22] Mostefaoui A., Mourgaya E., and Raynal M., Asynchronous
Implementation of Failure Detectors. Proc. Int’l IEEE Con-
ference on Dependable Systems and Networks (DSN’03),
IEEE Computer Society Press, pp. 351-360, 2003.

[23] Mostefaoui A. and Raynal M., Leader-Based Consensus.
Parallel Processing Letters, 11(1):95-107, 2001.

[24] Mostéfaoui A., Raynal M. and Travers C., Crash Resilient
Time-Free Eventual Leadership. Proc. 23th IEEE Sympo-
sium on Reliable Dists. Systems, pp. 208-218, 2004.

[25] Mostéfaoui A., Raynal M. and Travers C., Time-free and
Timeliness Assumptions can be Combined to Get Eventual
Leadership. IEEE Transactions on Parallel and Distributed
Systems, 17(7):656-666, 2006.

[26] Powell D., Failure Mode Assumptions and Assumption
Coverage. Proc. of the 22nd Int’l Symposium on Fault-
Tolerant Computing (FTCS-22), pp.386-395, 1992.

[27] Raynal M., A Short Introduction to Failure Detectors for
Asynchronous Distributed Systems. ACM SIGACT News,
Distributed Computing Column, 36(1):53-70, 2005.

