
Adapt: Towards Autonomic Web Services�

Alberto Bartoli1, Ricardo Jiménez-Peris2, Bettina Kemme3, Cesare Pautasso4,
Simon Patarin5, Stuart Wheater6, and Simon Woodman7

1 Univ. di Trieste, Italy
2 Univ. Politecnica de Madrid, Spain

3 McGill Univ., Canada
4 ETH Zurich, Switzerland
5 Univ. di Bologna, Italy

6 Arjuna Technologies, United Kingdom
7 Univ. of Newcastle, United Kingdom

1 Introduction

Organizations are increasingly using the Web not only to sell products and de-
liver information, but also for providing their services to businesses and individ-
ual customers. Typically, the provision of such services by organizations requires
the construction of applications that integrate existing enterprise information
systems to offer new business functions. Organizations need to ensure that these
services are available, scalable and also autonomic to guarantee that user inter-
actions are promptly processed even under highly volatile conditions. In most
cases, organizations use application servers with a multi-tier architecture for the
delivery of their services. In the following, we will refer to services not relying
on other web services as Basic Services (BSs). The presence of a wide variety of
BSs over the Internet has created an exciting new business opportunity of pro-
viding value added, inter-organizational services by composing multiple BSs into
new Composite Services (CSs). The Adapt project aims to provide autonomic
support for both basic and composite web services. In the following sections we
describe autonomic support for both kinds of web services.

2 Self-Descriptive Web Services

In general functional properties of a web service are described by means of a
WSDL (Web Service Description Language) document. Within Adapt, it is also
possible to describe the non-functional properties of the service by means of a
service specification language developed for this purpose. This description en-
ables a rich composition of services in which properties of a CS are determined
out of the properties of its constituent services and validated against them. We
have identified three families of non-functional attributes that may be of interest
for compositions: 1) Attributes related to transactional capabilities of web ser-
vices; 2) Attributes regarding sequencing constraints on web service invocations
(conversations) [13]; 3) Attributes dealing with web service performance.

� The Adapt project is an FP5 IST project funded by European Commission under
contract IST-2001-37126. http://adapt.ls.fi.upm.es/adapt.htm



The first and the second set of attributes are static in the sense that their
specification does not change after deployment. It is useful to publish static
attributes at deployment time. This allows a CS to use the static attributes at
composition time to derive, and verify, the properties of the composition. These
attributes are described in the same WSDL document describing the functional
properties of the service, using the extensibility features of WSDL. The third set
of attributes is dynamic: performance values, like response time, throughput, and
availability that change continuously during service execution. These dynamic
attributes are useful at run-time to choose the most appropriate service with
respect to its actual performance. Unlike the above static attributes, these are
associated with dedicated web service operations: the CS can invoke these web
services to find out the current performance values of the web service.

The second set of attributes is used by the analysis tool to verify automat-
ically that the structure of the composition is free of deadlocks and livelocks
such as infinite loops, unreachable execution branches etc. It also verifies that
the messages sent and received from the process to each component service form
a valid conversation, with respect to that services sequencing constraints [13].

3 Autonomic Support for Basic Services

The support for basic web services adopts a three-tier J2EE approach. The three
tiers considered are: web tier (web service components), application server tier
(EJBs), and database. Our middleware for J2EE-based BSs uses replication as
the key technique for providing adaptability. It allows replicating the application
server and/or the database server.

The support for J2EE replication is organized into two parts: i) a generic
replication framework for J2EE-based web services in charge of intercepting
client requests, EJB invocations, and replies [1]; ii) specific algorithms for auto-
nomic replication [14, 3]. With this approach, that we use at the middle tier, the
task of developing a replication algorithm is decomposed into two portions: the
framework itself, which handles all the detailed interactions with the underlying
application server code, and the specific replication algorithm, which is written
in terms of a high-level API. The framework only requires implementing once
per platform, allowing the developers to concentrate on the relevant details of
the specific?replication algorithm. The framework has been implemented for the
JBoss open-source application server and the Axis SOAP engine. The framework
is based on JBora (which is built on top of Spread) that also introduces adaptive
message batching [2].

Concerning the database layer, two approaches have been developed based
on PostgreSQL: Middle-R [9, 7, 4] a middleware approach to database replication
and Postgres-R [15] that extends the database code with the replication logic.
Autonomic support at the database layer focuses on load control [8], dynamic
load balancing [8], and online recovery [6, 5]. At the local level, load control
enables to regulate automatically the multi-programming level (MPL, the num-
ber of allowed concurrent transactions) to attain the maximum throughput. At



the global level, dynamic load balancing enables to distribute the load across
replicas. In order to maintain the level of availability, failed replicas should be
recovered or substituted by new ones. Offline recovery would result in a loss
of availability during recovery. For this reason, in Adapt, replicas are recovered
online without stopping request processing.

4 Autonomic Support for Composite Services

Workflows provide a good abstraction to model the composition of web services.
A workflow process is composed of a set of service invocations (or tasks) and its
structure defines the control and data flow dependencies between them. With
this approach, it becomes possible to give a high-level description over the partial
order of invocation of the services and their interactions while maintaining well-
defined, executable semantics. In Adapt, a process can be modelled with different
syntaxes: visual [10] and XML-based.

In Adapt, the service composition language has been designed to allow the
specification of the structure of a composite service at a level of abstraction
which allows the composite service designer to concentrate on modelling the
correct functional behaviour of the process.

Due to the properties of the distributed setting in which composite services
are deployed, it is essential that a composite service can be modified dynamically
to reflect changes in the underlying environment. Adaptability is thus a very
important property of a composite service that can be expressed along several
orthogonal dimensions:

– Dynamic binding. The references linking the composite service to its com-
ponent services are evaluated at the latest possible time. Thus, it becomes
possible to retarget some of the services to be invoked dynamically, ensuring
the forward progress of the composition [12].

– Fault-tolerance. The composite service should appropriately handle application-
level failures that are encountered during the invocation of its basic services.
Similarly, if a service becomes unavailable it should be possible to retry the
invocation using a backup service provider.

– Resolution of interface mismatches. Bottom-up composition may result in
incompatibilities in the data models of the basic services to be integrated.
Thus, a suitable mechanism to adapt mismatching services to fit with one
another is required.

– Advanced Transactional Semantics. With this, compositions can adapt to
exceptional conditions and remain consistent.

Introducing adaptability in a composite service through the composition lan-
guage is not enough, as adaptability needs to be appropriately supported by the
underlying composition infrastructure. In this regard, the Adapt distributed en-
gine for executing compositions can be adapted to provide different levels of
performance in terms of both scalability and reliability. In [11] we show that
replication can be applied to key components of the engine in order to increase



the overall system’s throughput as the engine runs over a cluster of computers.
Similarly, we evaluated the cost of providing reliable execution of the composi-
tion by comparing different strategies for the adding persistence to the engine.

5 Acknowledgments

Many people contributed to the Adapt project: G. Alonso, E. Antoniutti, O.
Babaoglu, B. Biörnstad, D. Ingham, D. Jönsson, Y. Lin, M. Little, V. Maverick,
J. Milan, D. Palmer, M. Patiño-Mart́ınez, F. Perez, M. Prica, M. Saheb, J. Salas,
D. Serrano, S. Shrivastava, J. Vuckovic, H. Wu.

References

1. Ö. Babaoglu, A. Bartoli, V. Maverick, S. Patarin, J. Vuckovic, and H. Wu. A
Framework for Prototyping J2EE Replication Algorithms. In DOA, 2004.

2. A. Bartoli, C. Calabrese, M. Prica, E. Antoniutti, and A. Montresor. Adaptive
message packing for group communication systems. In Works. on Reliable and
Secure Middleware, 2003.

3. A. Bartoli, M. Prica, and E. Antoniutti. A replication framework for program-to-
program interaction across unreliable networks and its implementation in a servlet
container (in press). Concurrency and Computation: Practice and Exper., 2005.

4. R. Jiménez-Peris, M. Patiño-Mart́ınez, and G. Alonso. Non-Intrusive, Parallel
Recovery of Replicated Data. In IEEE SRDS, 2002.

5. R. Jiménez-Peris, M. Patiño-Mart́ınez, G. Alonso, and B. Kemme. Are Quorums
an Alternative for Data Replication. ACM Trans. on Databases, 28(3), 2003.

6. B. Kemme, A. Bartoli, and O. Babaoglu. Online Reconfiguration in Replicated
Databases Based on Group Communication. In DSN, 2001.

7. Y. Lin, B. Kemme, M. Patiño-Mart́ınez, and R. Jiménez-Peris. Middleware based
data replication providing snapshot isolation. In ACM SIGMOD Conf., 2005.

8. J. M. Milán, R. Jiménez-Peris, M. Patiño-Mart́ınez, and B. Kemme. Adaptive
middleware for data replication. In ACM/IFIP/USENIX Middleware, 2004.

9. M. Patiño-Mart́ınez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Consistent
Database Replication at the Middleware Level (In Press). ACM Transactions on
Computer Systems, 2005.

10. C. Pautasso and G. Alonso. Visual composition of web services. In HCC, pages
92–99, 2003.

11. C. Pautasso and G. Alonso. JOpera: a Toolkit for Efficient Visual Composition of
Web Services. J. of Electronic Commerce, 9(2), 2004.

12. C. Pautasso and G. Alonso. The JOpera visual composition language. J. Vis.
Lang. Comput., 16(1-2):107–141, 2005.

13. S. Woodman, D. Palmer, S. Shrivastava, and S. Wheater. Notations for the spec-
ification and verification of composite web services. In IEEE EDOC, 2004.

14. H. Wu, B. Kemme, and V. Maverick. Eager Replication for Stateful J2EE Servers.
In DOA, pages 1376–1394, 2004.

15. S. Wu and B. Kemme. Postgres-r(si): Combining replica control with concurrency
control based on snapshot isolation. In ICDE, 2005.


