
Chapter 1

GROUP TRANSACTIONS
�
:

An Integrated Approach to Transactions and Group
Communication

Marta Pati~no-Mart��nez

Ricardo Jim�enez-Peris

Facultad de Inform�atica

Technical University of Madrid

Boadilla del Monte E-28660 Madrid Spain

{mpatino,rjimenez}@�.upm.es

Sergio Ar�evalo

Escuela de Ciencias Experimentales

Universidad Rey Juan Carlos

M�ostoles E-28933 Madrid Spain

s.arevalo@escet.urjc.es

Abstract Transactions and group communication are two techniques to build

fault-tolerant distributed applications. They have evolved separately

over a long time. Only in recent years researchers have proposed an

integration of both techniques. Transactions were developed in the con-

text of database systems to provide data consistency in the presence of

failures and concurrent accesses. On the other hand, group communi-

cation was proposed as a basic building block for reliable distributed

systems. Group communication deals with consistency in the delivery

of multicast messages. The diÆculty of the integration stems from the

fact that the two techniques provide very di�erent kinds of consistency.

This chapter addresses the integration of both models and how appli-

cations using group communication can bene�t from transactions and

�This research has been partially funded by the Spanish National Research Council CICYT

under grant TIC98-1032-C03-01.

P. Ezhilchelvan and A. Romanovsky (eds.), Concurrency in Dependable Computing
c
 2002 Kluwer Academic Publishers. Printed in the Netherlands

1



vice versa. On one hand, groups of processes can deal with persistent

data in a consistent way with the help of transactions. On the other

hand, transactional applications can take advantage of group commu-

nication to build distributed cooperative servers as well as replicated

ones. An additional advantage of an integrated approach is that it can

be used as a base for building transactional applications taking advan-

tage of computer clusters.

Keywords: Transactions, Reliable Multicast, Cooperative and Competitive Concur-

rency.

1. Introduction

Two well-known techniques to build fault-tolerant distributed systems

are transactions and group communication. Transactions [1] were devel-

oped to provide data consistency in the presence of concurrent accesses

and failures. Group communication (multicast) [2, 3] was proposed as

a building block for reliable distributed systems. Group communication

provides di�erent levels of consistency in the delivery of multicast mes-

sages. These techniques have evolved quite independently, transactions

in the context of databases and group communication in the context of

reliable distributed systems. It has not been until the last years when

researchers have tried to integrate both techniques.

During the mid-nineties a debate [4, 5, 6, 7] in the distributed sys-

tems community took place about whether group communication was

enough to build any kind of distributed fault-tolerant application. One

of the conclusions of this discussion was that group communication and

transactions are two complementary fault-tolerance techniques. Since

then, several research groups have become interested in the integration

of both models.

For instance, in [8] a basic mechanism it is studied, Dynamic Termi-

nating Multicast, that can be used to build both transactional and group

systems. This work takes advantage of the fact that commit and multi-

cast algorithms are consensus-like problems and therefore similar. They

propose Dynamic Terminating Multicast as a basic mechanism to build

both kinds of algorithms on top of it. Although their work deals with the

integration of transactions and group communication, it just deals with

the implementation of the commit protocol. Another approach integrat-

ing group communication with atomic commitment is taken in [9] where

the lower bound of three rounds for non-blocking atomic commitment

[10, 11] is overcome by using optimistic delivery of uniform multicast.

[12] proposes an integration of two models of consistency namely, vir-

tual synchrony [2] and linearizability [13]. In that integration services



Group Transactions 3

can be requested to groups of objects. Virtual synchrony guarantees

that all group members perceive membership (view) changes at the same

virtual time. Linearizability is a relaxation of serializability [14] (that

guarantees serial execution of concurrent transactions). Linearizability

ensures that the result of a set of concurrent invocations on a given

object is equivalent to a serial execution of them. This approach does

not deal with the bulk of transactional systems that imply a stronger

isolation condition, serializability, as well as failure atomicity. However,

the paper points out that the inclusion in the model of these properties,

serializability and failure atomicity, must be addressed.

[15] present a more complete approach. In this paper, the authors

explore the role of group communication in building transactional sys-

tems. The point of the paper is that group communication primitives

are an application structuring mechanism that provides transactional se-

mantics by itself. A transaction is sent in a single reliable total-ordered

multicast message to all the servers the transaction needs to contact.

Transaction atomicity is provided by multicast atomicity. That is, a

message is delivered to all group members or to none of them. The

isolation is achieved by using total-order and by processing requests se-

quentially. This approach has some penalties: groups must be dynamic,

increasing transaction latency as a consequence. There are some other

issues that are not addressed in the paper like recovery and transaction

nesting.

In contrast the approach taken in [16] provides transactions as a ba-

sic mechanism while multicast is hidden from application programmers.

Transactions can access replicated objects and therefore provide high

available data, but no support is provided for cooperative transactional

applications.

Another approach combining competitive and cooperative concur-

rency control are coordinated atomic actions [17]. In this model, pro-

cesses can join on-going atomic actions to cooperate within them. This

is useful in those applications where processes are autonomous entities,

that need to cooperate with some atomicity guarantees. However, this

model is not suitable for transactional systems where servers are passive

entities that are only activated when clients request services.

Some programming languages [18, 19] have incorporated group com-

munication primitives and features for replication, recovery and failure

noti�cation. Although, no facilities for transaction processing are avail-

able.

A di�erent integrative approach has been the use of group commu-

nication as a building block to implement database replication. This

approach has been taken in [20, 21, 22, 23, 24]. In these papers, reliable



4 Chapter 1

total ordered multicast is used to propagate updates from a replica where

a transaction has been executed to the rest of the replicas. However, the

emphasis is on improving the implementation of database replication

rather than providing an integrated model.

Corba [25] did not provide fault-tolerance and many research projects

[26, 27, 28, 29] have addressed this topic using replication and group

communication. As a result, Corba has been recently enhanced with

replication (FT-Corba [30]). However, in [31] it is stated that the com-

position of Object Transaction Service (OTS) and FT-Corba does not

result in any meaningful combination of their strengths.

In [32] it is stated that none of the previous systems considers the

problem of integrating group communication with the transactional frame-

works they extend. The paper also describes how to integrate group com-

munication with Jini transactions [33] to provide transparently transac-

tions over replicated objects.

In all the previously mentioned approaches the integration of trans-

actions and group communication has been identi�ed as a key issue

\to extend the power and generality of group communication as a broad

distributed computing discipline for designing and implementing reliable

applications" [15]. However, all the mentioned approaches just consider

group communication to build replicated systems, but groups can be

used for other purposes [34]. In this paper we address a complete inte-

gration of transactions and group communication. Group Transactions

is a new transaction model in which transactional servers are groups of

processes, either cooperative or replicated. Clients interact with these

transactional group servers by multicasting their requests to them.

The paper is structured as follows, Section 2 introduces some de�-

nitions. Section 3 presents the proposed model, Group Transactions.

Section 4 shows some applications of the model. Finally, we present our

conclusions in Section 5.

2. Model and De�nitions

2.1 System

The system consists of a set of nodes S = fS1; S2; :::; SNg that com-

municate by exchanging messages through reliable channels. We assume

an asynchronous system where nodes fail by crashing (no Byzantine fail-

ures).

In each node there is a set of processes. Each process belongs to a

group. A group is seen as an individual logical entity, which does not

allow its clients either to view its internal state, nor the interactions

among its members. Processes belonging to the same group share a



Group Transactions 5

common interface and application semantics. A group interface is a

description of remotely callable services, which must be implemented

inside each group member.

Sites are provided with a group communication system supporting

strong virtual synchrony [35]. Group communication systems provide

communication primitives and the notion of view (current connected

sites). Changes in the composition of a view are delivered to the ap-

plication. We assume a primary component membership [3]. Strong

virtual synchrony ensures that messages are delivered in the same view

they were multicast.

Group communication primitives [2] are used to communicate with

groups. A request to a group is multicast to all the processes of a group.

Multicast messages are reliable. That is, a message is delivered to all

sites in the view or to none of them. Regarding message ordering we

consider multicast primitives providing FIFO order (messages from the

same sender are delivered in the order they were multicast) or total order

(all messages are delivered at all processes in the same order).

We distinguish two kinds of groups, replicated and cooperative groups,

according to the state and behavior of its members.

Replicated groups implement the active replication model, that is,

they behave as state machines [36]. According to this model all the

group members are identical replicas, that is, they have the same state

and should run on failure-independent nodes. Clients use total ordered

multicast to submit their requests to replicated groups (Fig. 1.b). There-

fore, all group members receive the same requests and produce the same

answers.

A replicated group can act as a client of another group. Replication

transparency is provided by the underlying communication system that

�lters the replicated requests so that a single message is issued. This is

known as \n-to-1" communication [34] (Fig. 1.c). This type of commu-

nication allows building programs with active replication and minimal

additional e�ort from the programmer. That is, the programmer pro-

grams the group as if the group were made out of a single process. To

our knowledge Group IO [37] is the only protocol that supports \n-to-1"

communication.

On the other hand, members of a cooperative group (Fig. 1.a) do

not need to have either the same state or the same code. They are

intended to divide data among its members and/or to express parallelism

taking advantage of multiprocessing or distribution capabilities in order

to increase the throughput. For instance, a cooperative group can be

used to perform matrix multiplication. Each member of a cooperative



6 Chapter 1

b) Invocation to a
replicated group

Client

Mb. 1

Mb. 2

Mb. N

Invocation

Invocation

Client

Mb. 1

Mb. 2

Mb. N

Results

Reply

c) Invocation from a
replicated group

Server

Mb. 1

Mb. 2

Mb. N

Invocation

Invocation

ServerResults

Mb. 1

Mb. 2

Mb. N

Reply

a) Invocation to a
cooperative group

Mb. 1

Mb. 2

Mb. N

InvocationClient

Invocation

Mb. 1

Mb. 2

Mb. N

Results

Reply

Client

Figure 1. Group invocations and invocations from groups

group can compute a row. Each member of the group has a copy of the

matrix and knows which elements it has to multiply.

Members of a cooperative group are aware of each other and they

can communicate by multicasting messages to the group. This kind of

communication is called intragroup communication. Invocations from

a cooperative group are independent so they are not �ltered by the

communication system.

2.2 Transactions

A transaction is a sequence of operations that are executed atomically,

that is, they are all executed (the transaction commits) or the result is

as if none of them had been executed (it aborts). Two operations on the

same data item con
ict if they belong to di�erent transactions and at

least one of them modi�es the data item. Transactions with con
icting

operations must be isolated from each other to guarantee serializable

executions [14].

A transaction that is executed in a single node is called a local trans-

action, while those that are executed in several nodes are distributed

transactions.

Transactions can be nested [38]. Nested transactions or subtransac-

tions can be executed concurrently, but isolated from each other. This



Group Transactions 7

kind of concurrency is competitive and only allows dividing a task into

independent chunks (isolation forbids any cooperation). Transactions

that are not nested inside another transaction are called top-level trans-

actions. If a top level transaction aborts, all its subtransactions and their

descendants will also abort, no matter whether they have committed or

aborted. However, a subtransaction abortion does not compromise the

result of its parent transaction (the enclosing one). Hence, subtransac-

tions allow failure con�nement.

3. Group Transactions

Group Transactions is a transaction model that integrates nested

transactions and process groups. In this model, transactional servers

can be groups of processes. This kind of server is invoked from within

transactions to enforce data consistency. Transactional group services

are executed as distributed subtransactions or multiprocess subtransac-

tions. The invocation of transactional groups within a transaction allows

the isolation and atomicity of a sequence of group invocations, which it

is not possible without transactional support.

Traditional transactions are single threaded. However, in order to use

transactions in a more general setting, for instance to build fault-tolerant

and high available concurrent and distributed applications, transactions

might need to have multiple threads. The intratransactional concurrency

provided by multithreading allows to transform easily concurrent appli-

cations into transactional ones. This intratransactional concurrency is

cooperative, in contrast to the concurrency provided by subtransactions

that is competitive. Transactions with local threads are called multi-

threaded transactions. Threads of the same transaction (siblings) can

communicate among them.

Concurrency control mechanisms are used to guarantee the isolation

of di�erent transactions, however, those mechanisms do not apply to the

local threads of a transaction. A local thread of a transaction could write

a data item while a sibling is reading it. The underlying system must

provide some kind of mutual exclusion to guarantee physical consistency,

for instance latches [39].

Any transaction thread can start subtransactions. As a transaction

can have several threads, a subtransaction and its parent transaction

can run concurrently. Traditional nested transactions do not allow par-

ent and child transactions to run concurrently. In our model, due to

multithreading parent and child transactions can run in parallel. The

semantics provided is that subtransactions are seen atomically by all

the threads of its parent transaction. [40] study di�erent forms of par-



8 Chapter 1

ent/child transaction concurrency, but they are based on explicit syn-

chronization, whilst our approach provides an implicit synchronization

closer to the transaction philosophy.

Members of a transactional group might have persistent state, which

consistency is guaranteed by the transactional semantics. In case of

failure, a recovery procedure takes place to recover the last consistent

state.

3.1 Transactional Replicated Groups

An invocation to a replicated group is executed as a replicated sub-

transaction, the same in all the group members. If a member of a repli-

cated group fails during the execution of a replicated subtransaction,

the subtransaction will not abort as far as there is at least one available

group member. Therefore, replicated groups can tolerate k � 1 failures,

being k the number of group members. Transactional replicated groups

provide high availability of both data and processing. If all the groups

involved in a transaction (including the client) are replicated, the trans-

action will not abort in the presence of failures (either at the client or

server side), hence, transactions will be highly available.

A transaction on a replicated group is executed by a thread at each

group member. Those threads cannot create additional threads in or-

der to maintain replica determinism. However, a replicated group can

execute several transactions concurrently to provide an adequate level

of concurrency. A transactional replicated group uses a deterministic

scheduler [41], which ensures that all the replicas execute the same se-

quence of steps despite their multithreaded nature.

Since multicast messages are totally ordered and a deterministic sched-

uler is used, deadlocks on a single data item cannot happen. It is not

possible an execution of two concurrent transactions where one of them

locks an item in a subset of the replicas and the other locks the same

item in another subset of the replicas. This problem happens in many

replicated transactional systems.

Invocations from a transactional replicated group are �ltered, so that

only one invocation is made. These invocations are also executed as

subtransactions of the calling transaction. The results of an invocation

are sent back to all the members of the calling group. In Figure 2, there

is a transactional replicated group (gt1 ) that invokes another transac-

tional group (gt2 ). The client group invokes service E1 in gt1. As a

consequence a replicated subtransaction (T1.1 ) is created. If any of the

two members of the replicated group fails, the subtransaction can still

commit. When the replicas invoke service E2 in gt2, a single request



Group Transactions 9

is made. The request result is returned to both members of the calling

group.

bTrans

eTrans

gt1.E1

Transactional replicated group gt1

Member 1

Member 2

T1

Client group

E1

gt2.E1

end

T1.1

T1.1.1

T1.1

E1

gt2.E1

end

T1.1

T1.1.1

Transactional group gt2

E1

end

T1.1.1

Member 1

Member 1

Figure 2. A transactional replicated group

When a failed member recovers, it performs a recovery process in or-

der to undo the e�ects of uncommitted transactions on persistent data.

Before joining the group, the state of the new member is updated with

the state of a correct member. This state transfer is needed because

the group could have been working while that member was down. The

state transfer can be automatically performed, since all group members

have the same state. State transfer is started once all the transactions,

that were active when the join message was delivered, have �nished their

execution. The new member will execute the group invocations corre-

sponding to transactions initiated after the delivery of the join message.

3.2 Transactional Cooperative Groups

Cooperative group invocations are executed as a cooperative subtrans-

action. Each of the group members executes a thread of the subtransac-

tion in parallel. Since members of a cooperative group are aware of each

other, they can use intragroup communication to cooperate. Members

of a cooperative group can create new local threads to perform concur-

rently a service. The scope of these threads is restricted to the service

where they are created.

Participants of a cooperative transaction can invoke other groups.

These invocations are also executed as subtransactions. Figure 3 shows



10 Chapter 1

the interaction with a transactional cooperative group. Subtransaction

T1.1 is a cooperative subtransaction, where its participants can com-

municate (collaborate) using intragroup communication. Although the

two group members invoke service E2 in group gt2, invocations are in-

dependent and are executed as di�erent subtransactions. Members of a

cooperative group can also cooperate using another group. For instance,

in the �gure, if subtransaction T1.1.1 executes before subtransaction

T1.1.2, the latter will see the e�ects of the former subtransaction as

both are subtransactions of the same transaction (T1.1 ).

bTrans

eTrans

gt1.E1

Transactional cooperative group gt1

Member 1

T1

Client group

T1.1

T1.1

Transactional group gt2

T1.1.1

E1

gt2.E1

end
E2

end

T1.1.1

Member 2

E1

end

gt2.E1T1.1.2

Member 1

T1.1

E2

end

T1.1.2

Member 1

Figure 3. A transactional cooperative group

Cooperative groups can have either of the following failure modes: all-

commit-or-none and any-commits. In the former failure mode a trans-

action commits only if all the group members �nish successfully. In the

latter mode, if a node, where one of the group members resides, crashes

while processing requests, the client will be noti�ed and it will receive

less answers from the group, but the transaction will not be aborted.

The group could process further requests without all its members. This

failure mode can be used when it is possible to perform services in a

possibly degraded mode.

When a failed node restarts, group members in that node can join

again their corresponding groups. Before joining the group a failed

member will perform a recovery process. Since the rest of the group

members could have been working in the meantime, the restarted mem-

ber might need information from the group in order to update its state.

The state transfer cannot be made transparently as it happens with



Group Transactions 11

replicated groups. The reason is that, in general, group members do not

share the same state. Members of a cooperative group should de�ne a

recovery section to de�ne the exchange of information needed before the

new member joins the group.

Traditional transaction models have precluded cooperation within

transactions due to their isolation property. Some advanced transaction

models [42] have been proposed to deal with cooperative applications.

However, their approach has been quite di�erent. Cooperative trans-

actions [43] relax serializability and o�er di�erent kinds of locks less

restrictive than read/write ones, so transactions corresponding to di�er-

ent clients can cooperate. This is useful in cooperative applications like

CAD environments.

4. Applications of the model

4.1 Cooperative Agenda

Let us see an example to illustrate the kind of cooperative applications

for which cooperative groups are well-suited. The application under con-

sideration will be in charge of the maintenance of the set of agendas of

an organization or organization agenda. The application will register

collective appointments (like department or section meetings) as well as

private ones (go to the dentist). Each department of the organization

keeps the agendas corresponding to its members or department agenda.

A transactional cooperative group can be used to implement the organi-

zation agenda. The group provides services to access the distributed or-

ganization agenda. Each group member will keep a department agenda.

Since the group is transactional, consistency of agendas is guaranteed in

presence of concurrent accesses and node failures. This would have been

impossible with a traditional non-transactional group.

A user can add, remove or modify entries in her agenda. An agenda

resides in a single group member, and thus, this service does not require

any cooperation. A more interesting service is the one of making a

reservation for a set of people (i.e. a meeting). A reservation is made

in two steps. First, the user asks for the free common slots in the set of

agendas within a particular period of time. Then, the user chooses one

of the slots and the reservation is made. Each step is implemented by a

di�erent group service. Clients want to make the reservation atomically,

hence, both services should be called from within a transaction. The

server group provides the FindFreeSlots service to search for all the

common free slots in a set of agendas during a particular period of time.

It also provides the MakeCollectiveReservation service to perform the

reservation.



12 Chapter 1

The FindFreeSlots service requires cooperation among the members

of the server group due to common free slots cannot be found locally

at one member. Common free slots can be obtained by intersecting the

free slots in the requested period of time of all the involved agendas.

This intersection can be performed in two steps. A member of the

group can coordinate this process. In the �rst step, the coordinator will

multicast a request to the rest of the group members to perform the

intersection of the involved local agendas. As a result of this request the

coordinator will receive all the local intersections. In the second step, it

will intersect all the local intersections to obtain the global intersection

that will be returned to the client.

The global result can be computed in a more balanced way, if the

coordinator sends its local intersection to the rest of the members. Thus,

the rest of the members will intersect the coordinator local intersection

with their local one, returning a (hopefully) smaller intersection and

thus, the global intersection to be computed by the coordinator will be

smaller.

As a result of FindFreeSlots, the client will receive the set of avail-

able free common slots. In the second step, the client will choose one of

them to make the reservation through the MakeCollectiveReservation

service. The reservation request will be multicast to all the group mem-

bers and in response, they will make the reservations corresponding to

involved local agendas.

A client might want to both make a reservation in a set of agendas as

well as to book a meeting room. A server can be devoted to the reserva-

tions of meeting rooms in all the organization. In this case, the reliability

requirements can be stronger and the organization can be interested in

a highly available service, so even in the advent of node crashes the

information about meeting rooms will be still available. Thus, a trans-

actional replicated server can be devoted to held the information about

meeting rooms providing the required availability. The client will make

the reservation in the set of agendas and book a meeting room within

the same transaction to guarantee that both reservations are done or

none of them.

4.2 Fault-tolerant parallel computing

Most parallel programming languages have ignored the issue of fault

tolerance because they focus on increasing the performance of a com-

putation. Nowadays, there is an increasing trend to use large-scale dis-

tributed systems for parallel programs, as well as an increasing need for

bigger computations. Parallel computations might run for days in hun-



Group Transactions 13

dreds or thousands of nodes, and in this context failures will be more

likely. Therefore, fault tolerance of parallel computations should be ad-

dressed.

This topic has been addressed in [44] where the introduction of fault-

tolerance in parallel applications using Argus [45] is studied. One of

the examples proposed in [44] uses a master-slave scheme. The master

distributes subcomputations to the slave processes. This master can be

seen as a client of the slaves. The master splits a computation up into

subcomputations that are executed on di�erent slaves. Thus, subcom-

putations are executed as transactions what con�nes processor crashes

to a single subcomputation, preventing the repetition of the whole com-

putation. To prevent the loss of the whole computation due to a crash,

checkpoints are written into stable memory. The master to achieve the

checkpoints executes each checkpointed computation within a di�erent

top-level transaction. Thus, after a crash of the master it is only nec-

essary the repetition of subcomputations not checkpointed before the

master crashed.

However, it is not always feasible to split a computation into totally

independent subcomputations. Some subcomputations might need to

know intermediate results of other subcomputations. Traditional lan-

guages, like Argus, and models fail here, as transactions cannot coop-

erate. Group Transactions is an adequate model for fault-tolerant par-

allel computing, especially for those applications that need cooperation

among subcomputations. Multiprocess and multithreaded transactions

allow the work distribution in a cooperative way. Multiprocess trans-

actions can be used to distribute a computation among a set of nodes,

whilst multithreaded transactions can take advantage of multiprocessing

(or multiprogramming) capabilities to run multiple threads of a trans-

action in parallel.

In [44] stable memory is used to save the results of subcomputations

to prevent its lose in the advent of failures. The use of stable memory is

quite expensive in terms of latency. In Group Transactions the creator of

a transaction can be a replicated group. That group acts as a replicated

master. Thus, subcomputations received by a replicated master can be

stored in volatile memory and they will not be lost due to the availability

provided by replication. Although group communication has a cost, it

is much cheaper than stable memory that requires careful writes [46].

In the approach using Argus, each subcomputation checkpoint is achie-

ved by running the subcomputation as a top-level transaction. Top-

level transactions are expensive due to the atomic commitment protocol.

Thus, another advantage of the proposed model is that the whole compu-

tation can be executed as a single top-level transaction in the replicated



14 Chapter 1

master. Subcomputations can be run as subtransactions, thus failure

con�nement is guaranteed with a cheaper solution.

Some parallel algorithms can perform more eÆciently by using broad-

cast [47]. For instance, the parallel version of shortest path Floyd's algo-

rithm [44]. As Argus only provides transactions, broadcasts can only be

achieved by point-to-point messages with the corresponding loss of per-

formance. Another advantage of Group Transactions is that members of

a cooperative group can multicast messages to the other group members,

this yields to an increase of performance with respect to a traditional

transactional system without group communication like Argus.

4.3 Other applications

Database replication is another interesting application of the model.

It has been recently studied how to take advantage of group communi-

cation in the implementation of replicated databases [20, 48, 23]. These

approaches allow to manage replication of database systems. Replicated

groups of Group Transactions can be used similarly to implement a

replicated database.

Cluster computing has become a new paradigm for high perfor-

mance computing. A cluster of computers is a collection of computers

connected with a high speed reliable LAN that provides a set of services.

A transactional group server can be run on top of a cluster to provide

transactional services. The execution of these transactional services can

be distributed among the cluster to reduce their latency. Traditional

transactions preclude any cooperation within a transaction, and there-

fore cannot take advantage of cluster computing.

Transaction processing in multiprocessors is a di�erent context

where multithreaded transactions are interesting. Threads of a trans-

action can cooperate by means of shared memory and can be run on

di�erent processors to reduce the latency of the transaction.

5. Current Work and Conclusions

Group Transactions have been incorporated into a programming lan-

guage called Transactional Drago that is an Ada 95 extension. The

language has already been de�ned [49] and a preprocessor is under im-

plementation. The integration of exception handling with the model

is addressed in [50]. The run-time support is provided by an object

oriented library TransLib [51, 52] that implements Group Transactions.

In this paper we have presented an integration of transaction and

group communication models into a new transaction model, Group Trans-

actions. This new model provides multithreaded and multiprocess trans-



REFERENCES 15

actions, which are useful in many kinds of applications. The proposed

model allows to build transactional distributed servers, either coopera-

tive or replicated. Cooperative groups can be used to reduce the latency

of transactional services by parallelizing transactions and thus, taking

advantage of multiprocessors and/or clusters of computers. Replicated

groups provide highly available transactional processing. The model has

been formally described elsewhere [53] using the Acta framework [54].

Some applications of the model have been shown such as the agenda of

an organization (a cooperative transactional application). This example

has shown how some inherent distributed services can take advantage

from an integrated approach for group communication and transactions.

Fault-tolerant parallel computing is another �eld where group transac-

tions can be extensively used. Our model allows the addition of fault-

tolerance to parallel algorithms.

References

[1] J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-

niques. Morgan Kaufmann, 1993.

[2] K.P. Birman. Building Secure and Reliable Network Applications.

Prentice Hall, NJ, 1996.

[3] G. V. Chockler, I. Keidar, and R. Vitenberg. Group Communication

Speci�cations: A Comprehensive Study. ACM Computer Surveys,

2001.

[4] D. R. Cheriton and D. Skeen. Understanding the Limitations of

Causally and Totally Ordered Communication. In Proc. of ACM

SOSP, pages 44{57, 1993.

[5] K. P. Birman. A Response to Cheriton and Skeen's Criticism of

Causal and Totally Ordered Communication. Operating Systems Re-

view, 28(1):11{20, January 1994.

[6] R. Van Renesse. Why bother with CATOCS? Operating Systems

Review, 28(4):22{27, October 1994.

[7] S. K. Shrivastava. To CATOCS or not to CATOCS, that is the ...

Operating Systems Review, 28(4):11{14, October 1994.

[8] R. Guerraoui and A. Schiper. Transaction model vs Virtual Syn-

chrony model: bridging the gap. In Theory and Practice in Dis-

tributed Systems, LNCS 938. Springer, 1994.

[9] R. Jim�enez-Peris, M. Pati~no-Mart��nez, G. Alonso, and S. Ar�evalo. A

Low Latency Non-Blocking Atomic Commitment Protocol. In Proc.

of the Int. Conf. on Distributed Computing, DISC'01, LNCS-2180 ,

pages 93{107, 2001.



16 Chapter 1

[10] C. Dwork and D. Skeen. The Inherent Cost of Nonblocking Commit.

In Proc. of ACM PODC, pages 1{11, 1983.

[11] I. Keidar and S. Rajsbaum. On the Cost of Faul-Tolerant Consensus

Where There No Faults - A Tutorial. Technical Report MIT-LCS-

TR-821, 2001.

[12] K. P. Birman. Integrating Runtime Consistency Models for Dis-

tributed Computing. Journal of Parallel and Distributed Computing,

23:158{176, 1994.

[13] M.P. Herlihy and J. M. Wing. Linearizability: A Correctness Con-

dition for Concurrent Objects. ACM Transactions on Programming

Languages and Systems, 12(3):463{492, July 1990.

[14] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency

Control and Recovery in Database Systems. Addison Wesley, Read-

ing, MA, 1987.

[15] A. Schiper and M. Raynal. From Group Communication to Trans-

actions in Distributed Systems. Comm. of the ACM, 39(4):84{87,

April 1996.

[16] M. C. Little and S. K. Shrivastava. Understanding the Role of

Atomic Transactions and Group Communications in Implementing

Persistent Replicated Objects. In Proc. of 8th Workshop on Persis-

tent Object Systems, Sept. 1998.

[17] A. Romanovsky, S.E. Mitchell, and A.J. Wellings. On Programming

Atomic Actions in Ada 95. In Proc. of Int. Conf. on Reliable Software

Technologies, LNCS 1251, pages 254{265. Springer, June 1997.

[18] R. Schlichting and V. T. Thomas. Programming Language Support

for Writing Fault-Tolerant Distributed Soft. ACM Trans. on Comp.

Syst., 44(2):203{212, 1995.

[19] J. Miranda, �A. �Alvarez, S. Ar�evalo, and F. Guerra. Drago: An Ada

Extension to Program Fault-tolerant Distributed Applications. In

Proc. of Int. Conf. on Reliable Software Technologies, LNCS 1088,

pages 235{246. Springer, June 1996.

[20] M. Pati~no-Mart��nez, R. Jim�enez-Peris, B. Kemme, and G. Alonso.

Scalable Replication in Database Clusters. In Proc. of the Int. Conf.

on Distributed Computing DISC'00, volume LNCS 1914, pages 315{

329, Toledo (Spain), October 2000.

[21] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting Atomic Broad-

cast in Replicated Databases. In Proc. of Euro-Par Conference,

LNCS 1470, pages 513{520. Springer, 1998.



REFERENCES 17

[22] B. Kemme and G. Alonso. A new approach to developing and

implementing eager database replication protocols. ACM TODS,

25(3):333{379, September 2000.

[23] J. Holliday, D. Agrawal, and A. El Abbadi. The Performance

of Database Replication with Group Communication. In Proc. of

FTCS'99, 1999.

[24] U. Fritzke and Ph. Ingels. Transactions on Partially Replicated

Data based on Reliable and Atomic Multicasts. In Proc. of IEEE

ICDCS'01, pages 284{291, 2001.

[25] OMG. Corba services: Common object services speci�cation, 1995.

[26] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. A Fault

Tolerance Framework for Corba. In Proc. of the 29th IEEE Int.

Symp. On Fault Tolerant Computing, June 1999.

[27] S. Landis and S. Ma�eis. Building Reliable Distributed Systems

with Corba. TAPOS, April 1997.

[28] P. Felber, R. Guerraoui, and A. Schiper. The Implementation of a

Corba Object Group Service. Theory and Practice of Object Systems,

4(2):93{105, 1998.

[29] G. Morgan, S. K. Shrivastava, P.D. Ezhilchelvan, and M.C. Lit-

tle. Design and Implementation of a Corba Fault Tolerant Object

Group Service. In Proc. of the Int. Working Conf. on Distributed

Applications and Interoperable Systems, 1999.

[30] OMG. Fault tolerant corba speci�cation, 1999.

[31] S. Frolund and R. Guerraoui. Corba Fault-Tolerance: Why it does

not add up? In Proc. of the IEEE Workshop on Future Trends in

Distributed Computing, December 1999.

[32] A. Montresor, R. Davoli, and O. Babaoglu. Enhancing JINI with

Group Communication. Technical Report UBLCS-2000-16, Com-

puter Science Dep., University of Bologna, 2001.

[33] K. Arnold, B. O'Sullivan, R. Shei
er, J. Waldo, and A. Wollrath.

The JINI Speci�cation. Addison Wesley, 1999.

[34] L. Liang, S. T. Chanson, and G. W. Neufeld. Process Groups and

Group Communications. IEEE Computer, 23(2):56{66, February

1990.

[35] R. Friedman and R. van Renesse. Strong and Weak Virtual Syn-

chrony in Horus. Technical report, CS Dep., Cornell Univ., 1995.

[36] F. B. Schneider. Implementing Fault-Tolerant Services Using the

State Machine Approach: A Tutorial. ACM Computing Surveys,

22(4):299{319, 1990.



18 Chapter 1

[37] F. Guerra, J. Miranda, �A. �Alvarez, and S. Ar�evalo. An Ada Library

to Program Fault-Tolerant Distributed Applications. In Proc. of Int.

Conf. on Reliable Software Technologies, LNCS 1251, pages 230{243.

Springer, June 1997.

[38] J. E. B. Moss. Nested Transactions: An Approach to Reliable Dis-

tributed Computing. MIT Press, Cambridge, MA, 1985.

[39] C. Mohan, D. Haderle, and B. Lindsay. ARIES: A Transaction

Recovery Method Supporting Fine-Granularity Locking and Partial

Rollbacks Using Write-Ahead Logging. In Recovery Mechanisms in

Database Systems, pages 145{218. Prentice Hall, 1998.

[40] T. Haerder and K. Rothermel. Concurrency Control Issues in

Nested Transactions. Very Large Databases Journal, 2(1):39{74,

1993.

[41] R. Jim�enez-Peris, M. Pati~no-Mart��nez, and S. Ar�evalo. Determin-

istic Scheduling for Transactional Multithreaded Replicas. In Proc.

of IEEE Int. Symp. On Reliable Distributed Systems (SRDS), pages

164{173, N�urenberg, Germany, October 2000.

[42] S. Jajodia and L. Kerschberg, editors. Advanced Transaction Models

and Architectures. Kluwer, 1997.

[43] M. H. Nodine, S. Ramaswamy, and S. B. Zdonik. A Cooperative

Transaction Model for Design Databases. In Database Transaction

Models, pages 53{85. Morgan Kaufmann, 1992.

[44] H. E. Bal. Fault-tolerant parallel programming in Argus. Concur-

rency: Practice and Experience, 4(1):37{55, February 1992.

[45] B. Liskov. Distributed Programming in Argus. Comm. of the ACM,

31(3):300{312, March 1988.

[46] B. W. Lampson. Atomic Transactions. In Distributed Systems,

pages 246{265. Springer, 1981.

[47] A. S. Tanenbaum, M. F. Kaashoek, and H. E. Bal. Parallel Pro-

gramming Using Shared Objects and Broadcasting. ACM Trans. on

Computer Systems, 25(8):10{19, August 1992.

[48] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing Trans-

actions over Optimistic Atomic Broadcast Protocols. In Proc. of

ICDCS'99, 1999.

[49] M. Pati~no-Mart��nez, R. Jim�enez-Peris, and S. Ar�evalo. Integrating

Groups and Transactions: A Fault-Tolerant Extension of Ada. In

Proc. of Int. Conf. on Reliable Software Technologies, LNCS 1411,

pages 78{89. Springer, June 1998.



REFERENCES 19

[50] M. Pati~no-Mart��nez, R. Jim�enez-Peris, and S. Ar�evalo. Exception

Handling in Transactional Object Groups. In Advances in Exception

Handling, LNCS-2022, pages 165{180. Springer, 2001.

[51] R. Jim�enez-Peris, M. Pati~no-Mart��nez, S. Ar�evalo, and F.J. Balles-

teros. TransLib: An Ada 95 Object Oriented Framework for Build-

ing Dependable Applications. Int. Journal of Computer Systems:

Science & Engineering, 15(1):113{125, January 2000.

[52] J. Kienzle, R. Jim�enez Peris, Alexander Romanovsky, and Marta

Pati~no Mart��nez. Transaction Support for Ada. In Proc. of Int.

Conf. on Reliable Software Technologies, volume LNCS-2043, pages

290{304. Springer, May 2001.

[53] M. Pati~no-Mart��nez. Language and Model for Cooperative and

Replicated Distributed Transactional Systems. PhD thesis, Techni-

cal University of Madrid (UPM), 1999.

[54] P. K. Chrysanthis and K. Ramamritham. Synthesis of Extended

Transaction Models Using ACTA. ACM Transactions on Database

Systems, 19(3):450{491, 1994.


