Group Transactions: An Integrated Approach to Transactions and
Group Communication*

M. Patifio-Martinez’, R. Jiménez-Perist and S. Arévalo#

f Facultad de Informética
Universidad Politécnica de Madrid
E-28660 Boadilla del Monte, Madrid, Spain
{rjimenez, mpatino} @fi.upm.es
! Escuela de Ciencias Experimentales
Universidad Rey Juan Carlos
E-28933 Mostoles, Madrid, Spain
s.arevalo@escet.urjc.es

Abstract

Transactions and group communication are two techniques
to build fault-tolerant distributed applications. They have
evolved separately during a long time. It has been in the
last years when researchers have proposed an integration of
both techniques. Transactions were developed in the con-
text of database systems to provide data consistency in the
presence of failures and concurrent accesses. On the other
hand, group communication was proposed as a basic build-
ing for reliable distributed systems, and it deals with consis-
tency in the delivery of multicast messages. The difficulty
of the integration stems from the fact that the two techniques
provide very different kinds of consistency.

This work addresses the following questions: Is it possi-
ble to build a system providing both models? Is it possible
to propose an integrated model? This work discusses how
applications using group communication can benefit from
transactions and vice versa. Groups of processes can deal
with persistent data in a consistent way with the help of
transactions and transactional applications can take advan-
tage of group communication to build distributed coopera-
tive servers as well as replicated ones. An additional advan-
tage of an integrated approach is that it can be used as a base
for building transactional applications taking advantage of
computer clusters.

In this paper we address the integration of transactions
and group communication proposing a new transaction model,
GroupTransactions, where transactional servers can be groups
of processes.

*This research has been partially funded by the Spanish National Re-
search Council CICYT under grant TIC98-1032-C03-01.

1 Introduction

Two well-known techniques to build fault-tolerant distributed
systems are transactions and group communication. Trans-
actions [GR93] were developed to provide data consistency
in the presence of concurrent accesses and failures. Group
communication (multicast) [HT93] was proposed as a build-
ing block for reliable distributed systems. Group communi-
cation provides different levels of consistency in the deliv-
ery of multicast messages. These techniques have evolved
quite independently, transactions in the context of databases
and group communication to build distributed systems. It
has not been until the last years when researchers have tried
to integrate both techniques.

During the mid-nineties a debate [CS93, Bir94a, Ren94,
Shr94] in the distributed systems community took place about
whether group communication was enough to build any kind
of fault-tolerant application. One of the conclusions of this
discussion was that group communication and transactions
are two complementary fault-tolerance techniques. Since
then, several research groups have become interested in the
integration of both models.

For instance, in [GS94] it is studied a basic mechanism,
Dynamic Terminating Multicast, that can be used to build
both transactional and group systems. This work takes ad-
vantage of the fact that commit and multicast algorithms are
special cases of the consensus problem. They propose Dy-
namic Terminating Multicast as a basic mechanism to build
both kinds of algorithms on top of it. Although their work
deals with the integration of transactions and group commu-
nication, it just deals with the implementation of the commit
protocol.

[Bir94b] proposes an integration of two models of con-



sistency namely, virtual synchrony [Bir93] and linearizabil-
ity [HW90]. In that integration services can be requested
to groups of objects. Virtual synchrony guarantee that all
group members perceive membership (view) changes at the
same virtual time. Linealribility is a relaxation of serializ-
ability. It guarantees that the result of a set of concurrent
invocations on a given object is equivalent to a serial execu-
tion. Serializability [BHG87] guarantees serial execution of
concurrent transactions (sets of operations on different ob-
jects). This approach combines group communication with
a relaxed concurrency control method, but it does not deal
with the bulk of transactional systems that imply a stronger
isolation condition, serializability, as well as failure atomic-
ity. However, the paper points out that the inclusion of these
properties, serializability and failure atomicity, in the model
must be addressed.

[SR96] presents a more complete approach. In this pa-
per, the authors explore the role of group communication in
building transactional systems. The point of the paper is that
group communication primitives are an application structur-
ing mechanism that provides by itself transactional seman-
tics. A transaction is sent in a single reliable total-ordered
multicast message to all the servers the transaction needs
to contact. Transaction atomicity is provided by multicast
atomicity. That is, a message is delivered to all group mem-
bers or to none of them. This approach has some penalties:
groups must be dynamic, increasing transaction latency as
a consequence. There are some other issues that are not ad-
dressed in the paper like recovery and transaction nesting.

In contrast the approach taken in [LS00, LS98] provides
transactions as a basic mechanism while multicast is hid-
den from application programmers. Transactions can access
replicated objects and therefore, they provide high availabil-
ity. However, the locking granularity is an object group,
which restricts concurrency. On the other hand, they try
to avoid ordering guarantees for multicast, which increases
performance. However, this can produce client starvation,
when it cannot lock enough replicas.

Some programming languages [ST95, MAAG96] have
incorporated group communication primitives and features
for replication, recovery and failure notification. Although,
no facilities for transaction processing are available.

A different integrative approach has been the use of group
communication as a building block to implement database

replication. This approach has been taken in [PIKAQ0, PGS98,

KPAS99, HAA99]. In these papers, reliable total ordered
multicast is used to propagate updates from a replica where
a transaction has been executed to the rest of the replicas.
However, the emphasis is on improving the implementation
of database replication rather than providing an integrated
model.

Corba [OMGa] provides a transaction service (OTS) and
many research projects [MMSN99, LM97, FGS98, MFX99,

MSEL99] have integrated group communication in that frame-
work. Corba has been recently enhanced with replication
(FT-Corba [OMGb]). However, in [FG99] it is stated that
the composition and FT-Corba does not result in any mean-
ingful combination of their strengths.

In [MDBO1] it is stated that none of the previous systems
considers the problem of integrating group communication
with the transactional frameworks they extend. The paper
also describes how to integrate group communication with
Jini [AOS™99] transactions to provide transparently trans-
actions over replicated objects.

In all the previously mentioned works the integration
of transactions and group communication has been iden-
tified as a key issue “to extend the power and generality
of group communication as a broad distributed computing
discipline for designing and implementing reliable applica-
tions” [SR96]. However, all the mentioned just consider
group communication to build replicated systems, but groups
can be used for other purposes [LCN90]. In this paper we
address a complete integration of transactions and group
communication. Group Transactions is a new transaction
model in which transactional servers are groups of processes,
either cooperative or replicated. Clients interact with these
transactional group servers by multicasting their requests to
them.

The paper is structured as follows, section 2 presents
some definitions. Section 3 presents the proposed model,
Group Transactions. Section 4 shows some applications of
the model. In section 5 some implementation aspects are
discussed. Finally, we present our conclusions in section 6.

2 Modd and Definitions
2.1 System

A distributed system consists of a number of nodes with no
shared memory among them that communicate exchanging
messages. Network partitions are not considered.

In each node there is a set of processes. Each process
belongs to a group. A group is seen as an individual log-
ical entity, which does not allow its clients either to view
its internal state, nor the interactions among its members.
Processes belonging to the same group share a common in-
terface and application semantics. A group interface is a
description of remotely callable services, which must be im-
plemented inside each group member.

Group communication primitives [HT93] are used to com-
municate with groups. A request to a group is multicast to
all the processes of a group. Multicast messages are reli-
able. That is, a message is delivered at all available sites
or none of them. Regarding message ordering we consider
multicast primitives providing FIFO order (messages from
the same sender are delivered in the order they were mul-



ticast) or total order (all messages are delivered at all pro-
cesses in the same order). We assume a virtual synchronous
model [Bir93], which ensures that a message is delivered in
the same view by all processes that deliver the message.

We distinguish two kinds of groups, replicated and co-
operative groups, according to the state and behavior of its
members.

Replicated groupsimplement the active replication model,
that is, they behave as state machines [Sch90]. According
to this model all the group members are identical replicas,
that is, they have the same state and should run on failure-
independent nodes. Clients use total ordered multicast to
submit their requests to replicated groups (Fig. 1.b). There-
fore, all group members receive the same requests and pro-
duce the same answers.

A replicated group can act as a client of another group.
Replication transparency is provided by the underlying com-
munication system that filters the replicated requests so that
a single message is issued. This is known as “n-to-1” com-
munication [LCN90] (Fig. 1.c). This type of communica-
tion allows building programs with active replication and
minimal additional effort for the programmer, that is, as if
the group were made out of a single process. To our knowl-
edge Group_lO [GMAA97] is the only library that supports
this kind of communication.

On the other hand, a cooperative group (Fig. 1.a) do not
need to have neither the same state nor the same code. They
are intended to divide data among its members and/or to
express parallelism taking advantage of multiprocessing or
distribution capabilities in order to increase the throughput.
A simple example is matrix multiplication. Each member
of a cooperative group can compute a row. Each member
of the group has a copy of the matrix and knows which ele-
ments it has to multiply.

Members of a cooperative group are aware of each other
and they can communicate multicasting messages to the
group. This kind of communication is called intragroup
communication. Invocations from a cooperative group are
independent so they are not filtered by the communication
system.

2.2 Transactions

A transaction is a sequence of operations that are executed
atomically, that is, they are all executed (the transaction
commits) or the result it is as if they had not been executed
(it aborts). Two operations on the same data item conflict
if they belong to different transactions and at least one of
them maodifies the data item. Transactions with conflicting
operations must be isolated from each other to guarantee
serializable executions [BHG8T7].

A transaction that is executed in a single node is called
a local transaction, while those that are executed in several

nodes are distributed transactions.

Transactions can be nested [Mos85]. Nested transactions
or subtransactions can be executed concurrently, but iso-
lated from each other. This kind of concurrency is competi-
tive and only allows dividing a task into independent chunks
(isolation forbids any cooperation). Transactions that are
not nested inside another transaction are called top-level
transactions. If a top level transaction aborts, all its sub-
transactions and their descendants will also abort, no matter
whether they have committed or aborted. However, a sub-
transaction abortion does not compromise the result of its
parent transaction (the enclosing one). Hence, subtransac-
tions allow failure confinement.

3 Group Transactions

Group Transactions is a transaction model that integrates
nested transactions and groups of processes (i.€., group com-
munication). Whenever data consistency in the presence of
concurrent accesses and failures is needed, data should be
accessed within a transaction. Applications are made out
of groups in our model. Group services can be invoked
from transactions. To guarantee data consistency, groups in-
voked from a transaction cannot be invoked outside a trans-
action. Therefore, we distinguish transactional groups and
non-transactional ones. Transactional group services are ex-
ecuted as subtransactions, hence, concurrent services are
executed atomically and isolated from each other. Group
data can be persistent or volatile. Subtransactions guarantee
data consistency. Top level transactions are always started
at a non-transactional process.

Traditional transactions have a single flow of execution.
However, in order to use transactions in a more general
setting, for instance to build fault-tolerant and high avail-
able distributed applications, transactions should have mul-
tiple flows of execution. These flows of execution (threads)
or intratransactional concurrency allow to transform easily
concurrent programs into fault-tolerant programs. This in-
tratransactional concurrency is coooperative, in constrast to
the concurrency provided by subtransactions that is compet-
itive. Transactions with local flows of execution are called
multithreaded transactions. Threads of the same transac-
tion (siblings) can communicate among them.

Concurrency control mechanisms are used to guarantee
the isolation of different transactions, however, those mech-
anisms do not apply to the local flows of execution of a
transaction. A local thread of a transaction can write a data
item while sibling is reading it. The underlying system must
provide some kind of mutual exclusion to guarantee physi-
cal consistency, for instance latches [MHL *98].

Any transaction flow can start subtransactions. As a trans-
action can have several threads, a subtransaction and its
parent transaction can run concurrently. Traditional nested



Invocation

; Invocation » i .
Client 775 Client Invocation

Answer

Results
Client «—

D

a) Cooperative group
invocation

Invocation
4 lInvocation
@ ﬂ > Server

Answer Answer

Client Results

® OO0

b) Replicated group
invocation

Invocation

> Results ggryer

c) Invocation from a
replicated group

Figure 1: Group invocations and invocations from groups

transactions do not allow parent and child transactions to
run concurrently. In our model, due to multithreading par-
ent and child transactions can run in parallel. The semantics
provided is that subtransactions are seen atomically by all
the threads of its parent transaction. [HR93] studies differ-
ent forms of parent/child transaction concurrency, but they
are based on explicit synchronization, whilst our approach
provides an implicit synchronization closer to the transac-
tion philosophy.

Services of transactional groups must be called within a
transaction and are executed as a distributed subtransaction
or multiprocess subtransaction. The invocation of transac-
tional groups within a transaction allows the isolation and
atomicity of a set of group invocations, which it is not pos-
sible without transactional support.

Group members can have a persistent state. During re-
covery it is guaranteed that group members obtain a consis-
tent state.

3.1 Transactional Replicated Groups

An invocation to a replicated group is executed as a repli-
cated subtransaction, the same in all the group members. If
a member of a replicated group fails during the execution of
a replicated subtransaction, the subtransaction will not abort
as far as there is at least one available group member. There-
fore, replicated groups can tolerate k—1 failures, being & the
number of group members. Transactional replicated groups
provide high availability of both data and processing. If all
the groups involved in a transaction (including the client)
are replicated, the transaction will not abort in the presence

of failures on client and server replicas, hence, transactions
will be highly available.

A transaction on a replicated group is executed by a thread
at each group member. Those threads cannot create ad-
ditional threads in order to maintain replica determinism.
However, a replicated group can execute several transac-
tions concurrently to provide an adequate level of concur-
rency. A transactional replicated group uses a deterministic
scheduler [JPA00], which ensures that all the replicas exe-
cute the same sequence of steps despite their multithreaded
nature.

Since multicast messages are totally ordered and a de-
terministic scheduler is used, deadlocks on a single data
item cannot happen. It is not possible an execution of two
concurrent transactions where one of them locks an item in
a subset of the replicas and the other locks the same item
in another subset of the replicas. This problem happens in
many replicated transactional systems.

Invocations from a transactional replicated group are fil-
tered, so that only one invocation is made. These invo-
cations are also executed as subtransactions of the calling
transaction. The results of an invocation are sent back to
all the members of the calling group. In Figure 2, there
is a transactional replicated group (gtl) that invokes an-
other transactional group (gt2). The client group invokes
service E1 in gtl. As a consequence a replicated subtrans-
action (T1.1) is created. If any of the two members of the
replicated group fails, the subtransaction can still commit.
When the replicas invoke service E2 in gt2, a single request
is made. The request result is returned to both members of
the calling group.



Transactional replicated group gt71

Member 1

Client group

ransactional group gt2

Member 1 Member 1

also cooperate using another group. For instance, in the fig-
ure, if subtransaction T1.1.1 executes before subtransaction
T1.1.2, the latter will see the effects of the former subtrans-
action as both are subtransactions of the same transaction
(TL.2).

Transactional cooperative group gt7

Member 1

Client group Transactional group g

Figure 2: A transactional replicated group

When a failed member recovers, it performs a recov-
ery process in order to undo the effects of uncommitted
transactions on persistent data. Before joining the group,
the state of the new member is updated with the state of
a correct member. This state transfer is needed because
the group could have been working while that member was
down. The state transfer can be automatically made, since
all group members have the same state. The state trans-
fer is performed after all the subtransactions executing in
the group at the time of the join message delivery have fin-
ished. The new member will execute the group invocations
corresponding to transactions initiated after the delivery of
the join message.

3.2 Transactional Cooper ative Groups

Cooperative group invocations are executed as a coopera-
tive subtransaction. All the members of the group execute
in parallel a thread of the subtransaction. Since members of
a cooperative group are aware of each other, they can use in-
tragroup communication to cooperate. Members of a coop-
erative group can create new local threads to perform con-
currently a service. The scope of these thread is restricted
to the service where they are created.

Participants of a cooperative transaction can invoke an-
other groups. These invocations are also executed as sub-
transactions. Figure 3 shows the interaction with a trans-
actional cooperative group. Subtransaction T1.1 is a coop-
erative subtransaction, where its participants can commu-
nicate (collaborate) using intragroup communication. Al-
though the two group members invoke service E2 in group
gt2, invocations are independent and are executed as differ-
ent subtransactions. Members of a cooperative group can

Member 1

t+ eTrans

Figure 3: A transactional cooperative group

Cooperative groups can have either of the following fail-
ures modes: all-commit-or-none and any-commits. In the
former failure mode a transaction commits only if all its
processes end successfully. In the latter mode, if a node,
where one of the group members resides, crashes while pro-
cessing requests, the client will be notified and it will re-
ceive less answers from the group, but the transaction will
not be aborted. The group could process further requests
without all its members. This failure mode can be used
when it is possible to perform services in a possibly de-
graded mode.

When a failed node restarts, group members in that node
can join again their corresponding groups. Before joining
the group a failed member will perform a recovery process.
Since the rest of the group members could have been work-
ing in the meantime, the restarted member might need in-
formation from the group in order to update its state. The
state transfer cannot be made transparently as it happens
with replicated groups. The reason is that, in general, group
members do not share the same state. Members of a co-
operative group should define a recovery section to define
the exchange of information needed before the new mem-
ber joins the group.

t2




4 Applications of the model

4.1 Cooperative Agenda

Traditional transaction models have precluded cooperation
within transactions due to their isolation property. Some
advanced transaction models [JK97] have been proposed to
deal with cooperative applications. However, their approach
has been quite different. Cooperative transactions [NRZ92]
relax serializability and offer different kinds of locks less re-
strictive than read/write ones, so transactions corresponding
to different clients can cooperate. This is useful in coopera-
tive applications like CAD environments.

Let us see an example to illustrate the kind of cooperative
applications for which cooperative groups are well-suited.
The application under consideration will be in charge of
the maintenance of the set of agendas of an organization
or organization agenda. The application will register col-
lective appointments (like department or section meetings)
as well as private ones (go to the dentist). Each depart-
ment of the organization keeps the agendas corresponding
to its members or department agenda. A transactional co-
operative group can be used to implement the organiza-
tion agenda. The group provides services to access the dis-
tributed organization agenda. Each group member will keep
a department agenda. Since the group is transactional, con-
sistency of agendas is guaranteed in presence of concur-
rent accesses and node failures. This would be impossi-
ble with a non-transactional group. Using a traditional non-
transactional group this would not be possible.

A user can add, remove or modify entries in her agenda.
An agenda resides in a single group member, and thus, this
service does not require any cooperation. A more interest-
ing service is the one of making a reservation for a set of
people (i.e. a meeting). A reservation is made in two steps.
First, the user asks for the free common slots in the set of
agendas within a particular period of time. Then, the user
chooses one of the slots and the reservation is made. Each
step is implemented with a different group service. Clients
want to make the reservation atomically, hence, both ser-
vices should be called from within a transaction. The server
group provides the FindFreeSlots service to search for
all the common free slots in a set of agendas during a par-
ticular period of time. It also provides the MakeCollec-
tiveReservation service to perform the reservation.

The FindFreeS1lots service requires cooperation among

the members of the server group due to common free slots
cannot be found locally at one member. Common free slots
can be obtained by intersecting the free slots in the requested
period of time of all the set of agendas.

This intersection can be performed in two steps. A mem-
ber of the group can coordinate this process. In the first
step, the coordinator will request (multicasting it) to rest of
the group members to do the intersection of the involved

local agendas. As a result of this request the coordinator
will receive all the local intersections. In the second step, it
will intersect all the local intersections to obtain the global
intersection that will be returned to the client.

The global result can be computed in a more balanced
way, if the coordinator sends its local intersection to the
rest of the members. Thus, the rest of the members will
intersect the coordinator local intersection with their local
one, returning a (hopefully) smaller intersection and thus,
the global intersection to be computed by the coordinator
will be smaller.

As aresult of FindFreeSlots, the client will receive
the set of available free common slots. In the second step,
the client will choose one of them to make the reservation
through the MakeCollectiveReservation service.
The reservation request will be multicast to all the group
members and in response they will make the reservations
corresponding to their local agendas involved in the reser-
vation.

If a client wants to both make a reservation in a set of
agendas as well as to book a meeting room. A server can be
devoted to the reservations of meeting rooms in all the or-
ganization. In this case, the reliability requirements can be
stronger and the organization can be interested in a highly
available service, so even in the advent of node crashes
the information about meeting rooms will be still available.
Thus, a transactional replicated server can be devoted to
held the information about meeting rooms providing the re-
quired availability. The client will make the reservation in
the set of agendas and for a meeting room within the same
transaction to guarantee that both reservations are done or
none of them.

4.2 Fault-tolerant parallel computing

Most parallel programming languages have ignored the is-
sue of fault tolerance. The reason is that parallel programs
are usually written to increase the performance of a compu-
tation. Fault tolerance decreases performance and it is not
worth in the current small-scale systems where processor
crashes are not very frequent.

Nowadays, there is an increasing trend of using large-
scale systems. This combined with the increasing need for
bigger computations will make fault tolerance a topic to be
dealt with in parallel computing. In parallel computations
running for days in hundreds or thousands of processors
failures will be likely.

This topic has been addressed in [Bal92] where the in-
troduction of fault-tolerance in parallel applications using
Argus [Lis88] is studied. One of the examples proposed
in [Bal92] uses a master-slave scheme. The master can be
seen as a client of the slaves. The master distributes sub-
computations to the slave processes. This master can be



seen as a client of the slaves. The master splits a compu-
tation up into subcomputations that are executed on differ-
ent slaves. Thus, subcomputations are executed as transac-
tions what confines processor crashes to a single subcompu-
tation, preventing the repetition of the whole computation.
To prevent the loss of the whole computation due to a crash,
checkpoints are written into stable memory. The master to
achieve the checkpoints executes each checkpointed com-
putation within a different top-level transaction. Thus, after
a crash of the master it is only necessary the repetition of
subcomputations not checkpointed before the master crash.

However, it is not always feasible to split a computation
into totally independent subcomputations. Some subcom-
putations might need to know intermediate results of other
subcomputations. Traditional languages, like Argus, and
models fail here, as transactions cannot cooperate. Group
Transactions is an adequate model for fault-tolerant parallel
computing, especially for those applications that need co-
operation among subcomputations. Multiprocess and mul-
tithreaded transactions allow the work distribution in a co-
operative way. Multiprocess transactions can used to dis-
tribute a computation among a set of nodes, whilst multi-
threaded transactions can take advantage of multiprocessing
(or multiprogramming) capabilities to run multiple threads
of a transaction in parallel.

In [Bal92] stable memory is used to save the results of
subcomputations to prevent its lose in the advent of fail-
ures. The use of stable memory results quite expensive.
In Group Transactions the creator of a transaction can be
a replicated group. That group acts as a replicated master.
Thus, subcomputations received by a replicated master can
be stored in volatile memory and they will not be lost due
to the availability provided by replication. Although group
communication has a cost, it is much cheaper than stable
memory that requires careful writes [Lam81].

In the approach using Argus, each subcomputation check-
point is achieved by running the subcomputation as a top-
level transaction. Top-level transactions are expensive due
to the atomic commitment protocol. Thus, another advan-
tage of the proposed model is that the whole computation
can be executed as a single top-level transaction in the repli-
cated master. Subcomputations can be run as subtransac-
tions, thus failure confinement is guaranteed with a cheaper
solution.

Some parallel algorithms can perform more efficiently
by using broadcast [TKB92, YLC90]. For instance, the par-
allel version of shortest path Floyd’s algorithm [Bal92]. As
Argus only provides transactions, broadcasts can only be
achieved by point-to-point messages with the corresponding
loss of performance. Another advantage of Group Transac-
tions is that members of cooperative group can multicast
messages to the other group members, this yields to an in-
crease of performance with respect to a traditional transac-

tional system without group communication like Argus.

4.3 Other applications
4.3.1 Databasereplication

Another interesting application of the model is the imple-
mentation of replicated databases. It has been recently stud-
ied how to take advantage of group communication in the
implementation of replicated databases [PIKA00, KPAS99,
PGS98, HAA99]. These approaches allow to manage repli-
cation in database systems that do not support replication,
although they require the modification of the database sys-
tem implementation. Group Transactions provides a com-
plementary approach to support replication in this context.
It is possible to use a replicated group to manage a repli-
cated database based on a database system that does not
support replication. Each group member is in charge of in-
teracting with one of the database copies. What it is more,
databases can be heterogeneous (different vendors), each
group member will hide the interaction with each different
database.

4.3.2 Cluster computing

Cluster computing has become a new paradigm for high
performance computing. A cluster of computers is a col-
lection of computers connected with a high speed reliable
LAN that provides a set of services. Traditional transac-
tions cannot take advantage of this kind of architectures,
while Group Transactions suits it perfectly. A transactional
group server can be run on top of a cluster to provide trans-
actional services. These transactional services can be dis-
tributed among the cluster to reduce their latency.

4.3.3 Transaction Processing in M ultiprocessors

Multithreaded transactions can be used to take advantage
of multiprocessors. Threads of a transaction can cooperate
by means of shared memory and can be run on different
processors to reduce the latency of the transaction.

5 Practical aspectsfor improving per-
formance

One of the disadvantages of using reliable multicast are the
incurred costs. The integration of transactions and group
communication has the advantage that it allows cheaper im-
plementations of multicast, in particular, reliable total or-
dered multicast. It has been found that in a local area net-
work (LAN) like ethernet, multicasts are spontaneously to-
tal ordered in a LAN with a very high probability [PS98].
In this work they take advantage of this fact to implement



an optimistic total ordered multicast. This optimistic mul-
ticast can be used in a transactional setting combined with
a transaction manager, such that multicast requests are de-
livered immediately and only in the unlikely event of a vio-
lation of the total order, the involved transaction is aborted
[PIKAOO, KPAS99]. This approach helps to reduce the la-
tency of total ordered multicasts. Our model can also take
advantage of this approach.

Another technique that can be used to reduce the number
of multicasts to replicated groups consists in grouping set
of interactions with their control code in what we denomi-
nate a CompositeCall [PBJ*99, BJPT00] and send it to the
replicated group where it will be interpreted in the style of
stored procedures. On the server side the interpretation of
the CompositeCall will yield local calls to the replica what
will be much cheaper than crossing the network. In database
systems a similar approach has been taken with stored pro-
cedures [Eis96].

6 Current Work and Conclusions

Group Transactions has been incorporated into a program-
ming language called Transactional Drago that it is an Ada
95 extension. The language has been already defined [PJA98]
and a preprocessor is under implementation. The run-time
support is provided by an object oriented library TransLib
[JPABO00] that implements Group Transactions.

In this paper we have presented an integration of transac-
tion and group communication models into the new trans-
action model, Group Transactions. The proposed integra-
tion has been compared with others in the literature. This
new model provides multithreaded and multiprocess trans-
actions. This kind of transactions are useful in many kinds
of applications and they allow to reduce the latency of trans-
actional services as transactions can be parallelized taking
advantage of multiprocessors and/or clusters of computers.
With the proposed model it is possible to build transactional
group servers, either cooperative or replicated. A formal
description of the model has also been described with the
ACTA framework.

Some applications of the model have been shown such
as a cooperative application, the agenda of an organization.
This example has shown how some inherent distributed ser-
vices can take advantage from an integrated approach to
process groups and transactions. Fault-tolerant parallel com-
puting is a field where group transactions can be extensively
used. A whole parallel computation can be run as a sin-
gle top-level transaction with high availability. Multicast is
useful for many parallel algorithms. With our model it is
possible to make them fault-tolerant this kind of algorithms
in contrast to Argus where multicast is substituted by point-
to-point communication.

Finally, some hints about how to improve efficiency of
the model implementation are provided.

References

[AOST99] K. Arnold, B. O’Sullivan, R. Sheifler,
J. Waldo, and A. Wollrath. The JINI Specifi-
cation. Addison Wesley, 1999.

[Bal92] H. E. Bal. Fault-tolerant parallel programming
in Argus. Concurrency: Practice and Experi-

ence, 4(1):37-55, February 1992.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Good-
man. Concurrency Control and Recovery in
Database Systems. Addison Wesley, Reading,

MA, 1987.

[Bir93] K. P. Birman. The Process Group Approach to
Reliable Distributed Computing. Communica-

tions of the ACM, 36(12), December 1993.

[Bir94a] K. P. Birman. A Response to Cheriton and
Skeen’s Criticism of Causal and Totally Or-
dered Communication. Operating Systems Re-

view, 28(1):11-20, January 1994.

[Bir9db] K. P. Birman. Integrating Runtime Con-
sistency Models for Distributed Computing.
Journal of Parallel and Distributed Comput-

ing, 23:158-176, 1994.

F. Ballesteros, R. Jiménez-Peris, M. Patifio-
Martinez, S. Arévalo, F. Kon, and R. H. Camp-
bell. Using Interpreted CompositeCalls to Im-
prove Operating System Services. Software:
Practice and Experience, 30:589-615, 2000.

[BIP+00]

D. R. Cheriton and D. Skeen. Understand-
ing the Limitations of Causally and Totally
Ordered Communication. In Proc. of 14th
ACM Symp. on Operating Systems Principles,
Asheville, North Carolina, pages 44-57, De-
cember 1993.

[CS93]

[Eis96] A. Eisenberg. New Standard for Stored Proce-
dures in SQL. SGMOD Record, 25(4):81-88,

December 1996.

S. Frolund and R. Guerraoui. Corba Fault-
Tolerance: Why it does not add up? In Proc.
of the IEEE Workshop on Future Trends in
Distributed Computing, Cape Town, Decem-
ber 1999.

[FG99]



[FGS98]

[GMAA97]

[GR93]

[GS94]

[HAAQ9]

[HR93]

[HT93]

[HW90]

[JK97]

[JPAOO]

P. Felber, R. Guerraoui, and A. Schiper. The
Implementation of a Corba Object Group Ser-
vice. Theory and Practice of Object Systems,
4(2):93-105, 1998.

F. Guerra, J. Miranda, A. Alvarez, and
S. Arévalo. An Ada Library to Program
Fault-Tolerant Distributed Applications. In
K. Hardy and J. Briggs, editors, Proc. of Int.
Conf. on Reliable Software Technologies, vol-
ume LNCS 1251, pages 230-243, London,
United Kingdom, June 1997. Springer.

J. Gray and A. Reuter. Transaction Process-
ing: Concepts and Techniques. Morgan Kauf-
mann Publishers, San Mateo, CA, 1993.

R. Guerraoui and A. Schiper. Transaction
model vs Virtual Synchrony model: bridging
the gap. In K.P. Birman, F. Mattern, and
A. Schiper, editors, Theory and Practice in
Distributed Systems, volume LNCS 938, pages
121-132. Springer, 1994.

J. Holliday, D. Agrawal, and A. ElI Abbadi.
The Performance of Database Replication with
Group Communication. In Proc. of 29th of Int.
Symp. On Fault-Tolerant Computing FTCS 99,
Wisconsin, June 1999.

T. Haerder and K. Rothermel. Concurrency
Control Issues in Nested Transactions. Very
Large Databases Journal, 2(1):39-74, 1993.

V. Hadzilacos and S. Toueg. Fault-Tolerant
Broadcasts and Related Problems. In S. Mul-
lender, editor, Distributed Systems, pages 97—
145. Addison Wesley, Reading, MA, 1993.

M.P. Herlihy and J. M. Wing. Linearizabil-
ity: A Correctness Condition for Concurrent
Objects. ACM Transactions on Programming
Languages and Systems, 12(3):463-492, July
1990.

S. Jajodia and L. Kerschberg, editors. Ad-
vanced Transaction Models and Architectures.
Kluwer Academic Publishers, 1997.

R. Jiménez Peris, M. Patifio Martinez, and
S. Arévalo. Deterministic Scheduling for
Transactional Multithreaded Replicas. In
Proc. of IEEE Int. Symp. On Reliable Dis-
tributed Systems (SRDS), pages 164-173,
Nirenberg, Germany, October 2000. IEEE
Computer Society Press.

[JPABO0]

[KPAS99]

[Lam81]

[LCN90]

[Lis88]

[LM97]

[LS98]

[LS00]

[MAAGI6]

[MDBO01]

R. Jiménez Peris, M. Patifio Martinez,
S. Arévalo, and F.J. Ballesteros. TransLib: An
Ada 95 Object Oriented Framework for Build-
ing Dependable Applications. Int. Journal of
Computer Systems. Science & Engineering,
15(1):113-125, January 2000.

B. Kemme, F. Pedone, G. Alonso, and
A. Schiper. Processing Transactions over Op-
timistic Atomic Broadcast Protocols. In Proc.
of 19th Int. Conf. on Distributed Computing
systems (ICDSCS). IEEE Computer Society
Press, 1999. Also in Technical Report No. 325
ETH Zirich, Department of Computer Sci-
ence.

B. W. Lampson. Atomic Transactions. In
G. Goos and J. Hartmanis, editors, Dis
tributed Systems - Architecture and Implemen-
tation: An Advanced Course, pages 246—265.
Springer, 1981.

L. Liang, S. T. Chanson, and G. W. Neufeld.
Process Groups and Group Communications.
|EEE Computer, 23(2):56-66, February 1990.

B. Liskov. Distributed Programming in Argus.
Communications of the ACM, 31(3):300-312,
March 1988.

S. Landis and S. Maffeis. Building Reliable
Distributed Systems with Corba. Theory and
Practice of Object Systems, April 1997.

M. C. Little and S. K. Shrivastava. Under-
standing the Role of Atomic Transactions and
Group Communications in Implementing Per-
sistent Replicated Objects. In Proc. of 8th
Workshop on Persistent Object Systems. De-
sign, Implementation and Use, Sept. 1998.

M. C. Little and S. K. Shrivastava. Integrating
Group Communication and Transaction to Im-
plement Persistent Replicated Objects. volume
LNCS 1752, pages 238-253, 2000.

J. Miranda, A. Alvarez, S. Arévalo, and
F. Guerra. Drago: An Ada Extension to
Program Fault-tolerant Distributed Applica-
tions. In A. Strohmeier, editor, Proc. of Int.
Conf. on Reliable Software Technologies, vol-
ume LNCS 1088, pages 235-246, Montreaux,
Switzerland, June 1996. Springer.

A. Montresor, R. Davoli, and O. Babaoglu.
Enhancing JINI with Group Communication.



[MFX99]

[MHL*98]

[MMSN99]

[Mos85]

[MSEL99]

[NRZ92]

[OMGa]

[OMGb]

[PBJ+99]

Technical Report UBLCS-2000-16, Depart-
ment of Computer Science, University of
Bologna, January 2001.

S. Mishra, L. Fei, and G. Xing. Design, Im-
plementation and Performance Evaluation of
a Corba Group Communication Service. In
Proc. of the 29th Int. Symp. on Fault Tolerant
Computing FTCS 99, June 1999.

C. Mohan, D. Haderle, B. Lindsay, H. Pi-
rahesh, and P. Schwarz. ARIES: A Trans-
action Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Us-
ing Write-Ahead Logging. In V. Kumar and
M. Hsu, editors, Recovery Mechanisms in
Database Systems, pages 145-218. Prentice
Hall, NJ, 1998.

L. E. Moser, P. M. Melliar-Smith, and
P. Narasimhan. A Fault Tolerance Frame-
work for Corba. In Proc. of the 29th IEEE
Int. Symp. On Fault Tolerant Computing,

FTCS 96, Madison, June 1999.

J. E. B. Moss. Nested Transactions. An
Approach to Reliable Distributed Computing.
MIT Press, Cambridge, MA, 1985.

G. Morgan, S. K. Shrivastava, P.D. Ezhilchel-
van, and M.C. Little. Design and Imple-
mentation of a Corba Fault Tolerant Object
Group Service. In Proc. of the 2nd IFIP WG
6.1 Int. Working Conf. on Distributed Appli-
cations and Interoperable Systems, DAIS 99,
June 1999.

M. H. Nodine, S. Ramaswamy, and S. B.
Zdonik. A Cooperative Transaction Model for
Design Databases. In A. K. EImagarmid, edi-
tor, Database Transaction Models, chapter 3,
pages 53-85. Morgan Kaufmann Publishers,
San Mateo, CA, 1992.

OMG. Corba services: Commong object ser-
vices specification.

OMG. Fault tolerant corba draft adopted spec-
ification.

M. Patifio Martinez, F. Ballesteros, R. Jiménez
Peris, S. Arévalo, F. Kon, and R. H. Campbell.
Composite Calls: A Design Pattern for Effi-
cient and Flexible Client-Server Interaction. In
Proc. of the Int. Conf. on Pattern Languages of
Design, Illinois (USA), August 1999.

[PGS98]

[PJAYS]

[PIKAO0O0]

[PS98]

[Ren94]

[Sch90]

[Shro4]

[SR96]

[ST95]

[TKB92]

F. Pedone, R. Guerraoui, and A. Schiper.
Exploiting Atomic Broadcast in Replicated
Databases. In D. J. Pritchard and J. Reeve, ed-
itors, Proc. of 4th International Euro-Par Con-
ference, volume LNCS 1470, pages 513-520.
Springer, September 1998.

M. Patifio Martinez, R. Jiménez Peris, and
S. Arévalo. Integrating Groups and Transac-
tions: A Fault-Tolerant Extension of Ada. In
L. Asplund, editor, Proc. of Int. Conf. on Re-
liable Software Technologies, volume LNCS
1411, pages 78-89, Uppsala, Sweden, June
1998. Springer.

M. Patifio Martinez, R. Jiménez Peris,
B. Kemme, and G. Alonso. Scalable Repli-
cation in Database Clusters. In Proc. of the
Int. Conf. on Distributed Computing DISC’ 00,
volume LNCS 1914, pages 315-329, Toledo
(Spain), October 2000.

F. Pedone and A. Schiper. Optimistic Atomic
Broadcast. In S. Kutten, editor, Proc. of
12th Distributed Computing Conference, vol-
ume LNCS 1499, pages 318-332. Springer,
September 1998.

R. Van Renesse. Why bother with CATOCS?
Operating Systems Review, 28(4):22-27, Oc-
tober 1994,

F. B. Schneider. Implementing Fault-Tolerant
Services Using the State Machine Approach:
A Tutorial. ACM Computing Surveys,
22(4):299-319, 1990.

S. K. Shrivastava. To CATOCS or not to
CATOCS, that is the ... Operating Systems Re-
view, 28(4):11-14, October 1994,

A. Schiper and M. Raynal. From Group Com-
munication to Transactions in Distributed Sys-
tems. Communications of the ACM, 39(4):84—
87, April 1996.

R. Schlichting and V. T. Thomas. Program-
ming Language Support for Writing Fault-
Tolerant Distributed Software. ACM Trans
actions on Computer Systems, 44(2):203-212,
1995.

A. S. Tanembaum, M. F. Kaashoek, and H. E.
Bal. Parallel Programming Using Shared Ob-
jects and Broadcasting. ACM Transactions
on Computer Systems, 25(8):10-19, August
1992,



[YLC90] C. Yang, R.C.T. Lee, and W. Chen. Paral-
lel Graph Algorithms Based Upon Broadcast
Communications. ACM Transactions on Com-
puter Systems, 39(12):1468-1472, December
1990.



