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Abstract

Transactional Drago programming language is an

Ada extension that provides transaction process-

ing capabilities. Exceptions have been integrated

with transactions in Transactional Drago; excep-

tions are used to notify transaction aborts and any

unhandled exception aborts a transaction. Transac-

tions can be multithreaded in Transactional Drago,

and therefore, concurrent exceptions can be raised.

In that case a single exception must be chosen to

notify the transaction abort. Transactional Drago

provides exception resolution within transactions to

tackle such a situation. In this paper we describe

the transaction model of Transactional Drago focus-

ing on how the Ada exception model can be used

to implement Transactional Drago semantics. In

the paper we identify which features of Ada were

useful, as well as some weaknesses we have found

in the language. We point out some missing basic

mechanisms for the Ada standard that can be of

great help for developing applications with strong

exception handling requirements like transactional

frameworks and many other applications.

Keywords: exceptions, concurrent exception res-

olution, transactions, Ada 95.

1 Introduction

Transactional Drago [PJA98] is an Ada extension

�This work has been partially funded by the Spanish Re-

search Council (CICYT), contract number TIC98-1032-C03-

01 and the Madrid Regional Research Council (CAM), con-

tract number CAM-07T/0012/1998.

that incorporates constructs for exception handling,

transaction management and group communica-

tion. Behind the programming primitives, a so-

phisticated model unifying exceptions, transactions

and group communication allows for concise rea-

soning and intuitive understanding of the behavior

of the programs developed using such primitives.

This makes it the ideal vehicle for developing large

fault-tolerant distributed software. Programming

languages incorporate primitives to deal with excep-

tions while transactions and process groups usually

require dedicated middleware like transaction pro-

cessing (TP) monitors and group communication

systems. As a result, combining exception handling,

transactions and process groups is often quite com-

plex. Transactional Drago was developed to address

this problem.

Nowadays, transactions are becoming a common

mechanism in general purpose programming lan-

guages (Enterprise Java Beans [Mic00]) and systems

(CORBA [OMG95b]). Transaction importance has

grown with the advent of new distributed applica-

tions (e.g. e-commerce) and they are not just con-

�ned to databases. In this paper we describe the

transaction processing facilities provided by Trans-

actional Drago and how exceptions have been inte-

grated in this context.

Transactional Drago is translated into Ada and

TransLib [JPAB00, KJRP01], an object oriented

framework to program distributed transactional

systems in Ada. Another contribution of this paper

is how the Ada exception mechanism can be used

for the implementation of transactions. We have

found several missing features in Ada that would



have been useful for implementing transactions. In

this paper we identify such features and propose

some basic mechanisms for Ada that would be help-

ful for any application with a complex exception

handling semantics like transactional systems.

The paper is organized as follows. Section 2

presents related work. Transactions and their im-

plementation are presented in Section 3. Section

4 deals with multithreaded transactions. Section

5 discusses how exception resolution for concurrent

exceptions is performed in Transactional Drago and

its implementation. Finally, we present our conclu-

sions in Section 6.

2 Related Work

One of the earliest papers on the integration of ex-

ceptions with backward recovery is [JC86]. In this

paper backward recovery provided by conversations

(distributed recovery blocks) is integrated with for-

ward recovery provided by exceptions. However,

the goals of conversations (to provide software fault-

tolerance) and transactions (data consistency) are

di�erent.

More related to our work is Argus [Lis88], a pro-

gramming language that provides nested transac-

tions, as well as exceptions. In Argus it is possible

to commit or abort a transaction, both normally

or exceptionally. It is possible to propagate an un-

handled exception outside of a transaction, without

aborting it [ea95], which can be misleading.

Arjuna [SDP91] is an object oriented system writ-

ten in C++ that provides nested atomic transac-

tions. Although C++ provides exceptions, no se-

mantics is given for exceptions crossing transaction

boundaries.

Transactional-C [Tra95], the programming lan-

guage provided by the Encina TP-monitor, provides

multithreaded transactions. Any exception going

out of a transaction aborts the transaction. Trans-

action threads can raise concurrent exceptions, but

no exception resolution mechanism is provided.

Transactions have also been incorporated in

functional programming languages [HKG+94]. In

this extension of SML, transactions can be mul-

tithreaded and exceptions are used to propagate

aborts. However, the semantics for transactions

with concurrent exceptions is not de�ned.

Some initial work exists on how to implement ba-

sic atomic actions with Ada [WB97, RMW97], but

without addressing exceptions concurrently raised

nor recovery. The activity of a group of compo-

nents constitutes an atomic action if there are no

interactions between that group and the rest of the

system [AL81]. In an atomic action, participants

are processes that asynchronously join the action

to collaborate. Atomic actions were initially pro-

posed for software fault-tolerance. Therefore, the

consistency of data is not guaranteed in case of node

crashes.

Coordinated atomic actions [XRea95] provide a

more general setting. They integrate conversations,

transactions and exceptions to tolerate hardware

and software design faults. Coordinated atomic ac-

tions �nish producing a normal outcome, an excep-

tion outcome, an abort exception, or a failure ex-

ception [XRea99]. An exception in a coordinated

action is always propagated to all participants and

in case of concurrent exceptions a graph is used for

resolution [XRR98].

In the open multithreaded transaction model

[KJRP01, Kie00], independent threads decide to

join a transaction. An exception propagated out

of a transaction also aborts the transaction. If sev-

eral threads raise an exception, each one propagates

the raised exception to the enclosing scope. No ex-

ception resolution is contemplated as threads are

independent.

The Object Transaction Service (OTS)

[OMG95a] of CORBA [OMG95b] provides support

for transactions. Support for nested transac-

tions is not mandatory. There is no integration

among exceptions and transactions, and therefore,

no semantics is given for exceptions crossing a

transaction boundary.

[Iss91] proposes an exception handling model for

parallel programming. An operation can be re-

quested to a group of objects. The group runs this

operation in parallel. If the group objects raise sev-

eral exceptions, exception resolution is performed

and the resulting exception is propagated to the

caller. No transactional properties are provided.

Exceptions have been integrated with transac-

tions in Enterprise Java Beans (EJB) [Mic00]. The

EJB model of transactions is 
at and there is no

concurrency inside a transaction. EJB uses the

Java exception model, where exceptions belong to a

class. Exceptions are classi�ed in system and appli-

cation exceptions. Each type of exception belongs

to a di�erent class. Application exceptions can be

handled within a transaction and therefore, there is

no need for rollback. However, when an exception

is raised in a client as a result of a bean method in-



vocation, the client does not know if the transaction

is going to abort or not. A method is provided to

query about the transaction status. System excep-

tions cannot be handled and they abort the trans-

action.

3 Transactions

Transactions provide data consistency in the pres-

ence of concurrent activities and system crashes

[GR93]. A transaction either �nishes successfully

(commits) and its e�ects become durable (they

are not lost even in the advent of crashes), or it

fails (aborts) and its e�ects are undone. Transac-

tion ACID (Atomicity, Consistency, Isolation and

Durability) properties [HR83] are useful for con-

structing reliable distributed applications.

Transactions can be nested [Mos85]. This is use-

ful for two reasons: �rst, they allow additional con-

currency within a transaction by running concur-

rently nested transactions (subtransactions). Sec-

ond, the abort of a subtransaction does not force

the parent transaction to abort, providing in this

manner damage con�nement against failures (espe-

cially in a distributed system where partial failures

can be more likely). Subtransaction commit is con-

ditioned to the commit of its ancestors. If a transac-

tion aborts, all its descendant subtransactions will

abort.

Transactions in Transactional Drago are de�ned

using the transactional block statement. The struc-

ture of a transactional block is similar to the one

of an Ada block statement. Transactional blocks

introduce a new scope; they have a declarative sec-

tion, a body and can also have exception handlers.

transactional-block::=

transaction

[declare declarative-part]

begin

sequence-of-statements

[exception

exception-handlers]

end transaction;

Nesting of transactional blocks is allowed yield-

ing to nested transactions. All data declared inside

a transaction are subject to concurrency control

(in particular, locks) and are recoverable. Trans-

actional Drago provides read/write locking. That

is, two transactions accessing the same data item

con
ict if at least one of them performs a write op-

eration. Locks are implicit, i.e., they are automati-

cally set on each data item when it is accessed. This

frees the programmer from the error prone task of

having to acquire and release locks. When there is

a failure, any changes introduced by uncommitted

transactions are removed by the recovery procedure.

All data declared in a transactional block are

volatile. Non-volatile (persistent) data are declared

in the outermost scope of a program. Persistent

data is pre�xed with the persistent keyword in its

declaration. For instance, if an array of elements of

type telement is persistent, it will be declared as:

vector : persistent array (1..MaxElements)

of telement;

3.1 Aborts and Exceptions

Exceptions are used to signal abnormal situations.

In Transactional Drago any exception that is prop-

agated outside the scope of a transaction causes the

abort of the transaction [PJA01]. If the transaction

had been able to handle the exception internally, it

would mean that forward recovery (exception han-

dling) was successfully applied within the transac-

tion. However, if the error could not be handled or

was not anticipated (there is no exception handler

for it), backward recovery (undoing the transaction)

is automatically performed. In this way, transac-

tions act as �rewalls con�ning damage produced by

unhandled errors and exceptions are used as noti-

�cation mechanism. If the transaction commits, it

will not raise any exception.

Moreover, transaction aborts have been inte-

grated with the exception mechanism. There is no

abort statement in Transactional Drago. Aborts

are always noti�ed by means of an exception. Since

programmers can de�ne their own exceptions, ex-

ceptions provide more information about the cause

of an abort than a simple abort statement.

The following example illustrates a transaction

to withdraw money from an ATM. The transac-

tion connects to a server (Branch Server) where

the accounts are held. If the balance on the ac-

count is less than the money requested, the trans-

action will abort and the not enough funds excep-

tion will be raised. The server could not be available

during the GetAccountBalance service invocation.

If this happens, the branch server not available

exception will be raised. The transaction provides

a handler for that exception. Thus, instead of



aborting the transaction, forward recovery is per-

formed. In this situation the ATM gives a max-

imum �xed amount of money (fixed amount). If

the amount requested is less than this maximum,

the ATM gives the money and the transaction com-

mits. Otherwise, the transaction is aborted and the

limited funds availability exception is raised.

Thus, the exception reports that there is a limit on

the funds that can be requested and that this limit

has been exceeded.

transaction

begin

GetAccountBalance(branch server, account, amount);

if requested amount > amount then

raise not enough funds;

else

amount:= amount - requested amount;

end if;

exception

when branch server not available =>

if requested amount > fixed amount then

-- Report to the user that the branch

-- server is unavailable and the max.

-- available amount is fixed amount

raise limited funds availability;

else

Credit(account, requested amount);

end if;

end transaction;

3.2 Implementing Transactions

Transactional blocks are translated into Ada block

statements and TransLib invocations. However,

TransLib can be used as a library for those pro-

grammers not willing to use an Ada extension. This

means that the way a transaction is implemented

must be such that is easy to write manually or au-

tomatically (using a preprocessor).

The events of interest for the runtime system con-

cerning a transaction are its beginning, completi-

tion and outcome. Transactional systems use trans-

action identi�ers (tids) to keep track of the trans-

actions. Depending on whether the tid handling

is performed transparently or not, there are sev-

eral approaches to implement transaction bracket-

ing, explicitly or implicitly. From the four possible

combinations there is one we do not consider due

to its lack of interest that is implicit bracketing and

explicit tid handling. The following sections discuss

the di�erent approaches.

3.2.1 Explicit Bracketing and Tid Handling

Explicit bracketing is performed by invoking oper-

ations to begin and end (commit or abort) a trans-

action. Explicit bracketing implies to bracket the

transaction with begin and end operations.

An Ada block is used to represent the transac-

tional scope. Since the programmer can perform its

own exception handling, an additional nested block

is needed in the implementation of a transactional

block to prevent interference between the program-

mer exception handling, and the automatic excep-

tion handling in charge of aborting the transaction

in case of an unhandled exception propagation. The

inner block corresponds to the programmer code

including exception handling. The outer block per-

forms transaction bracketing invoking TransLib op-

erations (T Begin, T End and T Abort) and default

exception handling:

declare

tid : Trans Id;

begin

tid:= T Begin;

declare

-- transaction local declarations

begin

-- transaction code

exception

-- programmer defined exception handling

end;

T End(tid);

exception

when e: others =>

T Abort(tid, e);

end;

The T Begin operation starts a new transaction

and associates a tid to it. This tid is then used to

notify the underlying system about which transac-

tion is committing or aborting. If an exception is

not handled in the transaction or is raised in the

transaction exception handlers or by the T End op-

eration, the transaction must be aborted. That ex-

ception is handled by the others handler in the

outer block. That handler calls the T Abort opera-

tion with the corresponding exception occurrence as

a parameter. T Abort aborts the current transac-

tion and propagates the exception to the enclosing

scope. As it is shown an exception handler is used

catch any unhandled exception and call the T Abort

operation. An exception occurrence is passed on to

the T Abort operation, in order to store it and pos-

sibly reraise it later.

Instead of using a parameter in the T Abort op-

eration, the exception could be raised immediately



after calling T Abort. However, if the transaction

has several threads, this implementation would not

be correct. Section 4 explains this situation.

It might be argued that the outer block statement

is not needed and just use a single block statement.

Using the following scheme:

declare

tid : Trans Id;

-- transaction local declarations

begin

tid=T Begin;

-- transaction code

exception

when excep1 =>

exception handler1

T End(tid);

when excep2 =>

exception handler2

T End(tid);

when e: others=>

T Abort(tid, e);

end;

There are two reasons for having the outer block

statement. First, the transaction might have de-

clared data and if an exception is raised during

the elaboration of the declarations, the transaction

must abort, and the actions already performed must

be undone. However, if the previous code is used,

an exception raised during the elaboration of the

transaction declarations will be propagated to the

enclosing scope without executing the T Abort op-

eration. Although, the data declared in the trans-

action is volatile, some of the actions performed

during the elaboration of these data could modify

some external data (in an outer scope, persistent or

not). What it is more, using the above code, the

transaction would be unknown at elaboration time

(the T Begin operation has not been executed) and

therefore, no undo is possible. This situation can-

not be distinguished in the enclosing scope from the

one in which the transaction has been executed and

properly aborted (the T Abort operation has been

executed).

The same problem arises if the T Begin invoca-

tion is out of the block statement and there is just

a block statement, despite the transaction is known

when the transaction declarations are elaborated.

An exception in the declarations elaboration, will be

propagated to the enclosing scope, which could not

be transactional (the transaction is not nested) and

therefore, the transaction cannot be aborted. If the

transaction is nested and the exception is handled

in the others handler of the enclosing transaction,

two transactions must abort, the inner one and the

outer one (if there is no programmer-de�ned han-

dler for that exception). However, the T Abort op-

eration just aborts the inner transaction and the

outer one is left inconsistent (it is neither commit-

ted nor aborted).

The second reason for having two block state-

ments is the presence of programmer-de�ned excep-

tion handlers in the transaction. If an exception

is implicitly raised in one of the handlers, the ex-

ception will be propagated to the enclosing scope,

which ful�lls the Transactional Drago semantics,

but the corresponding T Abort operation is not ex-

ecuted. Therefore, the situations previously de-

scribed arise again.

Therefore, given the structure of a transactional

block, the actions needed to commit and abort a

transaction, and how exceptions are propagated in

Ada, two block statements are needed to translate

a transactional block. What it is more, the use

of two block statements ensures that the handlers

provided by the programmer will not collide with

the one needed to perform the transaction abort.

3.2.2 Explicit Bracketing and Implicit Tid

Handling

Tid handling is an error-prone task, for instance,

when there are nested transactions. There is a very

interesting feature in the Ada Systems Program-

ming Annex, that allows to associate state to tasks.

This feature enables implicit tid handling in the fol-

lowing way. The state of tasks is extended to keep

a stack of active transactions (initially empty). In

this way the operations to begin and end transac-

tions just access this state to push the tid of a new

transaction and to pop it, respectively. The trans-

actional runtime system always knows which is the

current transaction by just looking at the top of the

stack. The resulting code for transaction bracketing

is:

begin

T Begin;

declare

-- transaction local declarations

begin

-- transaction code

exception

-- programmer-defined exception handlers

end;

T End;

exception

when e: others =>



T Abort(e);

end;

The T Begin operation starts a new transaction

and associates a transaction identi�er (tid) to the

task that executes that operation. The new trans-

action can be either a top level transaction (if the

task was not executing any transaction, i.e, if its

stack was empty), or a subtransaction of the trans-

action currently executing. The T End and T Abort

operations commit and abort the current transac-

tion (i.e., the transaction on top of the stack), re-

spectively. With this scheme, it has been possible

to hide the tid handling from the programmer, pre-

venting thus the errors to which is subject the ex-

plicit handling.

3.2.3 Implicit Bracketing and Tid Handling

Explicit bracketing is also subject to errors, since it

is possible to forget writing any of the begin/end

operations. The use of controlled types guaran-

tees that bracketing is performed implicitly at the

initialization and �nalization of the corresponding

scope. A transaction can be a controlled type, and

a transactional scope just needs to declare a vari-

able of this type. However, as the following piece of

code shows, fully implicit bracketing is not possible

with Ada controlled types:

declare

t : Transaction;

begin

declare

-- transaction local declarations

begin

-- transaction code

exception

-- programmer-defined exception handlers

end;

exception

when e: others =>

T Abort(e);

end;

The transaction is a controlled type declared in

the outer block whose Initialize procedure calls

T Begin. The Finalize checks if the transaction

was aborted, and if not, it calls the T End opera-

tion to commit. Therefore, there are no T Begin

and T End calls in the translation. However, as the

Finalize operation does not provide any informa-

tion about how the scope has terminated nor about

the exception that caused the termination (in case

of exceptional termination), it prevents fully auto-

matic bracketing, and forces an explicit invocation

of the abort operation.

The Ada �nalization operation of controlled types

could be overloaded with an exceptional �nalization

operation that would have as an argument the ex-

ception occurrence that caused the �nalization of

the scope. An additional advantage of the excep-

tional Finalize is that it would save one of the two

blocks needed to bracket a transaction. The auto-

matic transaction abort needed in case of the propa-

gation of an unhandled exception can be performed

by the exceptional Finalize. The code that could

be written with an exceptional Finalize would be:

declare

t : Transaction;

-- transaction local declarations

begin

-- transaction code

exception

-- programmer-defined exception handlers

end;

The exceptional Finalize with the exception

occurrence as argument, besides being useful for

building a transactional system, it would also be

useful for automatic logging of exceptions, debug-

ging, or administration purposes. Currently, this

has to be performed manually writing ad-hoc excep-

tion handlers to keep track of the exception propa-

gation. There are many frameworks where the ac-

tions to be performed during Finalize depend on

whether the �nalization is normal or exceptional.

In this kind of applications fully automatic brack-

eting with controlled types is not possible without

an exceptional Finalize.

4 Multithreaded Transactions

Tasks can be declared inside a transaction in Trans-

actional Drago, hence a transaction can have aux-

iliary threads. Multithreaded transactions [PJA00]

allow taking advantage of multiprocessor and mul-

tiprogramming capabilities, for instance a thread

can perform input, another output, and a third one

work on the data. A transaction �nishes its exe-

cution when it reaches the end of the transactional

block statement and all its threads have �nished.

This model is consistent with the Ada one, where

blocks synchronize their termination with the tasks

declared (allocated) in their scope.



Since locking is only intended for inter-

transactional concurrency, that is, to guarantee the

isolation of concurrent transactions (logical consis-

tency), latches [MHL+98] are used to provide data

consistency (physical consistency) in the presence

of concurrent accesses from the same transaction

(intra-transactional concurrency). As locks, latches

are also automatically set, which simpli�es the pro-

gramming task.

Any of the threads of a multithreaded transac-

tion can start a new transaction. In that case a

subtransaction and its parent transaction will run

concurrently, and therefore they can compete for

the data. For this reason, concurrency control is

used for all data used within a transaction, even

if they are volatile. This is known as parent-child

concurrency [HR93]. The locking algorithm used

in Transactional Drago guarantees that subtransac-

tions started by a transaction thread are atomic and

isolated from all other threads of the parent trans-

action. Once a subtransaction acquires a lock on a

data item, its parent transaction (or any ancestor)

cannot access that data item until the subtransac-

tion �nishes. Latches also ensure that a lock on a

data item is not granted to a subtransaction while

its parent (or any ancestor) is accessing that data

item.

4.1 Implementing Multithreaded

Transactions

Transaction threads are modeled by Ada tasks.

These tasks are declared within the declarative sec-

tion of a transactional block or within an inner

scope. Transaction threads are written with a dif-

ferent scheme than the one used for single threaded

transactions, despite both are basically blocks. This

di�erence stems from the fact that the underly-

ing transactional system needs to associate tasks to

their corresponding transactions, but this cannot

be performed transparently. Despite being possi-

ble to identify Ada tasks (using the facility of the

Programming Systems Annex), it is not possible to

get the identi�er of the master task (the task who

created task under consideration). This lack in the

Programming Systems Annex prevents automatic

tid handling. Transactional tasks must be explicitly

informed about the master task identi�er or the tid

of the transaction they belong to. In what follows

the approach currently taken to implement multi-

threaded transactions, and how the code could be

simpli�ed if the facility to get the master task were

available.

4.1.1 Explicit Bracketing and Tid Handling

In this approach the task body and its declarations

are enclosed in a block statement. The block is

enclosed between the T Begin Thread and T End

operations. For instance, if a transaction contains

two thread types (e.g., ThreadType1 and Thread-

Type2), it can be written as follows:

declare

tid : Trans Id;

begin

tid = T Begin;

declare

-- transaction local declarations

task type ThreadType1

(my tid : TransactionIdentifier) is

-- task interface

end ThreadType1;

task body ThreadType1 is

begin

T Begin Thread(my tid);

declare

-- thread declarations

begin

-- thread code

exception

-- thread exception handlers

end;

T End(my tid);

exception

when e: others =>

T Abort(my tid, e);

end ThreadType1;

task type ThreadType2

(my tid : TransactionIdentifier) is

-- task interface

end ThreadType2;

task body ThreadType2 is

begin

T Begin Thread(my tid);

declare

-- thread declarations

begin

-- thread code

exception

-- thread exception handlers

end;

T End(my tid);

exception

when e: others =>

T Abort(my tid, e);

end ThreadType2;

Thread1 : ThreadType1(CurrentTID);

Thread2 : ThreadType2(CurrentTID);

begin



-- transaction code

exception

-- transaction exception handlers

end;

T End(tid);

exception

when e: others =>

T Abort(tid, e);

end;

The inner block statement is used to ensure that

any action performed by a thread is done on behalf

of a transaction. If the block statement is not used

and the T Begin Thread operation is at the begin-

ning of the task body, the actions performed during

the declarations elaboration are not associated to a

transaction and therefore, they cannot be undone if

an exception is raised and therefore, the transaction

aborts.

Since it is not possible to know the master task

(i.e., the creator task) of a task in Ada, the tid of the

transaction is passed as a task discriminant (my tid

in the above example) in the task declaration. The

T Begin Thread operation has the tid as parameter.

This allows to associate the work performed by the

thread to a transaction. The runtime system will

apply the concurrency control policy previously de-

scribed and keep track of all the modi�cations per-

formed to be undone in case of an abort.

An exception raised during the elaboration of a

thread declarations will �nish the block statement

and will be handled in the others handler of the

task. The handler will call the T Abort operation.

Since variables declared within a thread are not im-

plemented as variables declared at the outer task

scope, but at an inner scope, the Tasking Error ex-

ception cannot be raised due to an exception in the

declarative part of a task body.

An unhandled exception in the thread body or

an exception raised in a thread handler will also be

handled by the task others handler. Since excep-

tions are not propagated out of a task in Ada, if

any task executes the T Abort operation, TransLib

stores the exception in the transaction state. Other-

wise, the exception would be missed. The main task

(the one executing the transactional block) waits for

the transaction threads completion in the T End op-

eration. The main task knows how many threads

there are because they call the T Begin Thread op-

eration, which increments the number of threads in

the transaction state (accessible through the tid).

If a thread aborts, the T End operation in the main

task will raise the exception that the thread raised.

If the main task raises an exception and it is not

handled, the others handler will handle it. The

T Abort operation will wait for the completion of

the rest of the threads to undo transaction updates

and reraise the exception.

4.1.2 Implicit Bracketing and Tid Handling

If an enhanced Ada with exceptional Finalize and

an additional facility in the Programming Systems

Annex to get the identi�er of the master task, the

code for multithreaded transactions could be sim-

pli�ed to the following:

declare

trans : Transaction;

begin

declare

-- transaction local declarations

task type ThreadType1 is

-- task interface

end ThreadType1;

task body ThreadType1 is

trans : Transaction;

-- thread declarations

begin

-- thread code

exception

-- thread exception handlers

end ThreadType1;

task type ThreadType2 is

-- task interface

end ThreadType2;

task body ThreadType2 is

trans : Transaction;

-- thread declarations

begin

-- thread code

exception

-- thread exception handlers

end ThreadType2;

Thread1 : ThreadType1;

Thread2 : ThreadType2;

begin

-- transaction code

exception

-- transaction exception handlers

end;

It can be seen how the code could be greatly sim-

pli�ed with the pointed out missing features in Ada.

As before, an exceptional Finalize would enable

implicit bracketing of the outer transaction. On

the other hand, the facility to get the master task

would allow to perform implicit tid handling within

the transactional threads, as the initialization in the



controlled type could �nd out the identi�er of the

master task, and thus access its transactional state

to associate the new thread to its inner transaction.

5 Concurrent Exceptions

When a transaction aborts in Transactional Drago,

a single exception is propagated to inform about

the cause of the abort. If more than one thread of

a transaction �nishes with an unhandled exception,

exception resolution is performed in Transactional

Drago in order to propagate a single exception. Ex-

ception resolution [CR86] allows to choose an ex-

ception that represents all the exceptions that have

been concurrently raised. Transactional Drago pro-

vides a default resolution scheme that is applied

when concurrent exceptions are raised (in contrast

with Ada, where no exception resolution scheme is

provided and exceptions resulting in task termina-

tion are just lost). This default resolution scheme

propagates the several exceptions prede�ned excep-

tion.

Exception resolution is usually performed using

an exception tree. When two concurrent excep-

tions are raised, the oldest common ancestor in that

tree is the result of the resolution. In Transactional

Drago programmers can de�ne their own exception

resolution scheme providing an exception resolution

function. This function is de�ned in the declaration

section of a transactional block by means of the fol-

lowing attribute-de�nition clause:

exception-resolution-clause::=

for localresolution use name;

We have used an attribute-de�nition clause be-

cause the programmer exception resolution func-

tion overrides the by default resolution function of

Transactional Drago. This behavior is similar to

the one of attribute-de�nition clauses used for Ada

streams.

name is the identi�er of the programmer provided

exception resolution function. A resolution function

receives two exception identities as arguments and

returns an exception identity (the result of the reso-

lution of the two exceptions). That function imple-

ments the exception resolution tree and is called by

the runtime system n� 1 times (being n the num-

ber of concurrent unhandled exceptions raised in

the transaction) to obtain a single exception. The

following piece of code shows how the exception res-

olution function should be programmed.

transaction

declare

function WithdrawResolution

(exception1, exception2: Exception ID) re-

turn Exception ID is

begin

...

if exception1 = unknown account'Identity then

return exception1;

...

end if;

end WithdrawResolution;

for localresolution use WithdrawResolution;

begin

-- Perform concurrent work

end transaction;

Exceptions cannot be arguments of a sub-

program in Ada, but it is possible to ob-

tain the identity attribute of an exception,

which can be used for this purpose. For in-

stance, to pass the not enough funds excep-

tion as an argument, the real argument will be

not enough funds'identity. The resolution func-

tion would be simpler, if exceptions were a type,

removing the hassle of getting the identities of ex-

ceptions.

5.1 Exception Hierarchy

Exceptions are classi�ed in Transactional Drago ac-

cording to their origin as system and application ex-

ceptions. The system can implicitly abort a trans-

action (without an application request) in several

circumstances such as lack of resources to commit

the transaction (e.g., log space), or deadlocks. If

the system aborts a transaction, the transaction

will be undone and an exception will be propagated

to the enclosing transaction (therefore, handlers for

that exception in the transaction cannot capture

those exceptions). In�osome cases it is not worth

to retry the transaction until a certain period of

time has elapsed, since those situations can persist

some time. In case of a deadlock, it makes sense

to retry the transaction immediately with the hope

that the con
icting transaction has already �n-

ished. The abort error and abort retry error

prede�ned system exceptions are used to distinguish

these two situations.

On the other hand, application exceptions (pre-

de�ned or user-de�ned) can be raised when an oper-

ation precondition does not hold or an error is found

in the code. In the former case, the enclosing scope

can be interested in knowing the reason of the error



Figure 1: Exception resolution tree

and, perhaps, in handling it and retrying the trans-

action with di�erent data (e.g., in a withdraw oper-

ation if the not enough funds exception has been

raised, the client can try to withdraw less money

or money from a di�erent account). Whether it is

meaningful to retry or not after an application ex-

ception is application dependent. In the case of an

error in the code, the transaction enclosing scope

will be interested in knowing that the transaction

has been aborted, and that there are few possibil-

ities of success if it is retried. For instance, if a

constraint error is raised due to an error in the

code, it may not be meaningful to retry the trans-

action. The exception can be renamed to make it

more understandable to the enclosing scope.

The nature of concurrent exceptions can be very

di�erent; for instance, the system can raise an ex-

ception indicating a deadlock and the transaction

itself can raise an application exception (there are

not enough funds to withdraw). A consistent res-

olution must be applied to raise a single exception

that captures the maximum amount of information.

Transactional Drago has a prede�ned exception

tree for exception resolution (Fig. 1). At the

root of the hierarchy is the abort error excep-

tion. Whenever this exception is raised, that one

will be propagated. Unhandled application excep-

tions are only propagated when no system exception

has been raised during the execution of a transac-

tion. If only an application exception is raised, that

one will be propagated notifying the transaction

abort. However, if concurrent application excep-

tions are raised, by default, the prede�ned excep-

tion several exceptions is raised. The program-

mer can override this default behavior, providing an

exception resolution function. Recall that this res-

olution is only applied for application exceptions.

If abort error or abort retry error are raised

concurrently with application exceptions, the sys-

tem exception will be chosen as the �nal exception.

Exception resolution takes place during transaction

termination.

5.2 Implementation of Transaction

Termination

Traditional transactions are single-threaded. In this

situation transaction termination can be trivially

determined. However, this is not the case for mul-

tithreaded transactions. When a thread (including

the main task) of a multithreaded transaction com-

pletes, it is not yet known whether the transaction

has terminated or not, neither how it has termi-

nated.

The termination of multithreaded transactions

requires a termination protocol that synchronizes

the termination of all the participating threads.

The main thread (the one that initiates the trans-

action) will coordinate the transaction termination.

When the main thread completes, it must synchro-

nize with the completion of the rest of the threads

(a similar problem is dealt in Ada [Ada95] tasks).

All the threads of a transaction must report to the

main thread how they have terminated. Even if the

main thread decides to commit, if any thread ter-

minates raising an exception then the transaction

will abort.

The protocol is started either in the T End or

T Abort operation of the main thread, depending

on whether the main thread �nishes successfully or

raising an exception. The �rst step in the termina-

tion protocol is waiting for the completion of all the

threads. When a thread completes its execution, it

records its outcome in the transaction state. The

transaction state is accessible to all the transaction

threads through the tid. If all the threads complete

successfully, then the main task commits the trans-

action; otherwise, if one or more threads terminate

exceptionally, it aborts the transaction. If several

threads raise exceptions, resolution is applied in or-

der to raise a single exception as the outcome of the

transaction. It may seem that exception resolution

is a time consuming task that requires extra syn-

chronization among the transaction threads. How-

ever, the termination protocol is a synchronization

point among all the transaction threads needed to

decide the outcome of a transaction. If exception

resolution is performed at this point no extra over-

heads are paid.

Since threads of a transaction do not survive the

transaction scope (they �nish with the transaction),



there is no need to inform them about the transac-

tion outcome. All the activities needed to abort or

commit the transaction are performed in the next

step of the protocol. Even if all the threads �nish

successfully, the transaction could abort. It could

be the case that when the data changes are prop-

agated to disk, the disk is full and the transaction

cannot commit. In such a situation the termina-

tion protocol will abort the transaction and raise

the abort error exception. For this reason excep-

tions are raised at this �nal stage.

6 Conclusions

Transactions are becoming a general programming

mechanism available in most systems, like Corba

and Enterprise Java Beans. The integration of

transactions in a programming language needs to

be orthogonal to other language mechanisms and

precisely de�ned.

Transactional Drago is an Ada extension that in-

tegrates exceptions with transactions. In this pa-

per we have described the semantics of exceptions

in that context and how exceptions can be used

to implement that semantics. To summarize, ex-

ceptions are used to notify transaction aborts in

Transactional Drago and also to implement aborts

through the translation of transactions into block

statements, which always have an exception handler

that is in charge of the abort. Additionally, in mul-

tithreaded transactions concurrent exceptions are

resolved, and exceptions raised at a thread are not

lost as it happens in Ada with unhandled exceptions

in tasks.

We have found some missing features in the Ada

exception model that were needed for providing full

implicit bracketing and tid handling.

� Finalize cannot distinguish between an excep-

tional and a normal �nalization. This forces to

include an implicit termination for the excep-

tional case.

� It is not possible to �nd out the master of a

task (the task who created a particular task).

This forces to pass in a task discriminant an

identi�er relating the child task to its master.

Two basic mechanisms have been proposed to

overcome these lacks:

� An additional Finalize can be provided for con-

trolled types that would be invoked in case of

exceptional �nalization. This Finalize would

have as argument the exception occurrence

that triggered the �nalization.

� The Programming Systems Annex can be en-

riched with an additional function that given

the identi�er of a task returns the identi�er of

the master task.

An additional feature would also be helpful. Ex-

ceptions are not currently types in Ada. This im-

plies that exception identities should be extracted

from them or from exception occurrences in order

to compare exceptions during exception resolution.

A cleaner code could result if exceptions were types.
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