
1
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data:
MapReduce

1. Introduction to MapReduce

2
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

Origins: the Problem
● Google faced the problem of analyzing huge sets

of data (order of petabytes)
● E.g. pagerank, web access logs, etc.
● Algorithm to process data can be reasonable

simple
● But to finish it in an acceptable amount of time

the task must be split and forwarded to
potentially thousands of machines

3
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

Origins: the Problem (2)
● Programmers were forced to develop the sw

that:
● Splits data
● Forwards data and code to participant nodes
● Checks nodes state to react to errors
● Retrieves and organizes results

● Tedious, error-prone, time-consuming... and had
to be done for each problem

4
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

The Solution: MapReduce
● MapReduce is an abstraction to organize

parallelizable tasks
● Algorithm has to be adapted to fit MapReduce's

main two steps.

1) Map: data processing
 (collecting/grouping/distribution intermediate step)

2) Reduce: data collection and digesting

● The MapReduce framework will take care of
data/code transport, nodes coordination, etc.

5
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

Example: Word Count
● Given a text, get the number of times each word

in the text appears

“Text to pass to wc” Word Count

text: 1
to: 2
pass: 1
wordcount: 1

Map

“to wc”

“Text to
pass to

wc”

“Text to
pass”

text: 1
to: 1
pass: 1

to: 1
wc: 1

ReduceIntermediate
step

text: {1}
to: {1,1}
pass: {1}
wc: {1}

text: 1
to:2
pass: 1
wc: 1

text: {1}
to: {1,1}

pass: {1}
wc: {1}

text: {1}
to: {2}

pass: {1}
wc: {1}

6
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

● Map function signature:
● takes as input a (T_k1:key, T_v1:value) pair

● generates list of (T_k2:key, T_v2:value) pairs

● Note that
● Input and output types can be different
● In the output list the same key can be repeated

Map Definition

map(T_k1:k1,T_v1:v1) list(T_k2:k2,T_v2:v2)→

7
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

● In the Word Count example, the Map function
could be programmed as follows:

Word Count Example – Map Func.

map(String key, String value) {
 // key: doc name, value: doc text
 for each word w in value:
 EmitIntermediate(w, "1");
}

(“fichero”,
 “text to pass
 to wc”)

{(“text”, 1),(“to”, 1),
 (“pass”, 1),(“to”, 1),
 (“wc”, 1)}

Map

8
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

● The MapReduce software will:

1) collect all results from nodes running Map step

2) group the pairs(T_k2:key, T_v2:value) by key

3) distribute keys among nodes running Reduce step

● This step does not depend on the algorithm
implementation passed to MapReduce

Intermediate Step

(k2,v2)
(k2,v2')
(k3,v3)
(k2,v2'')
(k4,v4)

(k2, {v2,v2',v2''})
(k3, {v3})
(k4, {v4})

Group DistributeCollect

9
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

● Intermediate results processing would look like:

Word Count Example – Interm Step

{(“text”, 1),
 (“to”, 1),
 (“pass”, 1),
 (“to”, 1),
 (“wc”, 1)}

(“text”, {1})
(“to”, {1,1})
(“pass”, {1})
(“wc”, {1})

GroupCollect Distribute

10
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

● Reduce function signature:
● takes as input (T_k2:key, list(T_v2:value))
● generates another list of (T_v2:value) values

● Note that
● Processing of each key is independent
● Typically the resulting list has one element

Reduce Definition

reduce(T_k2:k2,list(T_v2:v2)) (T_k2:k2,list(T_v2:v2))→

11
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

● The Reduce function could be coded as follows:

Word Count Example – Reduce Func

reduce(String key, List values) {
 // key: word, value: list of counts
 int result = 0;
 for each v in values:
 result +=ParseInt(v);
 Emit(key, result);
}

(“text”, {1})
(“to”, {1,1})
(“pass”, {1})
(“wc”, {1})

Reduce

(“text”, {1})
(“to”, {2})
(“pass”, {1})
(“wc”, {1})

12
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

Summing Up Map and Reduce Defs

reduce(T_k2:k2,list(T_v2:v2)) (T_k2:k2,list(T_v2:v2))→

map(T_k1:k1,T_v1:v1) list(T_k2:k2,T_v2:v2)→

(k2,v2)
(k2,v2') (k2, {v2,v2',v2''})→
(k2,v2'')

Intermediate:
collection, sorting and
distribution of map
results.

13
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

● It is an optional step right after Map
● Typically, consists on applying the Reduce

function locally in the Map node before sending
the results

● It can reduce the bandwidth and disk space
consumed by the Map output data

● Applicable if the reduce function is commutative
and associative
● In the previous wordcount example it can be applied

The Combiner function

14
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

Distributed MapReduce

Map process, distributed
among Map Nodes

Intermediate process
 1) collects values by key
 2) sorts by key

Reduce process, distributed
among Reduce Nodes

15
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

● In “big data” jobs is more efficient moving code than moving
data

● Map (and Reduce) nodes work independently

● A special master node plans the distribution of tasks
● It also monitors nodes, who periodically report their status
● Failure tolerance is simple: if some node fails the master can

replace it immediately (the rest do not need to be notified about it)

● Map tasks can run in parallel, and Reduce tasks can work in
parallel (but, can Reduce tasks work at the same time than Map
tasks?)

Distributed Implementations Hints

16
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

● User specifies:

● M: Number of slots or pieces the input data is split into
(i.e., number of Map tasks to run)

● R: Number of pieces the intermediate data is split into
(i.e., number of Reduce tasks to run)

– To assign intermediate data to Reduce nodes some
function must be used. For example:

That function usually balances data fairly among
Reduce partitions

● Typical Google job: M=200.000; R=5.000; 2.000 machines

Distributed Implementations Hints (2)

hash(k2) mod R

17
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

Distributed Implementation Schema

Split 0

Split 1

Split 2

Split M

...

Map node

Map node

Map node

Local
write

Reduce
node

Reduce
node

Remote
Read Output

file 0

Output
file 1

Distributed
file system

(GFS, HDFS...)

Distributed
file system

(GFS, HDFS...)
...

...

R local
disk

buffersM Map
tasks

R
Reduce
tasks

MasterUser
Program

18
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

● Grep (distributed): look for lines that match a pattern
– Map → Checks text line by line, it emits matching lines
– Reduce → Identity

● Count of URL access frequency: count in web request
logs how many times each URL has been accessed

– Map → Each time an URL appears, emit <URL, 1>

– Reduce → Add together all values, emit <URL, sum>

● Pages that link to a certain URL (reverse web graph)

– Map → For each URL in some page, emit <URL, page>
– Reduce → Identity

More MapReduce Examples

19
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

● Three main areas:
● Text tokenization, indexing, and search
● Creation of other kinds of data structures (e.g., graphs)
● Data mining and machine learning

● By sector:
● Originally developed and used by web companies: Google,

Facebook, Yahoo!, Ebay, Adobe, Twitter, Last.fm, LinkedIn...
● The scientific community is also applying it to large datasets:

– Statistical algorithms (k-means, linear regression...); image
processing; genetic sequences search

● Check http://wiki.apache.org/hadoop/PoweredBy !

Applications of MapReduce

http://wiki.apache.org/hadoop/PoweredBy

20
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

● MapReduce has a 'low semantic interface'
● I.e.: Map and Reduce operations are too simple
● Complex manipulation of data is cumbersome (for

example, compared with the flexibility of SQL)

● Higher level languages have been proposed
● They work on top of MapReduce, transforming

queries into MapReduce operations
● Examples: DryadLINQ, Sawzall, PygLatin, Hive

Beyond MapReduce

hive> CREATE TABLE pokes (foo INT, bar STRING);
hive> SELECT a.foo FROM pokes WHERE a.bar='test';

21
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

Bibliography
● (Paper) “MapReduce: Simplified Data Processing on Large Data

Clusters”. Jeffrey Dean, Sanjay Ghemawat. OSDI 2004

● (Paper) “Map-reduce-merge: simplified relational data processing on
large clusters”. Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, D.
Stott Parker. SIGMOD 2007

● (Book) “Data-Intensive Text Processing with MapReduce”. Jimmy Lin,
Chris Dyer. Morgan and Claypool Publishers, 2010

● (Book chapter) “MapReduce and Hadoop”. Luis Rodero-Merino, Gilles
Fedack, Adrian Muresan. In book “Open Source Cloud Computing
Systems: Practices and Paradigms”. IGI Global, 2012 (In press)

22
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

(Example with Hadoop)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

