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Origins: the Problem
● Google faced the problem of analyzing huge sets 

of data (order of petabytes)
● E.g. pagerank, web access logs, etc.
● Algorithm to process data can be reasonable 

simple
● But to finish it in an acceptable amount of time 

the task must be split and forwarded to 
potentially thousands of machines
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Origins: the Problem (2)
● Programmers were forced to develop the sw 

that:
● Splits data
● Forwards data and code to participant nodes
● Checks nodes state to react to errors
● Retrieves and organizes results

● Tedious, error-prone, time-consuming... and had 
to be done for each problem
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The Solution: MapReduce
● MapReduce is an abstraction to organize 

parallelizable tasks
● Algorithm has to be adapted to fit MapReduce's 

main two steps. 

1) Map: data processing
 (collecting/grouping/distribution intermediate step)

2) Reduce: data collection and digesting

● The MapReduce framework will take care of 
data/code transport, nodes coordination, etc.



5
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

Example: Word Count
● Given a text, get the number of times each word 

in the text appears

“Text to pass to wc” Word Count

text: 1
to: 2
pass: 1
wordcount: 1

Map

“to wc”

“Text to 
pass to 

wc”

“Text to 
pass”

text: 1
to: 1
pass: 1

to: 1
wc: 1

ReduceIntermediate
step

text: {1}
to: {1,1}
pass: {1}
wc: {1}

text: 1
to:2
pass: 1
wc: 1

text: {1}
to: {1,1}

pass: {1}
wc: {1}

text: {1}
to: {2}

pass: {1}
wc: {1}
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● Map function signature:
● takes as input a (T_k1:key, T_v1:value) pair

● generates list of (T_k2:key, T_v2:value) pairs

● Note that
● Input and output types can be different
● In the output list the same key can be repeated

Map Definition

map(T_k1:k1,T_v1:v1)   list(T_k2:k2,T_v2:v2)→
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● In the Word Count example, the Map function 
could be programmed as follows:

Word Count Example – Map Func.

map(String key, String value) { 
 // key: doc name, value: doc text 
 for each word w in value: 
  EmitIntermediate(w, "1"); 
}

(“fichero”,
 “text to pass
  to wc”)

{(“text”, 1),(“to”, 1), 
 (“pass”, 1),(“to”, 1),   
 (“wc”, 1)}

Map
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● The MapReduce software will:

1) collect all results from nodes running Map step

2) group the pairs(T_k2:key, T_v2:value) by key

3) distribute keys among nodes running Reduce step

● This step does not depend on the algorithm 
implementation passed to MapReduce

Intermediate Step

(k2,v2)
(k2,v2')
(k3,v3)
(k2,v2'')
(k4,v4)

(k2, {v2,v2',v2''})
(k3, {v3})
(k4, {v4})

Group DistributeCollect
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● Intermediate results processing would look like:

Word Count Example – Interm Step

{(“text”, 1),
 (“to”, 1), 
 (“pass”, 1),
 (“to”, 1),   
 (“wc”, 1)}

(“text”, {1})
(“to”, {1,1})
(“pass”, {1})
(“wc”, {1})

GroupCollect Distribute
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● Reduce function signature:
● takes as input (T_k2:key, list(T_v2:value))
● generates another list of (T_v2:value) values

● Note that
● Processing of each key is independent
● Typically the resulting list has one element

Reduce Definition

reduce(T_k2:k2,list(T_v2:v2)) (T_k2:k2,list(T_v2:v2))→
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● The Reduce function could be coded as follows:

Word Count Example – Reduce Func

reduce(String key, List values) { 
 // key: word, value: list of counts
 int result = 0; 
 for each v in values:
  result +=ParseInt(v); 
 Emit(key, result); 
}

(“text”, {1})
(“to”, {1,1})
(“pass”, {1})
(“wc”, {1})

Reduce

(“text”, {1})
(“to”, {2})
(“pass”, {1})
(“wc”, {1})
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Summing Up Map and Reduce Defs

reduce(T_k2:k2,list(T_v2:v2)) (T_k2:k2,list(T_v2:v2))→

map(T_k1:k1,T_v1:v1)   list(T_k2:k2,T_v2:v2)→

(k2,v2)
(k2,v2')   (k2, {v2,v2',v2''})→
(k2,v2'')

Intermediate:
collection, sorting and 
distribution of map 
results.
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● It is an optional step right after Map 
● Typically, consists on applying the Reduce 

function locally in the Map node before sending 
the results

● It can reduce the bandwidth and disk space 
consumed by the Map output data

● Applicable if the reduce function is commutative 
and associative
● In the previous wordcount example it can be applied

The Combiner function
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Distributed MapReduce

Map process, distributed
among Map Nodes

Intermediate process
  1) collects values by key
  2) sorts by key

Reduce process, distributed
among Reduce Nodes



15
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 1. Introduction to MapReduce

● In “big data” jobs is more efficient moving code than moving 
data

● Map (and Reduce) nodes work independently

● A special master node plans the distribution of tasks
● It also monitors nodes, who periodically report their status
● Failure tolerance is simple: if some node fails the master can 

replace it immediately (the rest do not need to be notified about it)

● Map tasks can run in parallel, and Reduce tasks can work in 
parallel (but, can Reduce tasks work at the same time than Map 
tasks?)

Distributed Implementations Hints
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● User specifies:

● M: Number of slots or pieces the input data is split into 
(i.e., number of Map tasks to run)

● R: Number of pieces the intermediate data is split into 
(i.e., number of Reduce tasks to run) 

– To assign intermediate data to Reduce nodes some 
function must be used. For example:

That function usually balances data fairly among 
Reduce partitions

● Typical Google job: M=200.000; R=5.000; 2.000 machines

Distributed Implementations Hints (2)

hash(k2) mod R
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Distributed Implementation Schema

Split 0

Split 1

Split 2

Split M

...

Map node

Map node

Map node

Local
write

Reduce
node

Reduce
node

Remote
Read Output

file 0

Output
file 1

Distributed
file system

(GFS, HDFS...)

Distributed
file system

(GFS, HDFS...)
...

...

R local
disk

buffersM Map
tasks

R
Reduce
tasks

MasterUser
Program
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● Grep (distributed): look for lines that match a pattern
– Map → Checks text line by line, it emits matching lines
– Reduce → Identity

● Count of URL access frequency: count in web request 
logs how many times each URL has been accessed

– Map → Each time an URL appears, emit <URL, 1>

– Reduce → Add together all values, emit <URL, sum>

● Pages that link to a certain URL (reverse web graph)

– Map → For each URL in some page, emit <URL, page>
– Reduce → Identity

More MapReduce Examples
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● Three main areas:
● Text tokenization, indexing, and search
● Creation of other kinds of data structures (e.g., graphs)
● Data mining and machine learning

● By sector:
● Originally developed and used by web companies: Google, 

Facebook, Yahoo!, Ebay, Adobe, Twitter, Last.fm, LinkedIn...
● The scientific community is also applying it to large datasets:

– Statistical algorithms (k-means, linear regression...); image 
processing; genetic sequences search

● Check http://wiki.apache.org/hadoop/PoweredBy !

Applications of MapReduce

http://wiki.apache.org/hadoop/PoweredBy
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● MapReduce has a 'low semantic interface'
● I.e.: Map and Reduce operations are too simple
● Complex manipulation of data is cumbersome (for 

example, compared with the flexibility of SQL)

● Higher level languages have been proposed
● They work on top of MapReduce, transforming 

queries into MapReduce operations
● Examples: DryadLINQ, Sawzall, PygLatin, Hive

  

Beyond MapReduce

hive> CREATE TABLE pokes (foo INT, bar STRING); 
hive> SELECT a.foo FROM pokes WHERE a.bar='test';
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(Example with Hadoop)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

