
1
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data:
MapReduce

2. Hadoop

2
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

MapReduce Implementations
● Google were the first that applied MapReduce for big

data analysis
● Their idea was introduced in their seminal paper

“MapReduce: Simplified Data Processing on Large Clusters”
● Also, of course, they were the first to develop a MapReduce

framework
● Google has provided lots of information about how their

MapReduce implementation and related technologies work,
but have not released their software

● Using Google's seminal work, others have implemented
their own MapReduce frameworks

3
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

MapReduce Implementations (2)
● Disco, by Nokia (http://discoproject.org/, based on Python)

● Skynet, by Geni (http://skynet.rubyforge.org/ , based on
Ruby)

● Some companies offer data analysis services based on their
own MapReduce platforms (Aster Data, Greenplum)

● Hadoop (http://hadoop.apache.org/) is the most popular
open-source MapReduce framework
● Amazon's Elastic MapReduce offers a ready-to-use Hadoop-based

MapReduce service on top of their EC2 cloud.
● It is not a new MapReduce implementation, and it does not provide

extra analytical services either

http://discoproject.org/
http://skynet.rubyforge.org/
http://hadoop.apache.org/

4
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

About Hadoop
● Hadoop is a project of the Apache Software

Foundation (ASF)
● They develop software for the distributed

processing of large data sets
● Several software projects are part of Hadoop, or

are related with it:
● “Core”: Hadoop Common, Hadoop Distributed File

System, Hadoop MapReduce
● Related: HBase, PigLatyn, Cassandra, Zookeeper...

5
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop Core Projects
● Hadoop Common: common functionality used by

the rest of Hadoop projects (serialization, RPC...)
● Hadoop Distributed File System (HDFS), based

on Google File System (GFD), provides a
distributed and fault-tolerant storage solution

● Hadoop MapReduce, implementation of
MapReduce

(the three projects are distributed toghether)

6
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop Software Ecosystem

Hadoop MapReduce

Hadoop Distributed File System

ZooKeeper (*)

HBase

Hive

Cassandra (*)

PigLatyn

NoSQL Databases

Hadoop Core

Data analysis solutions

(*) ZooKeeper and Cassandra are related with Hadoop because they have similar
funcionality, or are used by, Hadoop sub-projects. But they do not depend on Hadoop's sw

Hadoop Core
Other Hadoop sub-projects

Related projects

Mahout

7
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop Distributed File System
● Before focusing on Hadoop MapReduce we must

understand how HDFS works
● HDFS is based on Google File System (GFS), which

was created to meet Google's need for a distributed
file system (DFS)
● It pursued the typical goals of a DFS: performance,

availability, reliability, scalability
● But also it was created taken into account Google's

environment features and apps needs
● HDFS was built following the same premises and

architecture

8
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

HDFS Design Features
● HDFS design assumes that:

● Failures are the norm (not the exception)
– Constant monitoring, error detection, fault tolerance and automatic

recovery are required

● Files will be big (TBs), and contain billions of app objects
– Small files are possible, but not a goal for optimization

● Once written and closed, files are only read and often only
sequentially
– Batch-like analysis applications are the target

● Only one writer at any time
● High data access bandwidth is preferred to low latency for

individual operations

9
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

HDFS Architecture
● HDFS files are split into blocks

● Two types of nodes:
● NameNode, unique, manages the namespace: maps file paths and

names with blocks and their locations
● DataNode, keep data blocks and serves r/w requests from clients. Also,

it decides where each data block replica is stored

b1

DataNode a

DataNode b

DataNode c

DataNode d

b2
b2

b1 b2

Client

create,
delete,
open,
close

read/write

NameNode

/path_to_file
b1 DataNode a, DataNode b, DataNode d

DataNode b, DataNode c, DataNode d
b2

b1 b2

 File path | blocks | DataNode replicas

10
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

HDFS Replicas Placement
● Where to store each block replica is decided by the NameNode

● Bandwidth among nodes in the same rack is greater than inter-racks
● Default: 3 copies per block, one on local rack and the two others on a

remote rack

NameNode

DataNode a

DataNode b

Rack

DataNode c

DataNode d

DataNode e

Rack

Switch

Client

11
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

HDFS Replicas Placement
● Where to store each block replica is decided by the NameNode

● Bandwidth among nodes in the same rack is greater than inter-racks
● Default: 3 copies per block, one on local rack and the two others on a

remote rack

NameNode

DataNode a

DataNode b

Rack

DataNode c

DataNode d

DataNode e

Rack

Switch

Client

1) Where to store
data block b1?

12
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

HDFS Replicas Placement
● Where to store each block replica is decided by the NameNode

● Bandwidth among nodes in the same rack is greater than inter-racks
● Default: 3 copies per block, one on local rack and the two others on a

remote rack

NameNode

DataNode a

DataNode b

Rack

DataNode c

DataNode d

DataNode e

Rack

Switch

Client

1) Where to store
data block b1?

2) DataNodes
a, c y d

13
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

HDFS Replicas Placement
● Where to store each block replica is decided by the NameNode

● Bandwidth among nodes in the same rack is greater than inter-racks
● Default: 3 copies per block, one on local rack and the two others on a

remote rack

NameNode

DataNode a

DataNode b

Rack

DataNode c

DataNode d

DataNode e

Rack

Switch

Client

1) Where to store file?

2) DataNodes
a, c y d

b1

b1

b1

14
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

HDFS Replicas Placement (2)
● This placement police balances:

● Availability: three nodes, or two racks must fail to make
the block unavailable

● Lower writing times: data moves only once through the
switch

● High read throughput: readers will access to closer
blocks; by this policy is easy that the reader is in the
same node (or at least the same rack) that the block

15
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

HDFS Consistency Considerations
● HDFS keeps several replicas of each data block
● Given that:

● Once written and closed, files are only read
● There will be only one writer at any time

● Then consistency among replicas is greatly simplified
● GFS also makes some assumptions that simplify consistency

management
● However it is not as restrictive as HDFS: Concurrent writers

are allowed
– Potential inconsistencies must be addressed at app. level

16
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

HDFS NameNode
● Keeps the state of the HDFS, using

● An in-memory structure that stores the filesystem metadata
● A local file with a copy of that metadata at boot time (FsImage)
● A local file that logs all HDFS file operations (EditLog)

● At boot time the NameNode:
● Reads FsImage to get the HDFS state
● Applies all changes recorded in EditLog
● Saves the new state to the FsImage file (checkpoint)
● Truncates the EditLog file

● At run time the NameNode:
● Stores all file operations on the EditLog

17
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

HDFS Secondary NameNode
● Optionally, a secondary NameNode can be used
● It is used to merge the FsImage and EditLog of the

NameNode to create a new FsImage
● This prevents the EditLog to grow without bonds
● It is a demanding process that demands time and would force

the NameNode to be offline
● Once the new FsImage is built, is sent back to the NameNode

● The Secondary NameNode does not replace the primary
NameNode
● Its copy of the FsImage could be used in case of failure, but it

would lack the changes registered on the EditLog

18
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

HDFS Data Location Awareness
● Clients can query the NameNode about where

data replicas are located (DataNodes URLs)
● This information can be used to “move code

instead of data”
● Data can be in the order of TBs
● Moving data to the node where the processing sw is

located would be inefficient
● Moving code to the host(s) where data is stored is

faster and demands less resources

19
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Data Correctness
● HDFS checks the correctness of data using

checksums
● The last node in the pipeline verifies that the

checksum of the received block is correct
● Also, each DataNode periodically checks all its

blocks checksum
● Corrupted ones are reported to the NameNode,

who will replace them with the block from other
replica

20
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Other HDFS Features/APIs
● APIs for Compression (zip, bzip...)
● Easy conversion to binary formats when

reading/writing
● SequenceFile, used to store sequential data

as binary records in the form key-value
● MapFile, is a SequenceFile that allows

random access by key (i.e. it is a 'permanente'
map)

21
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Interacting with HDFS
● HDFS offers a Java API based on FileSystem

● Java apps can access HDFS as a typical file system
● There is a C API with a similar interface

● It is possible to access to HDFS from the shell
using the hdfs application

● HDFS can be accessed remotely through a RPC
interface (based on Apache Thrift middleware)

● WebDAV, FTP, HTTP

22
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop MapReduce
● Once we have seen how HDFS works, we can

focus on Hadoop MapReduce
● It is a distributed implementation of the

MapReduce abstraction
● It can work on top of the local file system
● But it is intended to work on top of HDFS

23
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop MapReduce Architecture
● A MapReduce processing is called a Job, each Job is split into

Tasks, where each task executes map or reduce over data

● Two types of nodes:
● JobTracker, unique, manages the Jobs and monitors the TaskTrackers
● TaskTracker, executes Map and Reduce functions as commanded by

the JobTracker

JobTracker

TaskTracker A

TaskTracker B

run
map
task

run
reduce

task

Client
run
job

24
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop MapReduce Deployment
● Usually HDFS and MapReduce will run in the same datacenter

● The job will be programmed so input data and results are stored in
HDFS

● Each physical host can run one (or more) DataNodes and one
(or more) TaskTrackers
● This way, data locality can be exploited

Client JobTracker

TaskTracker A

NameNode

DataNode a

TaskTracker B

DataNode b

25
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop Code Example
● Example of MapReduce programming
● Problem

● The input is a file that contains links between web
pages as follows:
http://host1/path1 ­> http://host2/path2
http://host1/path3 ­> http://host2/path4
...

● The output is a file that for each web page gives the
number of outgoing and incoming connections:
http://host1/path1 2 4
http://host2/path2 0 1
...

26
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop Code Example, main
public class TokenizerMapper extends
 Mapper<Object, Text, Text, IntArrayWritable> {
… }

public class IntSumReducer extends
 Reducer<Text,IntArrayWritable,Text,IntArrayWritable> {
… }

public static void main(String[] args) {
 …
 Job job = new Job(new Configuration(), "webgraph");
 …
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntArrayWritable.class);
… }

27
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop Code Example, main
public class TokenizerMapper extends
 Mapper<Object, Text, Text, IntArrayWritable> {
… }

public class IntSumReducer extends
 Reducer<Text,IntArrayWritable,Text,IntArrayWritable> {
… }

public static void main(String[] args) {
 …
 Job job = new Job(new Configuration(), "webgraph");
 …
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntArrayWritable.class);
… }

28
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop Code Example, main
public class TokenizerMapper extends
 Mapper<Object, Text, Text, IntArrayWritable> {
… }

public class IntSumReducer extends
 Reducer<Text,IntArrayWritable,Text,IntArrayWritable> {
… }

public static void main(String[] args) {
 …
 Job job = new Job(new Configuration(), "webgraph");
 …
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntArrayWritable.class);
… }

29
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop Code Example, main
public class TokenizerMapper extends
 Mapper<Object, Text, Text, IntArrayWritable> {
… }

public class IntSumReducer extends
 Reducer<Text,IntArrayWritable,Text,IntArrayWritable> {
… }

public static void main(String[] args) {
 …
 Job job = new Job(new Configuration(), "webgraph");
 …
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntArrayWritable.class);
… }

30
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop Code Example, Mapper

public class TokenizerMapper extends Mapper<Object, Text, Text, IntArrayWritable> {

 private final static IntWritable one = new IntWritable(1);
 private final static IntWritable cero = new IntWritable(0);
 private final static IntArrayWritable origin =
 new IntArrayWritable(new IntWritable[]{one, cero});
 private final static IntArrayWritable destination =
 new IntArrayWritable(new IntWritable[]{cero, one});
 private Text word = new Text();
 …
}

31
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop Code Example, Mapper (2)
public class TokenizerMapper extends Mapper<Object, Text, Text, IntArrayWritable> {
 …
 public void map(Object key, Text value, Context context) throws IOException,
 InterruptedException {
 BufferedReader reader = new BufferedReader(new StringReader(value.toString()));
 while(true) {
 String line = reader.readLine();
 if(line == null) {
 reader.close();
 break;
 }
 line = line.trim();
 if(line.isEmpty())
 continue;
 String[] urls = line.split(WebGraph.URLS_SEPARATOR);
 if(urls.length != 2) {
 context.setStatus("Malformed link found: " + value.toString());
 return;
 }
 String urlOrigin = urls[0]; String urlDest = urls[1];
 word.set(urlOrigin); context.write(word, origin);
 word.set(urlDest); context.write(word, destination);
 }
 }
}

32
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop Code Example, Reducer
public class IntSumReducer extends Reducer<Text,IntArrayWritable,Text,IntArrayWritable>{

 private IntArrayWritable result = new IntArrayWritable();

 public void reduce(Text key, Iterable<IntArrayWritable> values, Context context)
 throws IOException, InterruptedException {
 int sumLinksOrig = 0;
 int sumLinksDest = 0;
 for(IntArrayWritable val: values) {
 Writable[] intArray = val.get();
 sumLinksOrig += ((IntWritable)intArray[0]).get();
 sumLinksDest += ((IntWritable)intArray[1]).get();
 }
 result.set(new IntWritable[]{new IntWritable(sumLinksOrig),
 new IntWritable(sumLinksDest)});
 context.write(key,result);

 }
}

33
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Bibliography

● (Paper) “The Google File System”. Sanjay Ghemawat,
Howard Gobioff, Shun-Tak Leung. SOSP 2003

● (Book) “Hadoop: The Definitive Guide” (2nd edition). Tom
White. Yahoo Press, 2010

34
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

(Example with Hadoop)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

