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MapReduce Implementations
● Google were the first that applied MapReduce for big 

data analysis
● Their idea was introduced in their seminal paper 

“MapReduce: Simplified Data Processing on Large Clusters”
● Also, of course, they were the first to develop a MapReduce 

framework
● Google has provided lots of information about how their 

MapReduce implementation and related technologies work, 
but have not released their software

● Using Google's seminal work, others have implemented 
their own MapReduce frameworks
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MapReduce Implementations (2)
● Disco, by Nokia (http://discoproject.org/, based on Python)

● Skynet, by Geni (http://skynet.rubyforge.org/ , based on 
Ruby)

● Some companies offer data analysis services based on their 
own MapReduce platforms (Aster Data, Greenplum)

● Hadoop (http://hadoop.apache.org/) is the most popular 
open-source MapReduce framework
● Amazon's Elastic MapReduce offers a ready-to-use Hadoop-based 

MapReduce service on top of their EC2 cloud.
● It is not a new MapReduce implementation, and it does not provide 

extra analytical services either

http://discoproject.org/
http://skynet.rubyforge.org/
http://hadoop.apache.org/
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About Hadoop
● Hadoop is a project of the Apache Software 

Foundation (ASF)
● They develop software for the distributed 

processing of large data sets
● Several software projects are part of Hadoop, or 

are related with it:
● “Core”: Hadoop Common, Hadoop Distributed File 

System, Hadoop MapReduce
● Related: HBase, PigLatyn, Cassandra, Zookeeper...
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Hadoop Core Projects
● Hadoop Common: common functionality used by 

the rest of Hadoop projects (serialization, RPC...)
● Hadoop Distributed File System (HDFS), based 

on Google File System (GFD), provides a 
distributed and fault-tolerant storage solution

● Hadoop MapReduce, implementation of 
MapReduce

(the three projects are distributed toghether)
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Hadoop Software Ecosystem

Hadoop MapReduce

Hadoop Distributed File System

ZooKeeper (*)

HBase

Hive

Cassandra (*)

PigLatyn

NoSQL Databases

Hadoop Core

Data analysis solutions

(*) ZooKeeper and Cassandra are related with Hadoop because they have similar 
funcionality, or are used by, Hadoop sub-projects.  But they do not depend on Hadoop's sw

Hadoop Core
Other Hadoop sub-projects

Related projects

Mahout
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Hadoop Distributed File System
● Before focusing on Hadoop MapReduce we must 

understand how HDFS works
● HDFS is based on Google File System (GFS), which 

was created to meet Google's need for a distributed 
file system (DFS)
● It pursued the typical goals of a DFS: performance, 

availability, reliability, scalability
● But also it was created taken into account Google's 

environment features and apps needs
● HDFS was built following the same premises and 

architecture
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HDFS Design Features
● HDFS design assumes that:

● Failures are the norm (not the exception)
– Constant monitoring, error detection, fault tolerance and automatic 

recovery are required

● Files will be big (TBs), and contain billions of app objects
– Small files are possible, but not a goal for optimization

● Once written and closed, files are only read and often only 
sequentially
– Batch-like analysis applications are the target

● Only one writer at any time
● High data access bandwidth is preferred to low latency for 

individual operations
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HDFS Architecture
● HDFS files are split into blocks

● Two types of nodes:
● NameNode, unique, manages the namespace: maps file paths and 

names with blocks and their locations
● DataNode, keep data blocks and serves r/w requests from clients. Also, 

it decides where each data block replica is stored

b1

DataNode a

DataNode b

DataNode c

DataNode d

b2
b2

b1 b2

Client

create,
delete,
open,
close

read/write

NameNode

/path_to_file
b1 DataNode a, DataNode b, DataNode d

DataNode b, DataNode c, DataNode d
b2

b1 b2

     File path  | blocks | DataNode replicas                   
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HDFS Replicas Placement
● Where to store each block replica is decided by the NameNode

● Bandwidth among nodes in the same rack is greater than inter-racks
● Default: 3 copies per block, one on local rack and the two others on a 

remote rack
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DataNode d
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Rack

Switch
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HDFS Replicas Placement
● Where to store each block replica is decided by the NameNode

● Bandwidth among nodes in the same rack is greater than inter-racks
● Default: 3 copies per block, one on local rack and the two others on a 

remote rack
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HDFS Replicas Placement
● Where to store each block replica is decided by the NameNode

● Bandwidth among nodes in the same rack is greater than inter-racks
● Default: 3 copies per block, one on local rack and the two others on a 

remote rack
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HDFS Replicas Placement
● Where to store each block replica is decided by the NameNode

● Bandwidth among nodes in the same rack is greater than inter-racks
● Default: 3 copies per block, one on local rack and the two others on a 

remote rack
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HDFS Replicas Placement (2)
● This placement police balances:

● Availability: three nodes, or two racks must fail to make 
the block unavailable

● Lower writing times: data moves only once through the 
switch

● High read throughput: readers will access to closer 
blocks; by this policy is easy that the reader is in the 
same node (or at least the same rack) that the block
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HDFS Consistency Considerations
● HDFS keeps several replicas of each data block
● Given that:

● Once written and closed, files are only read
● There will be only one writer at any time

● Then consistency among replicas is greatly simplified
● GFS also makes some assumptions that simplify consistency 

management
● However it is not as restrictive as HDFS: Concurrent writers 

are allowed
– Potential inconsistencies must be addressed at app. level
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HDFS NameNode
● Keeps the state of the HDFS, using

● An in-memory structure that stores the filesystem metadata
● A local file with a copy of that metadata at boot time (FsImage)
● A local file that logs all HDFS file operations (EditLog)

● At boot time the NameNode:
● Reads FsImage to get the HDFS state
● Applies all changes recorded in EditLog
● Saves the new state to the FsImage file (checkpoint)
● Truncates the EditLog file

● At run time the NameNode:
● Stores all file operations on the EditLog
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HDFS Secondary NameNode
● Optionally, a secondary NameNode can be used
● It is used to merge the FsImage and EditLog of the 

NameNode to create a new FsImage
● This prevents the EditLog to grow without bonds
● It is a demanding process that demands time and would force 

the NameNode to be offline
● Once the new FsImage is built, is sent back to the NameNode

● The Secondary NameNode does not replace the primary 
NameNode
● Its copy of the FsImage could be used in case of failure, but it 

would lack the changes registered on the EditLog
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HDFS Data Location Awareness
● Clients can query the NameNode about where 

data replicas are located (DataNodes URLs)
● This information can be used to “move code 

instead of data”
● Data can be in the order of TBs
● Moving data to the node where the processing sw is 

located would be inefficient
● Moving code to the host(s) where data is stored is 

faster and demands less resources
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Data Correctness
● HDFS checks the correctness of data using 

checksums
● The last node in the pipeline verifies that the 

checksum of the received block is correct
● Also, each DataNode periodically checks all its 

blocks checksum
● Corrupted ones are reported to the NameNode, 

who will replace them with the block from other 
replica
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Other HDFS Features/APIs
● APIs  for Compression (zip, bzip...)
● Easy conversion to binary formats when 

reading/writing
● SequenceFile, used to store sequential data 

as binary records in the form key-value
● MapFile, is a SequenceFile that allows 

random access by key (i.e. it is a 'permanente' 
map)



21
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Interacting with HDFS
● HDFS offers a Java API based on FileSystem

● Java apps can access HDFS as a typical file system
● There is a C API with a similar interface

● It is possible to access to HDFS from the shell 
using the hdfs application

● HDFS can be accessed remotely through a RPC 
interface (based on Apache Thrift middleware)

● WebDAV, FTP, HTTP
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Hadoop MapReduce
● Once we have seen how HDFS works, we can 

focus on Hadoop MapReduce
● It is a distributed implementation of the 

MapReduce abstraction
● It can work on top of the local file system
● But it is intended to work on top of HDFS
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Hadoop MapReduce Architecture
● A MapReduce processing is called a Job, each Job is split into 

Tasks, where each task executes map or reduce over data

● Two types of nodes:
● JobTracker, unique, manages the Jobs and monitors the TaskTrackers
● TaskTracker, executes Map and Reduce functions as commanded by 

the JobTracker
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TaskTracker A

TaskTracker B

run
map
task

run
reduce

task

Client
run
job
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Hadoop MapReduce Deployment
● Usually HDFS and MapReduce will run in the same datacenter

● The job will be programmed so input data and results are stored in 
HDFS

● Each physical host can run one (or more) DataNodes and one 
(or more) TaskTrackers
● This way, data locality can be exploited

Client JobTracker

TaskTracker A

NameNode

DataNode a

TaskTracker B

DataNode b
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Hadoop Code Example
● Example of MapReduce programming
● Problem

● The input is a file that contains links between web 
pages as follows:
http://host1/path1 ­> http://host2/path2
http://host1/path3 ­> http://host2/path4
...

● The output is a file that for each web page gives the 
number of outgoing and incoming connections:
http://host1/path1 2 4
http://host2/path2 0 1
...



26
New Trends In Distributed Systems

MSc Software and Systems

Processing of massive data: MapReduce – 2. Hadoop

Hadoop Code Example, main
public class TokenizerMapper extends
    Mapper<Object, Text, Text, IntArrayWritable> {
… }

public class IntSumReducer extends    
    Reducer<Text,IntArrayWritable,Text,IntArrayWritable> {
… }

public static void main(String[] args) {
    …
    Job job = new Job(new Configuration(), "webgraph");
    … 
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntArrayWritable.class);
… }
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Hadoop Code Example, main
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Hadoop Code Example, main
public class TokenizerMapper extends
    Mapper<Object, Text, Text, IntArrayWritable> {
… }

public class IntSumReducer extends    
    Reducer<Text,IntArrayWritable,Text,IntArrayWritable> {
… }
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… }
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Hadoop Code Example, Mapper

public class TokenizerMapper extends Mapper<Object, Text, Text, IntArrayWritable> {

  private final static IntWritable one = new IntWritable(1);
  private final static IntWritable cero = new IntWritable(0);
  private final static IntArrayWritable origin =
      new IntArrayWritable(new IntWritable[]{one, cero});
  private final static IntArrayWritable destination =
      new IntArrayWritable(new IntWritable[]{cero, one});
  private Text word = new Text();
  …
}
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Hadoop Code Example, Mapper (2)
public class TokenizerMapper extends Mapper<Object, Text, Text, IntArrayWritable> {
  … 
  public void map(Object key, Text value, Context context) throws IOException, 
                                                                  InterruptedException {
    BufferedReader reader = new BufferedReader(new StringReader(value.toString()));
    while(true) {
      String line = reader.readLine();
      if(line == null) {
        reader.close();
        break;
      }
      line = line.trim();
      if(line.isEmpty())
        continue;
      String[] urls = line.split(WebGraph.URLS_SEPARATOR);
      if(urls.length != 2) {
        context.setStatus("Malformed link found: " + value.toString());
        return;
      }
      String urlOrigin = urls[0]; String urlDest = urls[1];
      word.set(urlOrigin); context.write(word, origin);
      word.set(urlDest); context.write(word, destination);
    }
  }
}
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Hadoop Code Example, Reducer
public class IntSumReducer extends Reducer<Text,IntArrayWritable,Text,IntArrayWritable>{

  private IntArrayWritable result = new IntArrayWritable();

  public void reduce(Text key, Iterable<IntArrayWritable> values, Context context) 
      throws IOException, InterruptedException {
    int sumLinksOrig = 0;
    int sumLinksDest = 0;
    for(IntArrayWritable val: values) {
      Writable[] intArray = val.get();
      sumLinksOrig += ((IntWritable)intArray[0]).get();
      sumLinksDest += ((IntWritable)intArray[1]).get();
    }
    result.set(new IntWritable[]{new IntWritable(sumLinksOrig),
                                 new IntWritable(sumLinksDest)});
    context.write(key,result);
    
  }
}
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(Example with Hadoop)
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