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Abstract 
 

Network virtualization provides a promising tool to allow multiple heterogeneous virtual 

networks to run on a shared substrate network simultaneously. A long-standing challenge in 

network virtualization is the Virtual Network Embedding (VNE) problem: how to embed 

virtual networks onto specific physical nodes and links in the substrate network effectively. 

Recent research presents several heuristic algorithms that only consider single topological 

attribute of networks, which may lead to decreased utilization of resources. In this paper, we 

introduce six complementary characteristics that reflect different topological attributes, and 

propose three topology-aware VNE algorithms by leveraging the respective advantages of 

different characteristics. In addition, a new KS-core decomposition algorithm based on two 

characteristics is devised to better disentangle the hierarchical topological structure of virtual 

networks. Due to the overall consideration of topological attributes of substrate and virtual 

networks by using multiple characteristics, our study better coordinates node and link 

embedding. Extensive simulations demonstrate that our proposed algorithms improve the 

long-term average revenue, acceptance ratio, and revenue/cost ratio compared to previous 

algorithms. 
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1. Introduction 

As a powerful way to eradicate the ossifying forces of the Internet, network virtualization is 

an important technique for designing the future Internet architecture, and has obtained wide 

attention in recent years [1-5]. Network virtualization allows multiple heterogeneous virtual 

networks (VNs), each customized to a specific topology and purpose, to run on a shared 

substrate network simultaneously. It will benefit many new computing and networking 

paradigms, such as Cloud Computing platforms, Data Center networks, and Software Defined 

Networking (SDN). 

In network virtualization environment, traditional Internet Service Providers (ISPs) 

nowadays are decoupled into two independent entities: Infrastructure Providers (InPs) who 

deploy and manage physical infrastructures, and Service Providers (SPs) who rent sliceable 

physical resources from InPs to build VNs and offer diverse services to end users. A VN has a 

customized logical topology that is composed of virtual nodes and links with various resource 

requirements. To serve as many different virtual network requests (VNRs) as possible and 

profit from them, InPs strive to make efficient use of physical resources by optimizing 

mapping algorithms that map/embed each VN onto specific physical nodes and links in the 

substrate network. (The words “embed” and “map” will not be differentiated in this paper.) 

This is known as the Virtual Network Embedding (VNE) problem. However, the VNE 

problem is NP-hard whether the problem space is restricted or not. Computational 

intractability urges researchers to devise various heuristic algorithms to find practical 

solutions [6-13]. 

The VNE problem can be divided into two sub-problems: the node mapping where virtual 

nodes are allocated in physical nodes and the link mapping where virtual links connecting 

these virtual nodes are mapped to physical paths connecting the corresponding physical nodes. 

Most heuristic algorithms employ the “greedy” node mapping (e.g., [7, 8, 9, 11, 12, 13]), also 

called L2S2 mapping (which stands for “large-to-large and small-to-small” mapping [11]). It 

maps the virtual nodes requiring more resources onto the physical nodes with more resources, 

so as to minimize the use of resources at bottleneck nodes and links. This greedy way helps to 

satisfy the resource requirements of current VNR and balance the loads of the substrate 

network. Furthermore, it is beneficial to future VNRs that require specific physical nodes and 

links with scarce resources. 

The most important part in the “greedy” node mapping is the node ranking, i.e., how to 

measure every node in a substrate or virtual network, in order to correspondingly match and 

embed them one after another. Recent algorithms measure a node in the substrate network or 

a VN quantitatively by using its CPU and bandwidth (e.g., [9, 12]), or certain network 

topological attribute (e.g., [11, 13]). However, topological attributes could have significant 

effect on the performance of embedding algorithms. The existing algorithms, which typically 

ignore the topological structure or only consider single topological attribute in node ranking, 

barely coordinate node and link mapping, and may lead to decreased utilization of the 

substrate network resources, meaning low revenues or high costs for InPs. This calls for the 

design of new algorithms that synthetically measure a node’s resources and topological 

attributes at the same time. 

Motivated by the disadvantages of traditional greedy node mapping, we present a new 

topology-aware approach in this paper, which utilizes different network topological attributes 

simultaneously. Topological attributes emerge in the form of diverse characteristics, which 

measure the relative influence or importance of nodes and links from different aspects. Six 

characteristics reflecting different topological attributes are introduced: “degree”, “strength”, 
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“closeness (farness) centrality”, “betweenness centrality”, “eigenvector centrality” and “Katz 

centrality”. Three topology-aware heuristic algorithms with multiple characteristics are 

proposed accordingly, to leverage the respective advantages of different characteristics. Our 

algorithms consider not only the resource requirements of nodes but also their topological 

attributes, which should better coordinate node mapping and link mapping. 

In most cases, nodes in a VN play different roles according to the services they provide, 

such as directories, file servers, terminals, etc. Even if all the nodes in some specific VNs are 

considered to be equivalent, they can be differentiated hierarchically according to their 

abilities or actual effects in the network. Therefore in the VNE problem, using topology 

decomposition to disentangle the hierarchical structure of a VN can make the mapping 

process easier. Inspired by the K-core decomposition algorithm presented in [12], we come 

up with a new KS-core decomposition algorithm based on two characteristics, “degree” and 

“strength”, to better disentangle the hierarchical topological structure of a VN and divide it 

into a core network and multiple edge networks. The KS-core decomposition algorithm is an 

example of utilizing topological characteristics from a different aspect in the VNE problem. 

Due to the overall consideration of topological attributes of substrate and virtual networks 

by using multiple characteristics, our new topology-aware approaches can better coordinate 

node and link mapping. Extensive simulations demonstrate that our approaches improve the 

long-term average revenue, acceptance ratio, and revenue/cost ratio compared to previous 

algorithms. 

In summary, this paper presents the following major contributions:  

a) We introduce six topological characteristics, which represent different topological 

attributes, in the design of topology-aware VNE algorithms. To the best of our 

knowledge, most of these characteristics are first applied to the VNE problem. 

b) We propose three topology-aware VNE algorithms based on multiple topological 

characteristics, and three correspondingly modified algorithms for the algorithm 

presented in [11]. Equations of node ranking are well designed to leverage the 

respective advantages of different characteristics. 

c) The KS-core decomposition algorithm based on the characteristic “degree” and 

“strength” is devised to better disentangle the hierarchical structure of each VN. 

d) Extensive simulations are conducted to compare 7 proposed algorithms with 4 previous 

algorithms accordingly. The results demonstrate that our algorithms significantly 

increase the long-term average revenue, acceptance ratio, and revenue/cost ratio. 

The remainder of this paper is organized as follows. Section 2 discusses some previous 

VNE algorithms related to our work, and Section 3 presents the general model of the VNE 

problem, along with three objectives used in the evaluation. Six topological characteristics are 

introduced in Section 4, which are used to design three new algorithms and three modified 

algorithms in Section 5. We devise the KS-core decomposition algorithm in Section 6. 

Section 7 presents the simulation results and the paper is concluded in Section 8.  

2. Related Work 

Previous research presents some heuristic algorithms that consider the network topologies 

more or less. Szeto et al. [6] propose a link mapping scheme based on Multi-Commodity 

Flow (MCF) problem. In their scheme, nodes in the substrate network are classified as “the 

access nodes” and “the transit nodes”, thus each pair of access nodes is treated as a 

commodity and a set of resources are pre-allocated to them. 
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To utilize the flexibility provided by small topologies, Zhu and Ammar [7] split VNRs 

into many star sub-networks. During the node mapping process, the center node with highest 

degree in a star sub-network is mapped to the physical node with lowest CPU and bandwidth 

occupancy rate. Once the center node has been determined, other nodes in the same 

sub-network with higher degrees are embedded onto physical nodes with lower resource 

occupancy rates and shorter distances to the center, one by one. However, their algorithm 

assumes that substrate resources are unlimited, and focuses on load balance in the substrate 

network without the need of admission control. Besides, not all the topologies can be 

appropriately divided into star sub-networks. Houidi et al. [8] adopt similar idea of topology 

splitting in [7]. Every center node is mapped onto the physical node with maximum resources, 

while every edge node is mapped onto the physical node with shortest path to the center one. 

As the centralized VNE algorithms suffer from the scalability limitation and high latency, 

they present a distributed VNE algorithm by using a multi-agent system. The distributed 

algorithm can improve the system’s robustness, reduce the communication costs and support 

the high-speed parallel computing. Nevertheless, it has relatively poor performance although 

unlimited resources are assumed to accept all the VNRs.  

Yu et al. [9] assume that the substrate network supports path splitting and path migration, 

rather than restricting the problem space as many previous algorithms did. Flexible splitting 

of virtual links over multiple physical paths and periodically re-optimizing the embedding of 

existing virtual links allow the substrate network to accept more VNRs, and thus increase the 

average revenue of InPs. A “greedy” node mapping algorithm similar to [7] is proposed, in 

which the product of CPU and adjacent bandwidth is newly defined for node ranking. 

However, a virtual node may choose a physical node with more than adequate CPU resource 

but not enough bandwidth resource, leading to the failure of subsequent link mapping process.  

Chowdhury et al. [10] introduce the correlation between node mapping and link mapping. 

They formulate the VNE problem as a Mixed Integer Programming problem by constructing 

an augmented substrate network based on the location constraints of virtual nodes. To decide 

which physical nodes should be chosen, they relax the integer constraints and use 

deterministic or randomized rounding techniques. After the node mapping process, MCF 

algorithm or the shortest path algorithm is used to map the virtual links. However, the results 

from the node mapping process may result in an infeasible link mapping.  

Cheng et al. [11] use Google’s successful PageRank algorithm in the web search domain 

for reference, by applying Markov’s Random Walk model in node ranking. Every node in the 

substrate network and VNs is ranked based on its resources (CPU and bandwidth, similar to 

[9]), as well as the ranks of its connected nodes. The nodes are mapped in a greedy way 

according to their ranking values.  

Qing et al. [12] advocate a hybrid VNE algorithm by pruning the topologies of VNs with 

the K-core decomposition. A VN is differentiated as a core network and multiple edge 

networks, which are respectively applied with certain two-stage algorithm and one-stage 

algorithm to leverage the respective advantages of these two kinds of algorithms 

simultaneously. In the core network and edge networks, node mapping employs the same 

“greedy” algorithm as previous algorithms did. Nevertheless, the K-core decomposition is not 

adequate to the weighted networks and some specific topologies. 

Wang et al. [13] exploit the “closeness centrality” (which will be discussed in details in 

Section 4) and propose two VNE algorithms. The node mapping process also works in a 

greedy way, where node ranking is based on each node’s closeness centrality. However, the 

closeness centrality is one network topological attribute and only measures how close a node 

is to other nodes. Their classical closeness algorithm has high acceptance ratio but low 
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revenue/cost ratio. Thus, more topological attributes should be taken into consideration in 

order to achieve the optimal performance of VNE. 

3. Virtual Network Embedding Problem 

In this section, we describe the general model and objectives of the VNE problem. 

Substrate Network The topology of the substrate network is not always clear, especially 

when multiple InPs are involved in the multi-domain VNE problem. By applying the 

topology discovery tool in [14], the topology of the substrate network can be well revealed. 

Similar to previous work in [9，11], a substrate network is denoted by a weighted undirected 

graph              
    

  , where    refers to the set of physical nodes and    refers 

to the set of physical links.   
  and     

 denote the attributes of the physical nodes and links 

respectively. The attributes of a node include computation capacity, memory, disk capacity, 

buffer size, geographical location, and so on [15]. And the attributes of a link include 

bandwidth, propagation delay, bit error rate, and so on. In this paper we consider the typical 

CPU capacity as the node attribute and the typical bandwidth as the link attribute, just the 

same as most previous algorithms did. Therefore, each physical node         is associated 

with an available CPU capacity   
    

 , while each physical link        is associated with 

an available bandwidth capacity    
    

 . In addition, we use    to denote the set of all 

loop-free physical paths in the substrate network. 

The right side of Fig. 1 demonstrates a substrate network, where the numbers next to 

nodes are their available CPU resources and the numbers in parentheses over links represent 

their available bandwidths. The links thicker are the links with more bandwidth resources. 

 
Virtual Network Request We use another weighted undirected graph             

  
  

   to denote a VN.    represents the set of virtual nodes and    represents the set of 

virtual links. Virtual nodes and links have CPU and bandwidth constraints, which are 

respectively denoted by   
  and   

 . 

We also denote the     VNR by        
         .   is the arrival time of the VNR, 

  is its duration, i.e., for how long the VN plans to rent the resources in the substrate 

network, and     is its delay, i.e., for how long the VN is willing to wait before it is 

successfully embedded. Once      arrives, the substrate network tries to assign resources 

to this VNR to meet the resource requirements of its virtual nodes and links. If there are not 

sufficient substrate resources available,      will be postponed. If a VNR could not be 

embedded after time    , it will be rejected. 

 
Fig. 1. An example of virtual network embedding 
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The left side of Fig. 1 depicts two VNRs: VNR1 requires 10 units of CPU resources each 

at node a, b, and 30 at node c, and requires 15 units of bandwidth resources each over link (a, 

c), (b, c), and 10 over link (a, b). VNR2 needs a link of 20 units of bandwidth to connect node 

d and e, whose CPU constraints are 40 units and 15 units respectively. 

VNE Problem The embedding of a VNR onto the substrate network is defined by the 

mapping   from    to a subset of    : 

            
    

              
    

   
where      ,      , and   

 ,   
  are the node and link resources assigned to the VNR, 

with all its constraints satisfied.  

Fig. 1 also shows the VNE solutions for VNR1 and VNR2. For VNR1, the virtual node a, b, 

and c are mapped to the physical node B, E, and A, and the virtual link (a, b), (a, c), and (b, c) 

are mapped to the physical path (B, C, E), (B, A), and (E, A). VNR2 is mapped likewise. Note 

that the virtual nodes from different VNRs can be mapped onto the same physical node, but 

different virtual nodes from the same VNR cannot. 

If a VNR has been successfully embedded, the assigned physical resources will be 

dedicated to it during its duration. When the time of the VN is over, the assigned resources 

will be released, and get ready to be reassigned for other VNRs. 

Objectives VNE is a multi-objective optimization problem. From InPs' perspective, the 

VNE problem has three main objectives: maximum revenue, maximum acceptance ratio, and 

maximum revenue/cost (RC) ratio. Revenue always comes first in business, and acceptance 

ratio ensures it. High revenue and acceptance ratio mean not only high market share but also a 

good reputation. Once the revenue is guaranteed, the efficiency of the resource utilization of 

the substrate network becomes important, which is measured by RC ratio. 

Similar to previous work in [7, 9], the revenue of maintaining an embedded VNR at time 

  is defined as the weighted sum of total resources it demands: 

        ∑        

      

    ∑       

     

                                      

where         and        are CPU constraint of virtual node    and bandwidth 

constraint of virtual link   , respectively.    is a coefficient used to balance the relative 

revenues from CPU and bandwidth. So our first objective, the long-term average revenue, can 

be formulated as follows: 

   
   

∑         
   

 
                                                                         

Let       denote the total VNRs and      denote the number of successfully mapped 

VNRs. Our second objective, the long-term acceptance ratio is defined as: 

   
   

∑      
   

∑      
   

                                                                           

A little different from the revenue, the cost of mapping a VNR at time   is defined as the 

total consumption of resources: 

        ∑        

      

  ∑       

     

                                      

where    is the set of physical paths assigned to the virtual links,         is the number of 

hops in physical path   , and        is the dedicated bandwidth over   . Note that the 

revenue of a VNR is not affected by the mapped physical paths. But when calculating the cost, 

InPs have to count the number of hops in each mapped physical path. This is reasonable, 

because obviously SPs do not want to pay for more number of hops assigned to the same 

virtual links. 
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With the revenue and cost of a VNR, we present the long-term RC ratio, in which we can 

see that to maximize the RC ratio, the number of hops of each mapped physical path should 

be minimized: 

   
   

∑         
   

∑         
   

                                                                      

4. Topological Characteristics 

Network topological attributes have a critical effect on the performance of VNE algorithms, 

and they emerge in the form of diverse characteristics, every one of which measures the 

relative influence or importance of nodes and links from different aspects. Degree is one basic 

topological characteristic of a node. So is the total bandwidth of all adjacent links of a node, 

named “strength”. Other topological characteristics can be obtained through centrality 

measures in the network analysis, which is widely used in disciplines like sociology [16]. In 

the scope of network analysis, nodes are characterized from multidimensional measures, 

including closeness centrality, betweenness centrality, eigenvector centrality, and Katz 

centrality [17, 18]. 

The degree of a node is the number of immediate links to its neighbors. Degree can be 

interpreted as the immediate possibility that a node contacts with others. The degree of a node 

   can be denoted as: 
                                                                                

In a weighted network, links can be treated more than binary interactions. So the strength 

comes, which takes into account the total bandwidth of the same adjacent links contributing to 

the degree. The strength of node    is defined as follows, where       is the set of adjacent 

links of   : 

      ∑                                                                    

       

 

The closeness centrality is a natural distance metric between all pairs of nodes, based on 

the length of their shortest paths. It can be regarded as a measure of how close a node is to the 

network center. The farness of a node is defined as the sum of its shortest distances to all the 

other nodes, and its closeness is defined as the reciprocal of farness. So the lower the farness 

of a node is, the higher its closeness is, and the more central it is. The farness of node    is 

defines as:  

      ∑        

 

   

                                                              

where          is the length of shortest path between node    and   , and N is the sum of 

nodes. Note that   (     )    when    . Similar to [13], the closeness of    is defined as: 

      
 

∑  (     )
 
   

                                                           

The betweenness centrality quantifies the number of times a node acts as a bridge along 

the shortest path between any other two nodes. It reflects the switching capacity of a node in 

the network and has been applied to control the traffic flow in congestion. The betweenness of 

node    is denoted by:  

      ∑
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where       
 is the number of shortest paths between node    and   , and       

     is the 

number of those passing through   .  

The eigenvector centrality uses eigenvectors of the adjacency matrix corresponding to a 

network, to determine the nodes that tend to be frequently visited. It assigns a relative score to 

every node based on the concept that connections to high-score nodes contribute more to the 

score of the node in question. The eigenvector centrality is mainly used to measure the 

directed networks. For a given graph         , the adjacency matrix is defined to 

be           
 .       

   if node    links to     , and       
   otherwise. 

Let    denote the eigenvalue, the eigenvector centrality of node    is formulated by: 

      
 

 
∑       

    

 (  )                                                     

The Katz centrality can be viewed as an extension of the eigenvector centrality. The 

relative influence of a node within a network is measured by summing the weighted paths 

between this node and all reachable nodes in the network. Paths connecting the node with its 

immediate neighbors carry higher weights than those connecting it with other nodes far away. 

Similar to the eigenvector centrality, the Katz centrality is also mainly used in directed 

networks, and is more suitable in directed acyclic graphs where the eigenvector centrality is 

rendered useless [16]. Similar to the eigenvector centrality, the Katz centrality is formulated 

as follows: 

       ∑       

    

[ (  )   ]                                               

where μ is an attenuation factor by which the contribution of a distant node is penalized. 

To summarize, a node with high degree has many connections while a node with high 

strength has strong connections. A node with high closeness centrality is, on average, at a 

short distance from other nodes in the network. A node with high betweenness centrality lies 

on many of the shortest paths between any other two nodes in the network [19]. A node with 

high eigenvector centrality or Katz centrality has a high probability of connecting to other 

nodes with high eigenvector centrality or Katz centrality. All these characteristics measure a 

node’s relative influence or importance within the network from different aspects. 

5. Topology-aware Mapping Algorithms With Multiple Characteristics 

Since Yu et al. [9] use the product of a node’s CPU and adjacent bandwidth in node ranking, 

many greedy node mapping algorithms later adopt the similar method. However, these node 

mapping algorithms could not give every node a comprehensive rank. A virtual node may 

choose a physical node with more than adequate CPU resource but not enough bandwidth 

resource, leading to the failure of subsequent link mapping process. Even if the bandwidth 

resource is adequate, adjacent virtual nodes may be mapped onto physical nodes far away 

from each other, which will cause higher costs and increase the network fragmentation that 

gradually prevents the substrate network from accepting more VNRs. 

We argue that the disadvantages of traditional greedy node mapping can be eliminated by 

utilizing more topological attributes. Therefore, we propose a topology-aware approach that 

integrates multiple topological characteristics into the node mapping process and leverages 

their respective advantages. In addition, our approach aims to better coordinate node and link 

mapping, and thus improve the success rate and efficiency of the link mapping process and 

the performance of VNE. 
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A motivational example of using the characteristic “degree” in node ranking is illustrated 

in Fig. 2, where the numbers next to nodes are their CPU capacities and the numbers in 

parentheses over links represent their bandwidth capacities. The links thicker are the links 

with more bandwidths. Node N and M have equal CPU capacities (i.e., 75) and strengths (i.e., 

340), and are considered equivalent in traditional node ranking. However, Node N should 

have higher priority than Node M, especially when path splitting is supported by the substrate 

network. This is because the degree of Node N is 5, higher than the degree of Node M (i.e., 4), 

which means that Node N has not only strong connections but also more connections. 

Therefore, mapping a virtual node to Node N may have a higher chance to achieve a 

successful and low-cost link mapping. 

 
Similar to “degree”, other characteristics, “closeness (farness) centrality”, “betweenness 

centrality”, “eigenvector centrality”, and “Katz centrality”, can also help to improve the 

performance of VNE. When the characteristics used in node ranking fail to tell the proper 

differences between nodes, other topological characteristics can be used to rank the nodes 

more accurately, and thus the success rate and efficiency of subsequent link mapping are 

improved. Our node ranking reflects not only nodes’ CPU resources but also topological 

attributes. Obviously, using such a node ranking method to construct VNE solutions can 

increase the possibility of satisfying the resource requirements of VNRs and reduce the costs 

of embedding and network fragmentation. 

Because the effects of these topological characteristics on the performance of VNE are not 

well understood, we attempt to integrate them into node ranking step by step, so as to better 

reveal and compare their influence over the practical VNE algorithms. In the remainder of this 

section, we propose three heuristic algorithms based on “degree”, “strength”, “closeness 

(farness) centrality”, and “betweenness centrality” in 5.1, 5.2 and 5.3 from simple to complex. 

As for 5.4, we adopt the algorithm in [11], which includes the implementation of “eigenvector 

centrality” and “Katz centrality”, and improve it by applying our three new node ranking 

methods. 

5.1. Mapping Algorithm with Degree 

Firstly, we extend the traditional node mapping with “degree”. The degree and strength of a 

node both measure the extent to which it is connected to the rest of the network, from two 

complementary aspects. By adding degree, we wish to enhance the influence of local 

 
Fig. 2. A motivational example 
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resources in node mapping. We define the amount of resources for node    by: 

                      ∑      

       

                                        

Our algorithm is a two-stage VNE algorithm. We describe the node mapping algorithm 

with degree in Algorithm 1. Time is discretized into consecutive time windows and the VNR 

queue is applied to store a group of unmapped and incoming VNRs with irregular arrival 

times during a time window. During the node mapping process, we collect in the queue all the 

VNRs that just arrive or should be mapped during the current time window at first, and then 

sort them according to their revenues. The unchecked VNR with largest revenue has priority. 

When a VNR is to be embedded, the    in (13) for each virtual node and physical node will 

be calculated and act as their ranking values. Note that the CPU, degree and strength of a 

physical node in    are all calculated using its real-time residual resources. Thus the amount 

of available resources    of a physical node can reflect the dynamic state of the substrate 

network. Our algorithm maps the virtual node with the highest rank to the physical node with 

the highest rank that satisfies every constraint and is unmapped with any other nodes from the 

same VNR. Other virtual nodes of the VNR will be mapped in the same greedy way 

according to the order of their ranks. Some VNRs may be postponed due to the lack of 

resources in the substrate network, and have to wait for next time window to be mapped. A 

VNR is rejected once it cannot be served within its tolerant delay. The algorithm will go back 

to the queue to find the next unchecked VNR with the largest revenue until every VNR is 

mapped, postponed or rejected. 

The link mapping process follows the node mapping process. Virtual links are embedded 

by the k-shortest path algorithm [20] if path splitting is not supported by the substrate network 

or the Multi-Commodity Flow (MCF) algorithm [21] if path splitting is supported. The 

k-shortest path algorithm is shown in Algorithm 2. The MCF algorithm is implemented by the 

PPRN package [22], which is generally appropriate to solve a high variety of MCF problems 

with linear/nonlinear objective functions and with/without linear side constraints.  

Algorithm 1   node mapping algorithm with degree 

1. Collect all the virtual network requests (VNRs) just arrived or should be mapped during 

current time window. 

2. Sort these VNRs according to their revenues. 

3. if no VNR left, stop. 

4. Take the unchecked VNR with the largest revenue. 

5. Calculate        in (13) of all the physical nodes with their real-time residual resources. 

6. Calculate        in (13) of all the virtual nodes using node and link constraints. 

7. Rank physical nodes and virtual nodes respectively, based on       . 

8. for all the unmapped virtual nodes of the VNR do 

9.     Choose the virtual node with the highest rank; 

10.     Mapping it to the physical node with the highest rank that satisfies every constraint and 

is unmapped with any other nodes from the same VNR. 

11.     if fail to embed then  

12.        Postpone or reject the VNR (VNR checked). 

13.        GOTO step 3. 

14.     end if 

15. end for 

16. GOTO step 3. 
 



155                             Liao et al.: Topology-aware Virtual Network Embedding Using Multiple Characteristics 

 

 
Once all the virtual nodes and links have been mapped, the embedding of a VNR succeeds. 

The dedicated resources of a VNR will be released when its duration is over and get ready to 

be reassigned for other VNRs. 

5.2. Mapping Algorithm with Degree and Closeness 

Secondly, we take into consideration the closeness (farness) centrality. The closeness and 

farness is a pair of interesting distance metrics. They are analogous to the distance in physics. 

Let us consider two classical equations in physics: Newton's law of universal gravitation in 

gravitational field is    
 1 2

𝑟2 , and Coulomb's law in electromagnetism is | |  𝑘𝑒
|𝑞1𝑞2|

𝑟2 . 

Just like these two equations in physics describing the interactions between discrete particles, 

the distances between them have an inverse-square effect on their interactions. This is because 

the interactions in universe usually decrease over distances in an inverse-square way, rather 

than an isometric way. The closer one has a much stronger effect on the one in question than 

the farther one. We argue that the above principle applies to the node’s farness in the context 

of node ranking as well, i.e., the farness of a node has an inverse-square effect on its 

importance in the network. Therefore we formulate the amount of resources for node    by: 

               
       ∑             

[∑  (     )
 
   ]

                                        

Steps of the algorithm with degree and closeness (farness) are similar to those of the 

algorithm with degree in 5.1. The main difference is the calculating method of node ranking, 

in which        is replaced by         . And we employ the Floyd–Warshall algorithm to 

obtain the closeness (farness) by calculating shortest paths between all pairs of nodes. 

 

Algorithm 2   link mapping by the k-shortest path algorithm 

1. Collect all the virtual network requests (VNRs) that successfully complete the node 

mapping process during current time window. 

2. Sort these VNRs according to their revenues. 

3. if no VNR left, stop. 

4. Take the unchecked VNR with the largest revenue. 

5. for every virtual link of the VNR do 

6.     k=1;  

7.     while k < K do 

8.         Search the k-shortest paths for the virtual link. 

9.         if find one physical path with adequate bandwidth then 

10.             Mapping the virtual link to the physical path. 

11.             break; 

12.         else k++; 

13.         end if 

14.     end while 

15.     if fail to embed then  

16.         Postpone or reject the VNR (VNR checked). 

17.         GOTO step 3. 

18.     end if 

19. end for 

20. GOTO step 3.  
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5.3. Mapping Algorithm with Degree, Closeness and Betweenness 

Thirdly, we further extend the node mapping with betweenness centrality, which captures the 

switching capacity of a node. A node with higher switching capacity should have higher 

priority than the one with lower switching capacity. Therefore, we integrate it into node 

ranking and define the amount of resources for    by: 

                

       [∑             ] [∑
      

    

      
     ]

[∑  (     )
 
   ]

               

The algorithm with degree, closeness and betweenness is similar to the algorithm with 

degree and closeness in 5.2. However, the calculating method of node ranking changes 

to         . In addition, calculating both the closeness (farness) and the betweenness of each 

node involves calculating shortest paths between all pairs of nodes. So we modify the 

Floyd–Warshall algorithm in order to find and locate all the shortest paths between any two 

nodes. 

5.4. Mapping Algorithm with Eigenvector Centrality and Katz Centrality 

Finally, we try to implement the eigenvector centrality and the Katz centrality. Google's 

PageRank is a variant of eigenvector centrality and Katz centrality [23] that assign relative 

scores to all nodes in the network, and the major difference is the scaling factors. So is the 

Random Walk (RW) algorithm in [11]. The RW algorithm transplants Google’s PageRank 

algorithm into the VNE problem, along with a Markov Random Walk model. 

PageRank considers a link from web page A to web page B as a vote. A web page is 

considered more important if more important web pages (either in quantity or quality) vote for 

it. In doing so, the topology of the web can influence the PageRank of a web page. In the 

context of VNE, the RW algorithm considers a node to be more important if a node links to 

more nodes with more resources [11]. Treating the connectivity between any two nodes as a 

Markov chain transition with certain probability, the RW algorithm iteratively calculates the 

relative resource quality of a node based on the product of its CPU and adjacent bandwidth, 

and the qualities of its neighbors. 

We adopt the RW algorithm, which includes the implementation of eigenvector centrality 

and Katz centrality. Steps of the RW algorithm will not be repeatedly described here. To 

further integrate other topological characteristics, we improve it by applying three new node 

ranking methods proposed in 5.1, 5.2, and 5.3. Three modified RW algorithms are proposed 

respectively, in which the iterative computation of the relative resource quality of a node is 

based on (13), (14), or (15), along with the qualities of its neighbors.  

6. Topology Decomposition 

In Section 5 we use six topological characteristics to design three new algorithms and three 

modified algorithms based on our new node ranking methods. In this section we further 

explore the use of topological characteristics in the VNE problem from another aspect. 

Just like the productivity of modern economy is based on the division of labor, division 

has been proved to play a vital role in solving many difficult problems in all kinds of 

disciplines. Some previous heuristic VNE algorithms have applied the theory of division in 

different ways. Most of the VNE algorithms can be divided into two stages, firstly the node 

mapping stage and secondly the link mapping stage. Some VNE algorithms (e.g., [6]) 
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differentiate nodes as different types, while some others (e.g., [7, 8]) divide the VNs into 

many sub-graphs.  

Qing et al. [12] prune the topology of a VN by using the K-core decomposition algorithm 

to divide it into a core network and multiple edge networks, and try to leverage the 

respective advantages of different VNE algorithms at the same time. Intuitively, a network 

core is a set of nodes that are highly and mutually interconnected. For a binary network, the 

K-core of a graph is the maximal connected sub-graph comprising nodes with degree at least 

k, and is derived by recursively deleting the nodes with degree less than k. K-core 

decomposition is an important tool for the visualization of complex networks [24, 25].  

However, K-core decomposition is not adequate to the weighted networks and some 

specific topologies (e.g., star topology or tree topology), as a result of only considering the 

number of connections, i.e., the characteristic “degree”. We demonstrate it in Fig. 3(a), 

where there is a VNR with 9 nodes. A thick line denotes a strong link with high bandwidth 

while a thin one denotes the opposite. As we can see, node a, b, c, e, and h all have a strong 

link to each other, which implies some structural or functional importance in the network. 

After applying the K-core decomposition to this topology, node d, e, f, g, h, and i are all 

peeled off as nodes of edge networks, and only node a, b, and c are included in the core 

network. Obviously this is not a satisfactory division where node e and node h are excluded 

from the core network. 

 
Here, we advocate utilizing multiple topological characteristics to devise new algorithms 

of topology decomposition, in order to better disentangle the hierarchical structure of a VN. 

The strength, which is complementary to the degree, naturally becomes our first choice. 

A node with high degree has many connections while a node with high strength has strong 

connections. Therefore, the strength can be treated as a more sophisticated version of the 

degree, where a node does not depend on the number of links incident to it but on the 

qualities of those links. By taking into consideration both the number of connections and 

their qualities, we propose a new KS-core decomposition algorithm, in which the “S” stands 

for the “Strength”. 

We implement the KS-core decomposition by recursively removing the nodes whose 

degree equals to 1 and strength is less than the Strength Threshold, and pruning the 

corresponding links as well. The Strength Threshold is a parameter predefined according to 

 
Fig. 3. An example of KS-core decomposition and mapping of a virtual network request 
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the topologies of VNRs and the substrate network (such as the average bandwidth of links, 

the sum of nodes, and the linking probability of nodes), so as to properly differentiate the 

core network and the edge networks. The decomposition process will stop once no further 

removal is possible or the number of residual nodes in the VNR reaches the Minimum value, 

which should also be predefined to achieve the relative balance of nodes in core network and 

in edge networks. The remaining KS-core contains only nodes with strength greater than the 

Strength Threshold and degree at least 2, and the pruned parts are multiple edge networks. 

We describe the KS-core decomposition algorithm in Algorithm 3. 

In Fig. 3(b), we show the result of the same VNR in Fig. 3(a) after applying the KS-core 

decomposition algorithm. Five nodes incident to strong links, represented by red solid lines, 

are included in the core network. The residual parts, represented by blue dashed lines, are 

three independent edge networks. Fig. 3(c) and Fig. 3(d) depict the mapping of the core 

network and edge networks respectively. 

To compare KS-core decomposition algorithm with K-core decomposition algorithm in 

the evaluation, we employ the same node mapping algorithms and link mapping algorithms 

as that in [12]. The evaluation results will be presented in the next section. 

7. Performance Evaluation 

In this section, we first describe the performance evaluation environment that is configured 

similar to previous work [9, 11, 12], and then present our main evaluation results. Our 

evaluation focuses primarily on quantifying the benefits of our different algorithms. 

7.1. Evaluation Environment 

Because the actual substrate networks and VNs are not well understood yet, we use GT-ITM 

tool [26] to generate substrate networks and VNRs in our evaluation as most previous work 

did. Each substrate network is configured to have 100 nodes with over 500 links, which is 

about the scale of a medium-sized ISP. And the corresponding CPU and bandwidth resources 

are real numbers uniformly distributed from 50 to 100. The arrival of VNRs is modeled 

following a Poisson process with an average arrival rate of 5 VNs per 100 time units. We 

assume that each VN has an exponentially distributed duration with an average of 500 time 

units, while the delay is 200 time units. The number of nodes in a VNR is configured as a 

Algorithm 3   KS-core decomposition algorithm 

1. Take the virtual network request to be decomposed. 

2. for every node of the virtual network request do 

3.     Calculate the degree and strength of the node. 

4.     if (degree = 1) and (strength ≤ Strength Threshold) then 

5.         Mark and prune the node and corresponding links. 

6.         the sum of nodes --; 

7.         if the sum of nodes ≤ Minimum then 

8.            break; 

9.         end if 

10.     else if do not exist a node whose degree equals 1 and strength is less than the 

Strength Threshold then 

11.         break; 

12.     end if 

13. end for 
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uniform distribution between 5 and 20. Pairs of virtual nodes are randomly connected by links 

with the probability of 0.5, which means a  -node VN has          links on average. 

CPU and bandwidth requirements of virtual nodes and virtual links are real number uniformly 

distributed between 1 and 50. Each experiment runs ten different instances, and each instance 

lasts for more than 56000 time units, corresponding to about 2800 VNRs. The arithmetic 

mean of ten instances is recorded as the final result. 

We implement three VNE simulators to respectively compare our 7 proposed 

topology-aware algorithms with 4 corresponding existing algorithms. The notations we refer 

to different algorithms are enumerated in Table 1, along with the simulators used. The ND
#
 

simulator is a modified version of the VNE simulator [27] designed in [9], the RW
#
 simulator 

is a modified version of the simulator in [11], and the KS
#
 simulator is a modified version of 

the simulator in [12]. Performance metrics in comparison are three objectives presented in 

Section 3, i.e., the long-term average revenue, acceptance ratio, and RC ratio. 

7.2. Evaluation Results 

The evaluation consists of three parts with three simulators respectively: (1) using the ND
#
 

simulator to compare two baseline algorithms BL in [9] and CL in [13] with our three 

algorithms ND, NDC, and NDCB; (2) using the RW
#
 simulator to compare the baseline 

algorithm RW in [11] with three modified algorithms RW-ND, RW-NDC, and RW-NDCB; 

(3) using the KS
#
 simulator to compare the baseline algorithm K-core in [12] with KS-core 

decomposition algorithm. In all the following figures, the performance metrics are plotted 

against the time. 

7.2.1 . Mapping Algorithms with Multiple Characteristics 

Fig. 4 shows the long-term average revenue, acceptance ratio, and RC ratio of two baseline 

algorithms BL, CL, and three topology-aware algorithms ND, NDC, and NDCB. All the 

curves reach a relatively steady state after about 10000 time units. 

In the left part of Fig. 4, the average revenue of algorithm ND is remarkably higher than 

that of the baseline algorithm BL, and algorithm NDC further improves it. The baseline 

algorithm CL shows impressively high average revenue as well, while algorithm NDCB has 

TABLE 1． ALGORITHMS IN COMPARISON 

Notation Algorithm Description Simulator 

BL 
The algorithm in [9] without employing path migration, as the 1

st
 

baseline algorithm 
ND

# 

CL 
The classical closeness centrality algorithm in [13], as the 2

nd
 

baseline algorithm 
ND

#
 

ND The mapping algorithm with degree in Section 5.1 ND
#
 

NDC The mapping algorithm with degree and closeness in Section 5.2 ND
#
 

NDCB 
The mapping algorithm with degree, closeness, and betweenness in 

Section 5.3 
ND

#
 

RW The Random Walk algorithm in [11] as the 3
rd

 baseline algorithm RW
#
 

RW-ND Modified version of RW using the algorithm ND RW
#
 

RW-NDC Modified version of RW using the algorithm NDC RW
#
 

RW-NDCB Modified version of RW using the algorithm NDCB RW
#
 

K-core 
Hybrid mapping algorithm with K-core decomposition in [12], as the 

4
th

 baseline algorithm 
KS

# 

KS-core(*) 
Hybrid mapping algorithm with KS-core decomposition in Section 6, 

predefined with different Strength Thresholds in parentheses 
KS

# 
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the relatively highest average revenue, which is about 8% higher than BL. We can see that a 

more comprehensive algorithm that considers multiple topological characteristics does 

improve the long-term average revenue. 

 

The middle part of Fig. 4 shows the results of the long-term acceptance ratio, which reveal 

a similar relationship to these of the long-term average revenue, and also confirm that high 

acceptance ratio usually guarantees high revenue. However, there is an exception. The 

baseline algorithm CL has almost the same high acceptance ratio as NDCB, which is about 8% 

higher than BL. Compared with the average revenue in the left, CL accepts as many VNRs as 

NDCB does, but obtains relatively lower average revenue. It indicates that the use of 

closeness centrality can increase the acceptance ratio, but has a tendency of accepting 

relatively smaller VNRs in the long term. This is because CL only chooses the nodes closer to 

the center of topology, and does not consider the load balance of the substrate network, which 

may easily lead to the fragmentation of substrate network resources. Thus, CL can accept the 

VNRs with smaller sizes, but has to reject those VNRs with large sizes. NDCB accepts more 

VNRs and achieves higher average revenue than others at the same time. 

The right part of Fig. 4 shows the results of the long-term RC ratio, which demonstrate a 

little different relationship of 5 algorithms in comparison. The curves of RC ratios all have a 

slow downward trend because of the gradual fragmentation of the substrate network over time. 

As a result, virtual links of VNRs have to be embedded into longer physical paths. The RC 

ratios of ND and NDC are remarkably higher than that of BL. However, CL has impressively 

low RC ratio, and NDCB has relatively higher RC ratio that is still lower than BL. NDC is 

about 5% higher than CL. We can see that ND and NDC improve the efficiency of embedding, 

but CL and NDCB achieve higher average revenues and acceptance ratios by sacrificing the 

efficiency more or less. 

To summarize, our algorithm NDCB has relatively highest long-term average revenue and 

acceptance ratio, but these gains come at a penalty in the long-term RC ratio. Our algorithm 

ND improves the long-term average revenue, acceptance ratio, and RC ratio at the same time, 

while NDC further improves them. The baseline algorithm CL performs well in the long-term 

average revenue and acceptance ratio, but has a rather poor RC ratio. 

7.2.2. Modified Algorithms with Multiple Characteristics 

Fig. 5 shows the long-term average revenue，acceptance ratio, and RC ratio of the baseline 

algorithm RW and three modified algorithms RW-ND, RW-NDC, and RW-NDCB. 
The left part and middle part of Fig. 5 reveal similar relationship of these algorithms with 

respect to the long-term average revenue and acceptance ratio. The RW-* algorithms all have 
higher average revenues and acceptance ratios than the original RW algorithm, while 
RW-NDC has similar average revenue and acceptance ratio as RW-ND. However, 
RW-NDCB does not achieve the highest average revenue and acceptance ratio as expected. 

 
Fig. 4. average revenue, acceptance ratio, and revenue/cost ratio of 5 algorithms in comparison 
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The iterative computation of obtaining the ranking of nodes in the RW and RW-* algorithms 
does not reveal the advantages of using certain topological characteristics, such as 

betweenness centrality. Nevertheless, the use of multiple topological characteristics can still 
effectively improve the long-term average revenue and acceptance ratio of the RW algorithm. 

The right part of Fig. 5 shows the long-term RC ratio of 4 algorithms in comparison. The 

curves of RC ratio of RW-* algorithms, especially the algorithm RW-NDCB, are lower than 

that of the original RW algorithm. This indicates that RW-* algorithms sacrifice the 

efficiency more or less, and the use of degree, strength, and closeness centrality performs 

better with the RW algorithm than the use of betweenness centrality. 

To summarize, the modified RW algorithms using our node ranking methods all achieve 

higher average revenue and acceptance ratio than the original RW algorithm, but these gains 

come at a penalty in the long-term RC ratio. 

7.2.3. KS-core Decomposition Algorithm 

Fig. 6 shows the long-term average revenues, acceptance ratio, and RC ratio of the K-core 

decomposition algorithm in [12] and our KS-core decomposition algorithm predefined with 

different Strength Thresholds. 

The KS-core decomposition algorithm has a very slight effect on the acceptance ratio 

compared to the K-core decomposition algorithm, but an obvious effect on the average 

revenue and especially the RC ratio. When the Strength Threshold is set to be 60 or higher, 

the KS-core decomposition algorithm has relatively the best performance in terms of the 

long-term average revenue and RC ratio (about 7% improvement). The performance cannot 

be further improved with higher Strength Threshold, because the number of edge nodes with 

their strengths below the Strength Threshold will not increase any more. When the Strength 

Threshold is 50, the KS-core decomposition algorithm also has a relatively better 

performance in terms of the long-term average revenue and RC ratio than the K-core 

decomposition algorithm. However, when the Strength Threshold is 40, the long-term average 

revenue is hardly improved, and the RC ratio is lower than the K-core decomposition 

algorithm. This effect is more distinct when the Strength Threshold is 30. To achieve the best 

performance of our KS-core decomposition algorithm, the Strength Threshold should be 

properly configured according to the topologies of VNRs and the substrate network. 

 
Fig. 5. average revenue, acceptance ratio, and revenue/cost ratio of 4 algorithms in comparison 
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8. Conclusion 

The VNE problem is an open issue in network virtualization. We introduce six topological 

characteristics complementary to each other, which measure the relative influence or 

importance of nodes in the substrate network and VNs from different aspects. Based on the 

introduced topological characteristics, we propose three topology-aware VNE algorithms and 

three corresponding modified algorithms for the RW algorithm, by leveraging the respective 

advantages of different characteristics. On the other hand, KS-core decomposition algorithm 

is devised to utilize the topological characteristics from the aspect of topology decomposition 

in the VNE problem. Extensive simulations between our 7 proposed algorithms and 4 baseline 

algorithms demonstrate that our algorithms better coordinate node and link mapping, and 

substantially increase the long-term average revenue, acceptance ratio, and RC ratio compared 

to the previous algorithms. 

In our future work, the six characteristics proposed should be further analyzed in order to 

understand their relationships and their exact influence over the practical VNE algorithms, 

and avoid mutual interferences. Furthermore, topology decomposition with multiple 

topological characteristics will be further studied. 
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