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Abstract

This paper is on homonymous distributed systems where processes are prone to crash failures and have no initial

knowledge of the system membership (“homonymous” means that several processes may have the same identifier).

New classes of failure detectors suited to these systems are first defined. Among them, the classes HΩ and HΣ are

introduced that are the homonymous counterparts of the classes Ω and Σ, respectively. (Recall that the pair 〈Ω,Σ〉

defines the weakest failure detector to solve consensus.) Then, the paper shows how HΩ and HΣ can be implemented

in homonymous systems without membership knowledge (under different synchrony requirements). Finally, two

algorithms are presented that use these failure detectors to solve consensus in homonymous asynchronous systems

where there is no initial knowledge of the membership. One algorithm solves consensus with 〈HΩ, HΣ〉, while the

other uses only HΩ, but needs a majority of correct processes.

Observe that the systems with unique identifiers and anonymous systems are extreme cases of homonymous sys-

tems from which follows that all these results also apply to these systems. Interestingly, the new failure detector class

HΩ can be implemented with partial synchrony (i.e., all messages sent after some bounded timeGST will be received

after at most an unknown bounded latency δ), while the analogous class AΩ defined for anonymous systems cannot be

implemented (even in synchronous systems). Hence, the paper provides the first consensus algorithm for anonymous

systems with this model of partial synchrony and a majority of correct processes.
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1. Introduction

Homonymous systems Distributed computing is on mastering uncertainty created by adversaries. The first adversary

is of course the fact that the processes are geographically distributed which makes impossible to instantaneously obtain

a global state of the system. An adversary can be static (e.g., synchrony or anonymity) or dynamic (e.g., asynchrony,

mobility, etc.). The net effect of asynchrony and failures is the most studied pair of adversaries.

This paper is on agreement in crash-prone message-passing distributed systems. While this topic has been deeply

investigated in the past in the context of asynchrony and process failures (e.g., [18, 20]), we additionally consider

here that several processes can have the same identity, i.e., the additional static adversary that is homonymy. Systems

that work well in the presence of homonymy can be useful in a number of practical situations. For instance, they can

tolerate misconfigurations of the processes that result in multiple processes with the same id. In other cases, malicious

applications can introduce in the system duplicated identities to illegally assume another process id. Even a such

common distributed application as DNS works with multiple identities for a same address. Moreover, homonymy

can be included in the system design, for instance simply using a default identifier in all processes (which leads to

an anonymous system) or using independently randomly generated values as processes id (so that the same id can be

chosen by more than one process). In large systems (like peer-to-peer), avoiding the burden of guaranteeing unique

identifiers may compensate the cost of dealing with homonymy. One more application example is provided in [14]

where users keep their privacy by taking their domain as their identifier (the same identifier is then assigned to all

the users of the same domain). Finally, sensor networks is another very common practical case where to guarantee a

unique identity is not possible in many situations. For example, when there are a huge number of motes, or when the

capacity of hardware and software of these motes is very constrained.

Observe that homonymy is a generalization of two cases: (1) having unique identifiers and (2) having the same

identifier for all the processes (anonymity), which are the two extremes of homonymy. However, most algorithms

proposed for classical systems with unique identifiers do not work correctly in the presence of id collisions. On the

other hand, it has been shown [14, 7] that systems with enough different process identifiers may solve more problems

or may have better performance than anonymous systems (where implicitly all identifiers are the same).

We also assume that the distributed system has to face another static adversary, which is the fact that, initially,

each process only knows its own identity. This is what is meant by saying that the system has to work without initial

knowledge of the membership. This static adversary has been recently identified as of significant relevance in certain

distributed contexts [17].

How to face adversaries It is well-known that lots of problems cannot be solved in presence of some adversaries

(e.g., [1, 2, 15, 21]). When considering process crash failures, the failure detector approach introduced in [9, 10] has

proved to be very attractive (see [19] for an introductory presentation). In a distributed system where a given problem

P cannot be solved, a failure detector enriches this system such that P can now be solved.

A failure detector is a distributed oracle that provides processes with information related to failed processes, and
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can consequently be used to enrich the computability power of asynchronous send/receive message-passing systems.

According to the type (set of process identities, integers, etc.) and the quality of this information, several failure

detector classes have been proposed. In [20] the reader can find implementations of classes of failure detectors, suited

to agreement and communication problems, when additional behavioral assumptions are satisfied. It is interesting to

observe that none of the original failure detectors introduced in [10] can be implemented without initial knowledge of

the membership [17].

Aim of the paper Agreement problems are central as soon as one wants to capture the essence of distributed

computing. (If processes do not have to agree in one way or another, the problem we have to solve is not a distributed

computing problem!) The aim of this paper is consequently to understand the type of information on failures that is

needed when one has to solve an agreement problem in presence of asynchrony, process crashes, homonymy, and lack

of initial knowledge of the membership. As consensus is the most central agreement problem we focus on it.

Related work As far as we know, consensus in anonymous networks has been addressed first in [5, 13]. In [13] dif-

ferent synchrony assumptions are considered, while in [5] the authors consider systems enriched with failure detectors.

In [16] the connectivity requirements for agreement in anonymous networks is addressed.

To the best of our knowledge, up to now agreement in homonymous systems has been addressed only in [14] and

[7]. In the former paper the authors consider that, among the n processes, up to t of them can commit Byzantine

failures. The system is homonymous in the sense that there are `, 1 ≤ ` ≤ n, different authenticated identities, each

process has one identity, and several processes can share the same identity. It is shown in that paper that ` > 3t and ` >
3t+n

2 are necessary and sufficient conditions for solving consensus in synchronous systems and partially synchronous

systems, respectively. The latter paper [7] mainly explores consensus in a shared memory system with anonymous

processes, and bounds the complexity (namely, individual write and step complexities) of solving consensus with the

aid of an anonymous leader elector AΩ (see below). It is shown there that these bounds can be improved if the system

is homonymous instead of purely anonymous.

For the first time to our knowledge, in [5] the Consensus problem in anonymous asynchronous crash-prone

message-passing systems has been recently addressed. In such systems, processes have no identity at all3. This

paper introduces an anonymous counterpart4 (denoted AP later in [6]) of the perfect failure detector P [10]. A failure

detector of class AP returns an upper bound (that eventually becomes tight) of the current number of alive processes.

The paper [5] then shows that there is an inherent price associated with anonymous consensus, namely, while the

lower bound on the number of rounds in a non-anonymous system enriched with P is t+ 1 (where t is the maximum

3They must also execute the same program, because otherwise they could use the program (or a hash of it) as their identity. We consider that it
is the same if processes have no identity or they have the same identity for all processes, since a process that lacks an identity can choose a default
value (e.g., ⊥) as its identifier.

4In this paper, when we say that a failure detector A is the counterpart of a failure detector B we mean that, in a classical asynchronous
system (i.e., where each process has its own identity) enriched with a failure detector of class A, it is possible to design an algorithm that builds a
failure detector of the class B and vice-versa by exchanging A and B. Said differently, A and B have the same computability power in a classical
crash-prone asynchronous system.
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number of faulty processes), it is 2t+ 1 in an anonymous system enriched with AP . The algorithm proposed assumes

knowledge of the parameter t.

More general failure detectors suited to anonymous distributed systems are presented in [6]. Among other results,

this paper introduces the anonymous counterpart AΣ of the quorum failure detector class Σ [12] and the anonymous

counterpart AΩ of the eventual leader failure detector class Ω [9]. It also presents the failure detector class AP which

is the complement of AP . An important result of [6] is the fact that relations linking failure detector classes are not the

same in non-anonymous systems and anonymous systems. This is also the case if processes do not know the number n

of processes in the system (unknown membership in anonymous systems). If n is unknown, the equivalence between

AP and AP , shown in [6], does not hold anymore.

Regarding implementability, it is stated in [6] that AΩ is not realistic (i.e., it cannot be implemented in an anony-

mous synchronous system [11]). If the membership is unknown, it is not hard to show that AP is not realistic either,

applying similar techniques as those in [17]. On the other hand, while AP can be implemented in an anonymous

synchronous system, it is easy to show that it cannot be implemented in most of partially synchronous systems (e.g.,

in particular, in those with all links eventually timely).

Recently, in [8] two new failure detectors for anonymous systems have been proposed, calledAΩ′ andAΣ′, which

combined are claimed to be the weakest failure detector to solve consensus in anonymous systems.

Contributions As mentioned, we explore the Consensus problem in homonymous systems. Additional adversaries

considered are asynchrony, process crashes, and lack of initial knowledge of the membership. We can summarize the

main contributions of this paper as follows.

First, the paper defines new classes of failure detectors suited to homonymous systems. These classes, denoted

HΩ and HΣ, are shown to be homonymous counterparts of Ω and Σ, respectively. The interest on the latter classes

is motivated by the fact that 〈Σ,Ω〉 is the weakest failure detector to solve consensus in crash prone asynchronous

message-passing systems for any number of process failures [12]. The paper also investigates the relations linking

HΣ , AΣ and Σ, and shows that both HΩ and HΣ can be obtained from AP in asynchronous anonymous systems.

As a byproduct, we also introduce a new failure detector class denoted 3HP , that is the homonymous counterpart of

3P (the complement of 3P [10]), which we consider of independent interest.

Then, the paper explores the implementability of these classes of failure detectors. It presents an implementa-

tion of 3HP in homonymous message-passing systems with partially synchronous processes and eventually timely

links. This algorithm does not require that the processes know the system membership. Since HΩ can be trivially

implemented from 3HP without communication, HΩ is realistic and can also be implemented in a partially syn-

chronous homonymous system without membership knowledge. The paper also presents an implementation of HΣ in

a synchronous homonymous message-passing system without membership knowledge.

Finally, the paper presents two consensus algorithms for asynchronous homonymous systems enriched with HΩ.

Both algorithms are derived from consensus algorithms for anonymous systems proposed in [4] and [6], respectively.

4



The main challenge, and hence, the main contribution of our algorithms, is to modify the original algorithms that used

AΩ to use HΩ instead. In the second algorithm, also the use of AΣ has been replaced by the use of HΣ.

The first algorithm assumes that each process knows the value n and that a majority of processes is correct in all

executions5. Since, as mentioned, HΩ can be implemented with partial synchrony, the combination of the algorithms

presented (to implement HΩ and to solve consensus with HΩ) form a distributed algorithm that solves consensus

in any homonymous system with partially synchronous processes, eventually timely links, and a majority of correct

processes. When the system is anonymous, this result relaxes the known conditions to solve consensus, since pre-

vious algorithms were based on unrealistic failure detectors (AΩ) or failure detectors that require a larger degree of

synchrony (AP ).

The second consensus algorithm presented works for any number of process crashes, and does not need to know

n, but assumes that the system is enriched with the pair of failure detectors 〈HΣ, HΩ〉. This algorithm, combined

with the algorithms to implement HΣ and HΩ, shows that the Consensus problem can be solved in synchronous

homonymous systems subject to any number of crash failures without the initial knowledge neither of the parameter

t nor of the membership. Applied to anonymous systems, this result relaxes the known conditions to solve consensus

under any number of failures, since previous algorithms used unrealistic detectors (AΩ) or required to know t or an

upper bound on it.

Roadmap The paper is made up of 5 sections. Section 2 presents the system model. Section 3 introduces failure de-

tector classes suited to homonymous systems, and explores their relation with other classes and their implementability.

Finally, Section 5 presents failure detector-based homonymous consensus algorithms.

2. System Model

Homonymous processes We consider a distributed system with n processes. Let Π denote the set of processes

with |Π| = n. We use id(p) to denote the identity of process p ∈ Π. The system is homonymous, which means that

different processes may have the same identity. More formally, p 6= q ; id(p) 6= id(q). Two processes with the same

identity are said to be homonymous. Let S ⊆ Π be any subset of processes. We define I(S) as the multiset (sometimes

also called bag) of process identities in S, I(S) = {id(p) : p ∈ S}. Let us remember that, differently from a set,

an element of a multiset can appear more than once. Hence, as I(S) may contain several times the same identity, we

always have |I(S)| = |S|. The multiplicity (number of instances) of identity i in a multiset I is denoted multI(i).

When I is clear from the context we will use simply mult(i). P (I) ⊆ Π is used to denote the processes whose identity

is in the multiset I , i.e., P (I) = {p : p ∈ Π ∧ id(p) ∈ I}. We assume that two homonymous processes execute the

same program, because otherwise they could use the program (or a hash of it) as a way to differentiate their identities.

5The knowledge of n can be replaced by the knowledge of a parameter α such that, α > n/2 and, in all executions, at least α processes are
correct.
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We assume that the system works without initial knowledge of the membership. This formally means that an

algorithm executed by a process p ∈ Π can only initially use its own identity id(p), and cannot use the identity of

any other process nor the system membership I(Π), unless learned during its execution (by exchanging messages).

Moreover, only in Subsection 5.2 it is assumed that the system size n and an upper bound t on the number of faulty

processes are initially known. Observe that the set Π is a formalization tool that is not known by the set of processes

of the system.

Processes are asynchronous, unless otherwise stated. We assume that time advances at discrete steps. We assume

a global clock whose values are the positive natural numbers, but processes cannot access it. Processes can fail by

crashing, i.e., stop taking steps. A process that crashes in a run is said to be faulty and a process that is not faulty in a

run is said to be correct. The set of correct processes is denoted by Correct ⊆ Π. A process that has not crashed (yet)

at a given time τ is alive at that time. Note that a correct process is always alive.

Communication The processes can invoke the primitive broadcast(m) to send a message m to all processes of the

system (including itself). This communication primitive is modeled in the following way. The network is assumed to

have a directed link from process p to process q for each pair of processes p, q ∈ Π (p does not need to be different

from q). Then, broadcast(m) invoked at process p sends one copy of message m along the link from p to q, for each

q ∈ Π. The receiving process q cannot identify the link through which a message was received.

Unless otherwise stated, links are asynchronous and reliable, i.e., links neither lose messages nor duplicate mes-

sages nor corrupt messages nor generate spurious messages. If a process crashes while broadcasting a message, the

message is received by an arbitrary subset of processes.

Notation and time-related definitions The previous model is denoted HAS [∅] (Homonymous Asynchronous Sys-

tem). We use HPS [∅] to denote a homonymous system where processes are partially synchronous and links are

eventually timely. A process is partially synchronous if the time to execute a step is bounded, but the bound is un-

known. A link is eventually timely if there is an unknown global stabilization time (denoted GST ) after which all

messages sent across the link are delivered in a bounded δ time, where δ is unknown. Messages sent before GST can

be lost or delivered after an arbitrary (but finite) time. Finally, we use HSS [∅] to denote a Homonymous Synchronous

System, which is one in which links are reliable, there are bounds on the time to execute a step and the latency of every

message, and these bounds are known.

AS[∅] denotes the classical asynchronous system with unique identities and reliable channels. Finally, AAS[∅]

denotes the Anonymous Asynchronous System model [6]. Observe that AS[∅] and AAS[∅] are special cases (actually

extreme cases with respect to homonymy) of HAS [∅] (an anonymous system can be seen as a homonymous system

where all processes have the same default identifier ⊥).
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3. Failure Detectors

In this section we define failure detectors previously proposed and the ones proposed here for homonymous sys-

tems. Then, relationships between these detectors are derived, and their implementability is explored.

3.1. Failure detectors for classical and anonymous systems

We briefly describe here some failure detector previously proposed. We start with the classes that have been defined

for AS[∅]. (Observe that a variable X that is local to a process p is marked with p as subindex, Xp. If the variable has

a superindex τ , Xτ , this indicates that we consider the variable at time τ .)

A failure detector of class 3P (the complement of 3P [10]) eventually outputs permanently the set with the

identifiers of the correct processes. More formally, a failure detector of class 3P provides each process p ∈ Π with a

variable trustedp, such that [Liveness] ∀p ∈ Correct ,∃τ ∈ N : ∀τ ′ ≥ τ , trustedτ
′

p = Correct .

A failure detector of class Σ [12] provides each process p ∈ Π with a variable trustedp which contains a multiset6

of process identifiers. The properties that are satisfied by these multisets are [Liveness] ∀p ∈ Correct ,∃τ ∈ N : ∀τ ′ ≥

τ, trustedτ
′

p ⊆ I(Correct), and [Safety] ∀p, q ∈ Π,∀τ, τ ′ ∈ N, trustedτp ∩ trustedτ
′

q 6= ∅.

A failure detector of class Ω [9] provides each process p ∈ Π with a variable leaderp such that [Election] eventually

all these variables contain the same process identifier of a correct process.

The following failure detector classes have been defined for anonymous systems AAS[∅].

A failure detector of class AΩ [6] provides each process p ∈ Π with a variable a leaderp, such that [Election]

there is a time after which, permanently, (1) there is a correct process whose Boolean variable is true, and (2) the

Boolean variables of the other correct processes are false.

A failure detector of class AP [5] provides each process p ∈ Π with a variable anapp such that, if anapτp and

Correctτ denote the value of this variable and the number of alive processes at time τ , respectively, then [Safety]

∀p ∈ Π,∀τ ∈ N, anapτp ≥ |Correctτ |, and [Liveness] ∃τ ∈ N,∀p ∈ Correct ,∀τ ′ ≥ τ, anapτ ′

p = |Correct |.

A failure detector of class AΣ [6] provides each process p ∈ Π with a variable a sigmap that contains a set of

pairs of the form (x, y). The parameter x is a label provided by the failure detector, and y is an integer. Intuitively,

each pair (x, y) determines a quorum of y processes that know the existence of label x. More formally, let SA(x) =

{p ∈ Π | ∃τ ∈ N : (x,−) ∈ a sigmaτp}. Any failure detector of class AΣ must satisfy the following properties:

• Validity. No set a sigmap ever contains simultaneously two pairs with the same label.

• Monotonicity. ∀p ∈ Π,∀τ ∈ N : (((x, y) ∈ a sigmaτp)⇒ (∀τ ′ ≥ τ : ∃y′ ≤ y : (x, y′) ∈ a sigmaτ ′

p ).

• Liveness. ∀p ∈ Correct ,∃τ ∈ N : ∀τ ′ ≥ τ : ∃(x, y) ∈ a sigmaτ ′

p : (|SA(x) ∩ Correct | ≥ y).

6Note that Σ was originally defined for systems without homonymy, where trustedp is a set. In a homonymous system, the natural generaliza-
tion is that trustedp is a multiset.
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• Safety. ∀p1, p2 ∈ Π, ∀τ1, τ2 ∈ N, ∀(x1, y1) ∈ a sigmaτ1p1 : ∀(x2, y2) ∈ a sigmaτ2p2 : ∀T1 ⊆ SA(x1) : ∀T2 ⊆

SA(x2) : ((|T1| = y1) ∧ (|T2| = y2))⇒ (T1 ∩ T2 6= ∅).

3.2. Failure detectors for homonymous systems

Classical failures detectors [10] output a set of processes’ identifiers. Our failures detectors extend this output to

a multiset of processes’ identifiers, due to the homonymy nature of the system. The following are the new failure

detectors proposed for homonymous systems.

A failure detector of class 3HP eventually outputs forever the multiset with the identifiers of the correct processes.

More formally, a failure detector of class 3HP provides each process p ∈ Π with a variable h trustedp, such that

[Liveness] ∀p ∈ Correct ,∃τ ∈ N : ∀τ ′ ≥ τ , h trustedτ
′

p = I(Correct). This failure detector 3HP is the counterpart

of 3P .

A failure detector of class HΩ eventually outputs the same identifier ` and number c at all processes, such that ` is

the identifier of some correct process, and c is the number of correct processes that have this identifier `. More formally,

a failure detector of class HΩ provides each process p ∈ Π with two variables h leaderp and h multiplicityp, such

that [Election] ∃` ∈ I(Correct),∃τ ∈ N : ∀τ ′ ≥ τ,∀p ∈ Correct , h leaderτ
′

p = `, and h multiplicityτ
′

p =

multI(Correct)(`).

Any correct process p such that id(p) = ` is called a leader. Note that this failure detector does not choose only

one leader, like in Ω or in AΩ, but a set of leaders with the same identifier. When all identifiers are different, the class

HΩ is equivalent to Ω (i.e., any detector in HΩ can be trivially transformed into a detector in Ω, and vice versa).

Furthermore, we have the following observation.

Observation 1. A failure detector of class HΩ can be obtained from any detector D of class 3HP without any

communication.

The transformation from 3HP toHΩ can be done by, for instance, setting at each process p periodically h leaderp

to the smallest element in D.h trustedp, and h multiplicityp ← multD.h trustedp(h leaderp).

A failure detector of class HΣ provides each process p ∈ Π with two variables h quorap and h labelsp, where

h quorap is a set of pairs of the form (x,m) (x is a label, and m is a multiset such that m ⊆ I(Π)) and h labelsp

is a set of labels. Roughly speaking, each pair (x,m) determines a set of quora, and the set h labelsp of a process

p determines in which of these sets it participates. More formal, let us denote h quoraτp and h labelsτp the values of

variables h quorap and h labelsp at time τ , respectively. Let S(x) = {p ∈ Π | ∃τ ∈ N : x ∈ h labelsτp}. Any failure

detector of class HΣ must satisfy the following properties:

• Validity. No set h quorap ever contains simultaneously two pairs with the same label.

• Monotonicity. ∀p ∈ Π,∀τ ∈ N,∀τ ′ ≥ τ : (1) h labelsτp ⊆ h labelsτ
′

p , and (2) ((x,m) ∈ h quoraτp) ⇒ ∃m′ ⊆

m : (x,m′) ∈ h quoraτ
′

p .
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• Liveness. ∀p ∈ Correct ,∃τ ∈ N : ∀τ ′ ≥ τ,∃(x,m) ∈ h quoraτ
′

p : m ⊆ I(S(x) ∩ Correct).

• Safety. ∀p1, p2 ∈ Π,∀τ1, τ2 ∈ N, ∀(x1,m1) ∈ h quoraτ1p1 : ∀(x2,m2) ∈ h quoraτ2p2 : ∀Q1 ⊆ S(x1),

∀Q2 ⊆ S(x2), (I(Q1) = m1 ∧ I(Q2) = m2)⇒ (Q1 ∩Q2 6= ∅).

Example of HΣ. For instance, consider a system with process set Π = {1, 2, 3}, whose identifiers are id(1) = A,

id(2) = A, and id(3) = B. (Observe that I(Π) = {A,A,B}.) Assume that at time τ the processes have h labelsτ1 =

{la, lc}, h labelsτ2 = {la, lb}, and h labelsτ3 = {lb, lc}, where la, lb, and lc are labels. If these variables do not

change after time τ , they determine the following quora S(la) = {1, 2}, S(lb) = {2, 3}, S(lc) = {1, 3}.

Assume that process 2 is faulty. The liveness property must ensure that processes 1 and 3 eventually have appropri-

ate values in variables h quora . Since I(S(la)∩Correct) = A7, I(S(lb)∩Correct) = B, and I(S(lc)∩Correct) =

AB, all the pairs (la, A), (lb, B), (lc, AB), (lc, A), and (lc, B) satisfy the predicate of the liveness property defined

over pairs (x,m). Hence, if for instance h quora1 = {(lb, B)} and h quora3 = {(la, AB), (lc, AB)}, the liveness

property is satisfied. (Note that the monotonicity property guarantees that (lb, B) will always be in h quora1 and that

one of (lc, AB), (lc, A) or (lc, B) will always be in h quora3.)

The safety property also holds between these two particular instances of h quora1 and h quora3. For pair (lb, B)

the only Q1 ⊆ S(lb) such that I(Q1) = B is set Q1 = {3}. For pair (la, AB) there is no Q2 ⊆ S(la) such that

I(Q2) = AB. For pair (lc, AB) the only appropriate Q2 is set Q2 = S(lc) = {1, 3}. Obviously Q1 ∩ Q2 6= ∅.

Note that this is necessary but not sufficient for the safety property to hold, since all the values of variables h quora1,

h quora2, and h quora3 at all times must be considered.

Comparing HΣ and AΣ, one can observe that HΣ has pairs (x,m) in which m is a multiset of identifiers, while

AΣ uses pairs (x, y) in which y is an integer. However, a more important difference is that, in HΣ, each process has

two variables. Then, the labels that a process p has in h quorap can be disconnected from those it has in h labelsp.

For instance, in the above example, the pair (lb, B) is in h quora1 while process 1 is not in the quorum S(lb). This is

not possible in AΣ, where a process that has pair (x, y) always belongs to the quorum identified by x.

3.3. Reductions between failure detectors

In this section we claim that it can be shown, via reductions, the relation of the newly defined failure detector

classes with the previously defined classes. We use the standard form of comparing the relative power of failure

detector classes of [10]. A failure detector class X is stronger than class X ′ in system Y [∅] if there is an algorithm A

that emulates the output of a failure detector of class X ′ in Y [X] (i.e., system Y [∅] enhanced with a failure detector D

of class X). We also say that X ′ can be obtained from X in Y [∅]. Two classes are equivalent if this property can be

shown in both directions.
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1 Init
2 h labelsp ← {s : (s ⊆ I(Π)) ∧ (id(p) ∈ s)};
3 h quorap ← ∅;
4 repeat forever
5 q ← D.trustedp;
6 h quorap ← h quorap ∪ {(q, q)}
7 end repeat.

Figure 1: Algorithm to transform D ∈ Σ to HΣ with initial knowledge of membership (code for process p).

1 Init
2 h labelsp ← ∅;
3 h quorap ← ∅;
4 mshipp ← ∅;
5 start tasks T1 and T2;
6 Task T1
7 repeat forever
8 broadcast (IDENT , id(p));
9 q ← D.trustedp;

10 h quorap ← h quorap ∪ {(q, q)}
11 end repeat.
12
13 Task T2
14 upon reception of (IDENT , i) do
15 mshipp ← mshipp ∪ {i};
16 h labelsp ← {s : (s ⊆ mshipp) ∧ (id(p) ∈ s)}.

Figure 2: Algorithm to transform D ∈ Σ to HΣ without initial knowledge of membership (code for process p).

3.3.1. From Σ to HΣ

We prove that, if identifiers are unique, a detector of class HΣ can be obtained from any detector D of class Σ.

Theorem 1. A failure detector of class HΣ can be obtained from any detector D of class Σ in a system with unique

identifiers, under either one of the following conditions:

1. without any communication if every process initially knows the membership I(Π), or

2. in system AS[Σ] (the membership does not need to be known initially).

Proof: Let D.trustedp be the variable of Σ failure detector D at process p. Figures 1 and 2 present the algorithms to

transform D into a failure detector of class HΣ in Cases 1 and 2, respectively. In both cases, at each process p initially

h quorap ← ∅, and infinitely often this variable is updated with the following sentences: q ← D.trustedp, and

h quorap ← h quorap∪{(q, q)}. In Case 1, initially every process p sets h labelsp ← {s : (s ⊆ I(Π))∧(id(p) ∈ s)}

and it never changes it in the run. In Case 2, every process p initially sets h labelsp ← ∅, and repeatedly broadcasts a

message IDENT (id(p)). Process p also has a variablemshipp initially set tomshipp ← ∅. After receiving a message

IDENT (i), process p updates mshipp ← mshipp ∪ {i}, and h labelsp ← {s : (s ⊆ mshipp) ∧ (id(p) ∈ s)}.

We prove now the properties of HΣ:

7We omit the brackets in multisets to simplify the notation.
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• Validity. Since h quorap is a set, and the elements included in it are of the form (q, q) (see Line 5 in Figure 1,

and Line 10 in Figure 2) there cannot be two pairs with the same label.

• Monotonicity. The monotonicity of h labelsp in Figure 1 is obvious because it is initialized in Line 2 and never

changes. With respect to Figure 2, h labelsp is initially empty, and it is related with the set mshipp, such that

if mshipp grows then h labelsp either grows or remains the same. Hence h labelsp never decreases because

mshipp never decreases (see Line 15 in Figure 2). The monotonicity of h quorap in Figures 1 and 2 follows

from the fact that h quorap is initially empty, and any element (q, q) included in it is never removed.

• Liveness. Consider any correct process p. In Figure 2, eventually, Correct ⊆ mshipp permanently (from the

exchange of IDENT messages and Line 15 of Figure 2). Then, in both algorithms eventually {s : (s ⊆

I(Correct)) ∧ (id(p) ∈ s)} ⊆ h labelsp permanently (from Line 2 in Figure 1, and Line 16 in Figure 2).

Hence, there is a time τ after which, for every set s ⊆ I(Correct), I(S(s)) = s and S(s) ⊆ Correct .

The Liveness property of Σ guarantees that, at some time τ ′ ≥ τ , the variable q is assigned a set s that contains

only correct processes and (s, s) will be included in h quorap after that. Therefore, there is a time after which

h quorap contains (s, s) permanently (from monotonicity). Since s ⊆ I(S(s) ∩ Correct) = I(S(s)) = s, the

property follows.

• Safety. Consider two pairs (x1,m1) ∈ h quoraτ1p1 and (x2,m2) ∈ h quoraτ2p2 , for any p1, p2 ∈ Π and any

τ1, τ2 ∈ N. From the management of the h quora variables (Lines 3, 5, and 6 in Figure 1, and Lines 3, 9, and 10

in Figure 2), we have thatm1 andm2 are values taken fromD.trustedp1 andD.trustedp2 , respectively. Hence,

the sets m1 and m2 must intersect from the Safety property of the Σ failure detector D. Then, if I(Q1) = m1

and I(Q2) = m2, given that we are in a system with unique identifiers, Q1 and Q2 must intersect.

3.3.2. From HΣ to Σ

We define now a new class of failure detector that will be used for reductions between the above failure detector

classes. While the service provided by this detector has been already used [22, 6], it was never formally defined. The

new failure detector class, denoted Ξ, will only be defined for systems with unique identifiers, i.e., non homonymous.

Definition 1. A failure detector of class Ξ provides each process p ∈ Π, in a system with unique process identifiers,

with a variable alivep which contains a sequence of process identifiers. Any failure detector of class Ξ must satisfy

the following property:

• Liveness. Eventually, the identifiers of the correct processes are permanently in the prefix of alivep. More for-

mally, let rank(i, aliveτp) denote the position (starting from 1) of process identifier i in aliveτp (with rank(i, aliveτp) =

11



1 Init
2 alivep ← empty list;
3 start Tasks T1 and T2;
4 Task T1
5 repeat forever
6 broadcast (ALIVE , id(p))
7 end repeat.
8
9 Task T2

10 upon reception of (ALIVE , i) do
11 if i ∈ alivep then move i to the first position of alivep
12 else insert i in the first position of alivep
13 end if.

Figure 3: Algorithm to implement a failure detector of class Ξ without initial knowledge of membership in AS[∅] (code for process p).

1 Init
2 start Tasks T1 and T2;
3 Task T1
4 repeat forever
5 broadcast (LABELS , id(p), D.h labelsp);
6 if ∃(x,m) ∈ D.h quorap : (identsp[x] has been created) ∧ (m ⊆ identsp[x]) then
7 let candidatesp = {m : ((x,m) ∈ D.h quorap) ∧ (identsp[x] has been created) ∧ (m ⊆ identsp[x])};
8 trustedp ← any m ∈ candidatesp with smallest maxi∈m rank(i,X.alivep)
9 end if

10 end repeat.
11
12 Task T2
13 upon reception of (LABELS , i, `) do
14 foreach x ∈ ` do
15 if identsp[x] has not been created then create identsp[x]← ∅ end if;
16 identsp[x]← identsp[x] ∪ {i}
17 end foreach.

Figure 4: Algorithm to transformD ∈ HΣ to Σ in a system with unique identifiers, but without initial knowledge of membership (code for process
p). The algorithm uses a failure detector X of class Ξ.
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∞ if i /∈ aliveτp). Then, ∀p ∈ Correct , ∃τ ∈ N : ∀τ ′ ≥ τ, ∀q ∈ Correct , rank(id(q), aliveτ
′

p ) ≤

|Correct |.

Observe that the position of the same identifier can be different at different processes, and can vary over time in

the same process. From the algorithm of Figure 3, we obtain the following lemma.

Lemma 1. A failure detector of class Ξ can be implemented in AS[∅] (an asynchronous system with unique identifiers),

even when the membership is not known initially.

Proof: For each process q ∈ Correct , eventually some message ALIVE (id(q)) will be received at each process

p ∈ Correct . Then id(q) will be included in alivep and never removed after that. Given any faulty process

r, p will stop receiving messages from r by some time τ . Then, after τ process p will never receive a message

ALIVE (id(r)) and id(r) will never be moved to (inserted in) the first position of alivep. However, after τ , eventu-

ally p will receive messages ALIVE (id(q)) from each process q ∈ Correct , and each identifier id(q) will be moved

to (or inserted in) the first position of alivep. Then, there is some time τ ′ > τ such that, at all times τ ′′ > τ ′,

rank(id(q), aliveτ
′′

p ) < rank(id(r), aliveτ
′′

p ). Since this holds for all p, q ∈ Correct and all r /∈ Correct , the claim

follows.

We now show, using the algorithm of Figure 4, that Σ can be obtained from HΣ without initial knowledge of the

membership. The logic of the algorithm of Figure 4 is somewhat similar to that of the algorithm in Figure 2 in [6].

Theorem 2. A failure detector of class Σ can be obtained from any detector D of class HΣ in AS[HΣ] (an asyn-

chronous system with unique identifiers), even when the membership is not known initially.

Proof: From Lemma 1, we can have a failure detector of class Ξ in an asynchronous system. The condition in Line 6

guarantees that the variable trustedp is assigned a set of identifiersm only if (x,m) is in h quorap, and every process

q whose identifier is in m has x in its set h labelsq (from the management of the sets identsp). Combining this condi-

tion with the safety property of HΣ we guarantee the safety property of Σ. The liveness property of Σ holds from the

liveness property of HΣ, the choice of m done in Line 8, and the properties of the failure detector class Ξ as follows.

If p ∈ Correct , from the liveness of HΣ, eventually every time Line 8 is executed, there is some m ∈ candidatesp
with only correct processes. If the failure detectorX of class Ξ has already all the correct processes in the lowest ranks

ofX.alivep (which eventually happens from its liveness property), then any setm in candidatesp, whose largest rank

in X.alivep is minimal, contains only correct processes (which yields the liveness of Σ).

The following result shows that, in classical systems with unique identifiers, Σ, HΣ, and AΣ are equivalent.

Corollary 1. Failure detector classes Σ, HΣ, and AΣ are equivalent in AS[∅].
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Proof: From Theorems 1 and 2 we have that Σ and HΣ are equivalent. The equivalence between Σ and AΣ was

shown in [6].

3.3.3. From AΣ to HΣ

In anonymous systems we have the following properties. Recall that an anonymous system is assumed to be a

homonymous system in which every process has a default identifier ⊥8.

We show now how to obtain a failure detector of class HΣ from a detector of class AΣ.

Theorem 3. Class HΣ can be obtained from class AΣ in AAS[∅] without communication.

Proof: Let D be a detector of class AΣ. The transformation can be done as follows. Let ⊥ be the “default” identi-

fier. Let us denote with ⊥r a multiset of r identifiers ⊥. Each process p periodically does as follows. For each pair

(x, y) ∈ D.a sigmap, the label x is included in h labelsp and the pair (x,⊥y) is included in h quorap (replacing any

pair (x,−) that h quorap may contain). The properties of HΣ follow trivially from the properties of AΣ.

3.3.4. From AP to 3HP and HΣ

We show here how failure detectors of the classes 3HP and HΣ can be obtained for a failure detector of class

AP without communication.

Lemma 2. A failure detector of class 3HP can be obtained from any detector D of class AP in AAS[∅] (an anony-

mous asynchronous system) without communication.

Proof: The transformation can be done as follows. Let ⊥ be the “default” identifier. Each process p periodically up-

dates h trustedp to a multiset of D.anapp identifiers ⊥. The liveness property of D guarantees the liveness property

of 3HP .

Lemma 3. A failure detector of classHΣ can be obtained from any detectorD of class AP inAAS[∅] (an anonymous

asynchronous system) without communication.

Proof: The transformation can be done as follows. Let ⊥ be the “default” identifier. Let us denote with ⊥r a multiset

of r identifiers⊥. Each process p periodically does as follows. After obtaining a value y fromD.anapp, the label⊥y is

included in h labelsp and the pair (⊥y,⊥y) is included in h quorap. The Validity and Monotonicity of HΣ hold triv-

ially. Liveness follows since, from the safety of AP , only correct processes see an output ofD.anap = c = |Correct |,

and from the liveness property all of them do it. Then, every correct process p eventually inserts ⊥c in h labelsp and

8Note that this differs from the assumption used in [6].
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(⊥c,⊥c) in h quorap, and only those processes. Safety of HΣ comes from the safety property of AP : if, for any y

and y′ with y ≥ y′, |S(⊥y)| = y and |S(⊥y′)| = y′ (none can be larger), then S(⊥y) ⊆ S(⊥y′).

Theorem 4. Classes 3HP and HΣ can be obtained from class AP in AAS[∅] without communication.

Proof: The proof of Theorem 4 follows from the two previous lemmas 2 and 3.

Ob.1

3HP 3HP

Σ HΣAΣ

HΩΩAΩ

AP

AS [∅] system model

AΣ HΣ

HΩ

AAS [∅] system model

AP

Th.5

Th.5

Th.4

Th.2

Th.1

Ob.1

Figure 5: Relations between failure detector classes in the models AS[∅] and AAS[∅]. There is an arrow from class X to X′ if X is stronger that
X′. Solid arrows are relations shown by Bonnet and Raynal in [6]. Dotted arrows are trivial relations. Dashed arrows are relations shown here (the
arrow label shows the theorem or observation where the relation is proven).

4. Implementing Failure Detectors in Homonymous Systems

In this section, we show that there are algorithms that implement the failure detectors classes 3HP and HΩ

in HPS[∅] (homonymous partially synchronous system). We also implement the failure detector HΣ in HSS[∅]

(homonymous synchronous system). In all cases they do not need to know initially the membership.

4.1. Implementation of 3HP and HΩ

The algorithm of Figure 6 implements 3HP (and HΩ with trivial changes) in HPS [∅] where processes are

partially synchronous, links are eventually timely, and membership is not known.

Brief description of the algorithm: It is a polling-based algorithm that executes in rounds. At every round r,

the Task 1 of each process p broadcasts (POLLING, r, id(p)) messages. After a time timeoutp, it gathers in

the variable tmpp (and, hence, also in h trustedp) a multiset with the senders’ identifiers ids of processes from

(P REPLY, r′, r′′, id(p), ids) messages received with r′ ≤ r ≤ r′′.

Task 2 is related with the reception of POLLING and P REPLY messages. When a process p receives

a (POLLING, r, id(q)) message from process q, process p has to respond with as many P REPLY as process q

needs to receive up to round r, and not previously sent by process p (Lines 28-30). Note that the P REPLY messages

are piggybacked in only one message (Line 29). Also note that is in variable latest rp[id(q)] where p holds the latest
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1 Init
2 h trustedp← ∅; // multiset of process identifiers
3 mshipp← ∅; // set of process identifiers
4 rp← 1;
5 timeoutp← 1;
6 start Tasks T1 and T2;
7
8 Task T1
9 repeat forever

10 broadcast (POLLING, rp, id(p));
11 wait timeoutp time;
12 tmpp← ∅; // tmpp is an auxiliary multiset
13 for each (P REPLY , r, r′, id(p), id(q)) received
14 with (r ≤ rp ≤ r′) do
15 add one instance of id(q) to tmpp
16 end for;
17 h trustedp← tmpp;
18 rp← rp + 1
19 end repeat.
20
21 Task T2
22 upon reception of (POLLING, rq , id(q)) do
23 if id(q) /∈ mshipp then
24 mshipp←mshipp ∪ {id(q)};
25 create latest rp[id(q)];
26 latest rp[id(q)]← 0
27 end if;
28 if latest rp[id(q)] < rq then
29 broadcast(P REPLY , latest rp[id(q)] + 1, rq , id(q), id(p))
30 end if;
31 latest rp[id(q)]←max(latest rp[id(q)], rq).
32
33 upon reception of (P REPLY , r, r′, id(p),−) with (r < rp) do
34 timeoutp← timeoutp + 1.

Figure 6: Algorithm that implements 3HP (code for process p).
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round broadcast to id(q). If it is the first time that process p receives a (POLLING,−, id) message from a process

with identifier id, then variable latest rp[id] is created and initialized to zero (Lines 23-27).

It is important to remark that, for each different identifier id, only one (P REPLY,−,−, id(q), id) message is

broadcast by each process q. So, if processes v and w with id(v) = id(w) = x broadcast two (POLLING, r, x)

messages, then each process p only broadcast one (P REPLY, r′, r′′, x, q) message with r′ ≤ r ≤ r′′. Note that

eventually (at least after GST time) each P REPLY message sent by any process has to be received by all correct

processes. Hence, eventually processes v and w will receive all P REPLY messages generated due to POLLING

messages.

Finally, Lines 33-34 of Task 2 allow process p to adapt the variable timeoutp to the communication latency and

process speed. When process p receives an outdated (P REPLY, r,−, id(p),−) message (i.e., a message with

round r less than current round rp), then it increases its variable timeoutp.

Lemma 4. Given processes p ∈ Correct and q /∈ Correct , there is a round r such that p does not receive any

(P REPLY , ρ, ρ′, id(p), id(q)) message from q with ρ′ ≥ r.

Proof: There is a time τ at which q stops taking steps. If q ever sent a (P REPLY ,−,−, id(p), id(q)) message,

consider the largest x such that q sent message (P REPLY ,−, x, id(p), id(q)). Otherwise, let x = 0. Then, the

claim holds for r = x+ 1.

Lemma 5. Given processes p, q ∈ Correct , there is a round r such that, for all rounds r′ ≥ r, when p executes the

loop of Lines 14-16 with rp = r′, it has received a message (P REPLY , ρ, ρ′, id(p), id(q)) from q with ρ ≤ r′ ≤ ρ′.

Proof: Observe that, since p is correct, it will repeat forever the loop of Lines 9-19, with the value of rp increasing in

one unit at each iteration. Hence, p will be sending forever messages (POLLING ,−, id(p)) after GST with increas-

ing round numbers, that will eventually be received by q. Then, q eventually will send infinite (P REPLY ,−,−,

id(p), id(q)) messages after GST , with increasing round numbers. Let (P REPLY , x,−, id(p), id(q)) be the first

such message sent by q after GST . Then, for each round number y ≥ x, there is some message (P REPLY , ρ, ρ′,

id(p), id(q)) sent by q with ρ ≤ y ≤ ρ′, and these messages are delivered at p at most δ time after being sent.

Now, assume for contradiction that for each round y ≥ x, there is a round y′ ≥ y such that, when p executes

the loop of Lines 14-16 with rp = y′, it has not received the message (P REPLY , ρ, ρ′, id(p), id(q)) from q with

ρ ≤ y′ ≤ ρ′. But, every time this happens, when the message is finally received, rp has been incremented in Line 18

and, hence, timeoutp is incremented (in Lines 33-34). Then, eventually, by some round r, the value of timeoutp will

be greater than 2δ+γ, where γ is the maximum time that q takes to execute Lines 22-31. Then, p will receive message

(P REPLY , ρ, ρ′, id(p), id(q)) with ρ ≤ r′ ≤ ρ′ before executing the loop of Lines 14-16 with rp = r′, for all

r′ ≥ r. We have reached a contradiction and the claim of the lemma follows.
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Theorem 5. The algorithm of Figure 6 implements a failure detector of the class 3HP in a system HPS [∅] (homony-

mous system where processes are partially synchronous and links are eventually timely), even if the membership is not

known initially.

Proof: Consider a correct process p. From Lemma 4, there is a round r such that p does not receive any (P REPLY , ρ, ρ′,

−,−) message with ρ′ ≥ r from any faulty process. From Lemma 5, there is a round r′ such that for all rounds

r′′ ≥ r′, when p executes the loop of Lines 14-16 with rp = r′′, it has received a (P REPLY , ρ, ρ′,−,−) message

with ρ ≤ r′′ ≤ ρ′ from each correct process. Hence, for every round r′′ ≥ max(r, r′) when the Line 17 is executed

with rp = r′′, the variable h trustedp is updated with the multiset I(Correct).

We can obtain HΩ from the algorithm of Fig. 6 without additional communication. This can be done by simply

including, immediately after Line 17, h leaderp ← min(h trustedp) (i.e., the smallest identifier in h trustedp) and

h multiplicityp ← multh trustedp(h leaderp).

Corollary 2. The algorithm of Figure 6 can be changed to implement a failure detector of the class HΩ in a system

HPS [∅] (homonymous system where processes are partially synchronous and links are eventually timely), even if the

membership is not known initially.

4.2. Implementation of HΣ

Figure 7 implements HΣ in HSS[∅]] where processes are synchronous, links are timely, and membership is not

known.

Brief description of the algorithm It runs in synchronous steps. In each step every process p broadcasts a (IDENT,

id(p)) message. Then, process p waits for (IDENT,−) messages sent through reliable links in this synchronous step

by alive processes. Process p gathers in the multiset variable msetp the identifiers id of all (IDENT, id) messages

received. At the end of this step, variables h quorap and h labelsp are updated with the value of msetp. Note that for

process p the label x of a quorum (x,m) is formed by the multiset msetp (i.e, x = m = msetp).

Theorem 6. The algorithm of Figure 7 implements a failure detector of the class HΣ in a system HSS [∅] (homony-

mous synchronous systems), even if the membership is not known initially.

Proof: From the definition of HΣ, it is enough to prove the following properties.

Validity. Since h quorap is a set, and the elements included in it are of the form (mset,mset) (see Line 7 in

Figure 7) there cannot be two pairs with the same label.

Monotonicity. The monotonicity of h labelsp in Figure 7 holds because h labelsp is initially empty, and each step,

h labelsp either grows or remains the same (see Line 8 in Figure 7). Similarly, the monotonicity of h quorap in Figure

7 follows from the fact that h quorap is initially empty, and any element (mset,mset) included in it is never removed

(see Line 7 in Figure 7).
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1 h labelsp ← ∅;
2 h quorap ← ∅;
3 for each synchronous step do
4 broadcast (IDENT , id(p));
5 wait for the messages sent in this synchronous step;
6 msetp ← multiset of identifiers received in (IDENT ,−) msgs;
7 h quorap ← h quorap ∪ {(msetp,msetp)};
8 h labelsp ← h labelsp ∪ {msetp}
9 end for.

Figure 7: Algorithm to implement HΣ without knowledge of membership (code for process p)

Liveness. Let s be the synchronous step in which the last faulty process crashed. Then, in every step s′ after s only

correct processes will execute. Consider any process p ∈ Correct . In step s′ will receive messages from all correct

processes, and, hence, msetp = I(Correct). Then, process p includes (I(Correct), I(Correct)) in h quorap, and

I(Correct) in h labelsp. Therefore, each correct process p is in S(I(Correct)). So, after step s, for each correct

process p, the pair (I(Correct), I(Correct)) is in h quorap, and I(Correct) = I(S(I(Correct)) ∩ Correct).

Safety. Consider two pairs (x1, x1) ∈ h quoraτ1p1 and (x2, x2) ∈ h quoraτ2p2 , for any p1, p2 ∈ Π and any τ1, τ2 ∈ N.

Let M1 be the set of processes from which p1 received (IDENT ,−) messages in the synchronous step in which

(x1, x1) was inserted for the first time in h quorap1 . Observe that Correct ⊆ M1. Furthermore, any process

p ∈ S(x1) must also be in M1 (i.e., S(x1) ⊆ M1). Also, x1 = I(M1), and, hence, |x1| = |M1|. Therefore,

the only set Q1 ⊆ S(x1) such that I(Q1) = x1 is Q1 = M1. We define M2 similarly, and conclude that the only set

Q2 ⊆ S(x2) such that I(Q2) = x2 is Q2 = M2. Since Q1 ∩Q2 ⊇ Correct 6= ∅, the safety property holds.

5. Solving Consensus in Homonymous Systems

We present in this section two algorithms. One algorithm implements consensus in HAS [t < n/2, HΩ], that

is, in an homonymous asynchronous system with reliable links, using the failure detector HΩ, and when a majority

of processes are correct. The other algorithm implements consensus in HAS [HΩ, HΣ], that is, in an homonymous

asynchronous system with reliable links, using the failure detector HΩ and HΣ.

The main difficulty to solve in the two algorithms proposed is how to deal with the possibility of having multiple

leaders, which is allowed by HΩ. This is solved by adding to each round a preliminary phase in which homonymous

leaders eventually “agree” in a common estimation of the value to propose. We call this additional phase Leaders’

Coordination Phase.

5.1. The Consensus Problem

In the Consensus problem, every process p proposes a value vp and has to decide one value v∗p , in such a way that

the following properties are satisfied.

• Termination. Every correct process eventually decides.
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1 operation propose(vp):
2 est1p← vp; rp← 0;
3 start Tasks T1 and T2;
4
5 Task T1
6 repeat forever
7 rp← rp + 1;
8 // Leaders’ Coordination Phase
9 broadcast (COORD, id(p), rp, est1p);

10 wait until (D.h leaderp 6= id(p))∨
11 (D.h multiplicityp messages (COORD, id(p), rp,−) received);
12 if (some message (COORD, id(p), rp,−) received) then
13 est1p←min{estq : id(p) = id(q)∧
14 (COORD, id(q), rp, estq) received } end if;
15 // Phase 0
16 wait until (D.h leaderp = id(p) ∨ ((PH0, rp, v) received);
17 if ((PH0, rp, v) received) then est1p← v end if;
18 broadcast(PH0, rp, est1p);
19 // Phase 1
20 broadcast(PH1, rp, est1p);
21 wait until (PH1, rp,−) received from n− t processes;
22 if (the same estimate v received from > n/2 processes) then
23 est2p← v
24 else
25 est2p←⊥
26 end if;
27 // Phase 2
28 broadcast(PH2, rp, est2p);
29 wait until (PH2, rp,−) received from n− t processes;
30 let recp = {est2 : message (PH2, rp, est2) received };
31 if ((recp = {v}) ∧ (v 6= ⊥)) then
32 broadcast (DECIDE, v); return(v) end if;
33 if ((recp = {v,⊥}) ∧ (v 6= ⊥)) then est1p← v end if;
34 if (recp = {⊥}) then skip end if
35 end repeat.
36
37 Task T2
38 upon reception of (DECIDE, v) do
39 broadcast (DECIDE, v); return(v).

Figure 8: Consensus algorithm in HAS [t < n/2, HΩ] (code for process p). It uses detector D ∈ HΩ.
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• Validity. The value v∗p decided by any process p is one of the proposed values.

• Agreement. All decided values are the same.

Each process p participates in the consensus invoking the operation propose(vp). This operation returns to process p

the value v∗p it has decided.

5.2. Implementing Consensus in HAS [t < n/2, HΩ]

Let us consider HAS [t < n/2, HΩ] where membership is unknown, but the number of processes is known (that

is, n). Let us assume a majority of correct processes (i.e., t < n/2). We say that a process p is a leader, if it is correct

and, after some finite time, D.h leaderq = id(p) permanently for each correct process q. By definition of HΩ, there

has to be at least one leader.

Brief explanation of the algorithm. The algorithm of Figure 8 is derived from the algorithm in Figure 4 of [4], pro-

posed for anonymous systems. This algorithm has been adapted for homonymous systems. The algorithm of Figure 8

uses a failure detector of class HΩ (instead of AΩ), and a new initial leaders’ coordination phase has been added. The

purpose of this initial phase is to guarantee that, after a given round, all leaders propose the same value in each round.

The algorithm works in rounds, and it has four phases (Leaders’ Coordination Phase, Phase 0, Phase 1 and Phase 2).

Every process p begins the Leaders’ Coordination phase of round r broadcasting a message (COORD, id(p), r, est1p).

If process p considers itself a leader (querying the failure detector D of class HΩ), it has to wait (Lines 10-11) until

receiving messages (COORD, id(p), r, est1) from its homonymous processes (whose number finds also querying

the failure detector D of class HΩ). After that, process p updates its estimate est1p with the minimal value proposed

among all its homonymous. Note that if p is a leader eventually all its homonymous will be leaders too. Hence,

eventually all leaders will also choose the same minimal value in est1.

In Phase 0, if process p considers itself a leader (querying the failure detectorD of classHΩ) (Line 16), it broadcast

a message (PH0, r, est1p) with its estimate in est1p. Otherwise, process p has to wait until a message (PH0, r, est1l)

is received from one of the leaders processes l, and update its variable est1p with the value received (Lines 16-17).

Note that after the Leaders’ Coordination Phase, eventually each leader l broadcasts messages (PH0, r, est1l) with

the same value in est1l.

In Phase 1, every process p broadcasts a message (PH1, r, est1p) with its estimate in est1p. Then, it waits until

the reception of messages (PH1, r, est1) from a majority of processes. If the values est1 of all the received messages

are equal (for example v), process p will adopt it, updating its variable est2p to v (Line 22). Otherwise, process p will

update its variable est2p to ⊥ (Line 24). Note that when this Phase 1 finishes, the number of possible different values

in the variables est2p of all processes are only two: v or ⊥.

In Phase 2, every process p broadcasts a message (PH2, r, est2p) with its estimate in est2p. Then, it waits until

the reception of messages (PH2, r, est2) from a majority of processes. If the value est2 of all the received messages

is the same value v different from ⊥, process p will decide v (Line 30). Otherwise, if some value est2 received is the
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value v different from ⊥, process p will adopt it updating its variable est1p to v (Line 31) in order to propose it in the

next round r + 1. With this, if a majority of processes (p not included) decides in this round r a value v, it will ensure

that the process p will propose this same value v in the next round r + 1. Finally, if all the values est2 received from

messages are the value ⊥, nothing is performed.

Finally, Task 2 implements a reliable broadcast needed to propagate a decided value v from one process to the rest

of processes of the system.

Correctness. The following lemmas are the key of the correctness of the algorithm. They show that, even having

multiple leaders, these will eventually converge to propose the same value at each round.

Lemma 6. No correct process blocks forever in any wait instruction in the algorithm of Figure 8.

Proof: Let us consider by way of contradiction that the statement of the lemma is not correct. Hence, in some run of

the algorithm of Figure 8 some correct process blocks forever in some wait instruction. Let us consider the smallest

round r in which some correct process blocks permanently. Then, let us consider the wait instruction with the smallest

number in which some correct process p blocks permanently in round r. Since there are four wait instructions in the

algorithm, one in each phase, there are four cases to consider.

• Process p blocks forever in Lines 10-11 of the Leaders’ Coordination Phase. Observe that p has to be a leader,

because otherwise the first part of the wait condition is eventually satisfied and p would not block forever.

Then, by definition of r, each leader q eventually reaches round r, and (even if it blocks in r) broadcasts

(COORD, id(q), r,−), where id(q) = id(p), in Line 9. (Observe that all processes send (COORD,−,−,−)

messages in Line 9, even if they do not consider themselves as leaders.) Eventually, D.h multiplicityp holds

permanently the number of leaders. Also eventually, all the (COORD, id(q), r,−) messages sent by the leaders

are delivered to p. Hence, the second part of the wait condition (Line 11) is satisfied. Thus, p is not blocked

anymore, and, therefore, we reach a contradiction.

• Process p blocks forever in Line 16 of Phase 0. Observe that p cannot be a leader, because otherwise the first

part of the wait condition is eventually satisfied and p would not block forever. For the same reason, no leader

blocks forever in Line 16. Then, by definition of r and the fact that the first line in which any process blocks in

round r is Line 16, each leader q eventually reaches Line 18 where it broadcasts (PH0, r,−). Since there is at

least one leader, at least one process sends such a message. Hence, p will eventually receive this message and

the second part of the wait condition (Line 16) is satisfied. Thus, p is not blocked anymore, and, therefore, we

reach a contradiction.

• Process p blocks forever in Line 21 of Phase 1. By definition of r and the fact that the first line in which

any process blocks in round r is Line 21, each correct process q reaches Line 20 in round r. Then, each

correct process q broadcasts (PH1, r,−). Since there are at least n− t correct processes by assumption, p will
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eventually receive n − t messages (PH1, r,−) and the condition of the wait instruction is satisfied. Thus, p is

not blocked anymore, and, therefore, we reach a contradiction.

• Process p blocks forever in Line 29 of Phase 2. This case is similar to the previous one.

Lemma 7. There is a round r such that at every round r′ > r all leaders broadcast the same value in Phase 0 of

round r′, or there has been a decision in a round smaller than r′.

Proof: Consider a time τ when all faulty processes have crashed and the failure detector D is stable (i.e., ∀τ ′ ≥

τ,∀p ∈ Correct , D.h leaderτ
′

p = `, being ` ∈ I(Correct), and D.h multiplicityτ
′

p = multI(C)(`)). Let r be the

largest round reached by any process at time τ . Then, we show that for any round r′ > r, all leaders p have the same

estimate est1p at the beginning of the Phase 0 of round r′ (Line 16), or there has been a decision in a round smaller

than r′. To prove this, let us assume that no decision is reached in a round smaller than r′. Then, since the leaders

do not block forever in any round (Lemma 6), they execute Line 9 in round r′. Since the failure detector is stable,

they also wait for the second part of the wait condition of Lines 10-11 (since the first part is not satisfied). When any

leader p executes the Leaders’ Coordination Phase of r′, it blocks in Lines 10-11 until it receives D.h multiplicityp

messages from the other leaders. By the stability of the HΩ failure detector, D.h multiplicityp is the exact number

of leaders. Also, from the definition of τ and r, no faulty process with identifier D.h leaderp is alive and all the

messages they sent correspond to rounds smaller than r′. Hence, each leader p will wait to receive messages from all

the other leaders and will set est1p to the minimum from the same set of values (Line 14).

Using these lemmas and reusing some of the results in [4], we can conclude the correctness of the algorithm of

Figure 8 in the following theorem.

Theorem 7. The algorithm of Figure 8 solves consensus in HAS [t < n/2, HΩ].

Proof: From the definition of consensus, it is enough to prove the following properties.

Validity. The variable est1 is initialized with a value proposed by its process (Line 2). The value of est1 may be

updated in Lines 14 or 17 with values of est1 broadcasted by other processes. The variable est2 is initialized and

updated with est1 (Line 23) or⊥ (Line 25). The value of est1 may be updated in Line 33 with values of est2 (different

from ⊥) broadcasted by other processes. The value decided in Line 32 is the value of est2 that was broadcasted by

some process. As it is not possible to decide the value ⊥ (Line 32), then the value decided has to be one of the values

proposed by the processes. Then, the validity property holds.

Agreement. Identical to the agreement property of Figure 4 of [4],
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Termination. From Lemmas 6 and 7, after some round r, all leaders hold the same value v in est1 when they

start executing Phase 0 of round r′ (Line 16), and they broadcast this same value v (Line 18). Note that it is the same

situation as having only one leader with value v stored in est1 when Phase 0 is reached. Hence, as Phase 0 starts in the

same conditions as in the algorithm of Figure 4 of [4], the same proof can be used to prove the termination property.

5.3. Implementing Consensus in HAS [HΩ, HΣ]

Figure 9 presents an algorithm that implements consensus in HAS [HΩ, HΣ]. Note that it is derived from the

algorithm of Figure 4 of [3]9 where, like in the previous case, we have added a preliminary phase as a barrier such

that homonymous leaders eventually “agree” in the same estimation value est1 to propose. Once this issue has been

solved (as was proven for the previous algorithm), the use that this algorithm makes of the failure detector HΣ is very

similar to the use the algorithm of Figure 4 of [3] makes of the AΣ failure detector.

Brief explanation of the algorithm. The algorithm of Figure 9 uses a failure detector of class HΩ (instead of AΩ),

a failure detector of class HΣ (instead of AΣ), and a new initial leaders’ coordination Phase has been added. The

purpose of this initial phase is to guarantee that, after a given round, all leaders propose the same value in each round.

Note that this initial phase is analogous to the same phase used in the algorithm of Figure 8.

The algorithm works in rounds, and it has four phases (Leaders’ Coordination Phase, Phase 0, Phase 1 and Phase

2). Every process p begins the Leaders’ Coordination phase broadcasting a (COORD, id(p), r, est1p) message. If

process p considers itself a leader (querying the failure detector D1 of class HΩ), it has to wait until to receive

(COORD, id(p), r, est1) messages sent by all its homonymous processes (also querying the failure detector D1 of

class HΩ)(Line 10). After that, process p updates its estimate est1p with the minimal value proposed among all its

homonymous. Note that eventually all its homonymous will be leaders too. Hence, eventually all leaders will also

choose the same minimal value in est1.

In Phase 0, if process p considers itself a leader (querying the failure detector D1 of class HΩ) (Line 14), it

broadcast a (PH0, r, est1p) message with its estimate in est1p. Otherwise, process p has to update its est1p waiting

until a (PH0, r, est1l) message is received from one of the leaders processes l (Lines 14-15). Note that after the

Leaders’ Coordination Phase, eventually each leader l broadcast (PH0,−, est1l) messages with the same value in

est1l.

In Phase 1, every process p broadcasts a (PH1, id(p), r, sr, current labelsp, est1p) message, being r is the cur-

rent round for process p, sr is the sub-round inside of Phase 1, current labelsp are the labels known by process p up

to now. Process p waits for messages from some quorum of processes. Process p knows quora by reading the value

of the variable D2.h quorap of the failure detector D2 of class HΣ (Line 22). The messages that form a quorum

must satisfy the conditions of Lines 22-23. If when process p is building a quorum (i.e., when p is executing Lines

9Journal version in [6]

24



22-23) its failure detector variable D2.h labelsp in sr changes, then current labelsp is updated an a new sub-round

starts, and process p broadcasts this new knowledge of labels. The same actions are taken if process p knows that

another process has changed to an upper sub-round of sr (Lines 26-29). Phase 1 finishes when the messages that form

a quorum finally satisfy the conditions of Lines 22-23. When this happens, if all the estimate values in the messages

are equal (for example v), the variable est2p must be updated with this value v. Otherwise, est2p will be set to ⊥

(Lines 24-25).

In Phase 2, every process p broadcasts a (PH2, id(p), r, sr, current labelsp, est2p) message with its estimate in

est2p. Then, process p waits for messages from some quorum of processes to take a decision. This Phase 2 is very

similar to Phase 1 (it runs in sub-rounds, which are increased when process p knows that its variable D2.h labelsp

changes). Similarly to Phase 1, when the messages that form a quorum finally satisfy the conditions of Lines 37-38, if

all the estimate values in the messages are equal (for example v 6= ⊥), process p will decide v (Line 40). Otherwise, if

some of the estimate est2 received from messages are the value v different from ⊥, process p will take it updating its

variable est1p to v (Line 41) in order to propose it in the next round r + 1. Finally, if all estimate est2 received from

messages are the value ⊥, nothing is performed.

Task 2 implements a reliable broadcast needed to propagate a decided value v from one process to the rest of

processes of the system.

Correctness. In order to prove the correctness of the algorithm we start by proving the following lemmas.

Lemma 8. No correct process blocks forever in the repeat loops of Phases 1 and 2.

Proof: Note that if a correct process decides (Line 51), then the claims follows. Consider the repeat loop of Phase 1

(Lines 22-38). Let us assume that some correct process is blocked forever in this loop. Then, let us consider the first

round r in which a correct process blocks forever in r. Hence, all correct processes must block forever in the same

loop in round r. Otherwise some process broadcasts a message (PH2,−, r,−,−,−), and from Line 24 no correct

process would block forever in this loop of round r. Let us consider a correct process p, and the pair (x,m) that guar-

antees the liveness property for p. Then, there is a time in which (x,m) ∈ D2.h quorap and every correct process

q in S(x) ∩ Correct has x ∈ D2.h labelsq . Note that, from Lines 32-36, every change in the variable D2.h labels

of a process creates a new sub-round, and that all processes broadcast their current value of D2.h labels in each new

sub-round. Therefore, eventually, p will receive messages (PH1,−, r, sr, cl,−) from all these processes such that

x ∈ cl. Hence, the condition of Lines 25-28 is satisfied, and p will exit the loop of Phase 1. The argument for the

repeat loop of Phase 2 is verbatim.

Lemma 9. No two processes decide different values in the same round.

Proof: Let us assume that processes p1 and p2 decide values v1 and v2 in sub-rounds sr1 and sr2, respectively, of the

same round r (in Line 51). Let (x1,m1) and M1 be the pair in D2.h quorap1 and the set of messages that satisfy the
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1 operation propose(vp):
2 est1p← vp; rp← 0;
3 start Tasks T1 and T2;
4
5 Task T1
6 repeat forever
7 rp← rp + 1;
8 // Leaders’ Coordination Phase
9 broadcast (COORD, id(p), rp, est1p);

10 wait until (D1.h leaderp 6= id(p))∨
11 (D1.h multiplicityp messages (COORD, id(p), rp,−) received);
12 if (some message (COORD, id(p), rp,−) received) then
13 est1p←min{estq : id(p) = id(q)∧
14 (COORD, id(q), rp, estq) received } end if;
15 // Phase 0
16 wait until (D1.h leaderp = id(p) ∨ ((PH0, rp, v) received);
17 if ((PH0, rp, v) received) then est1p← v end if;
18 broadcast(PH0, rp, est1p);
19 // Phase 1
20 srp← 1; current labelsp←D2.h labelsp;
21 broadcast (PH1, id(p), rp, srp, current labelsp, est1p);
22 repeat
23 if ((PH2,−, rp,−,−, est2) received) then
24 est2p← est2; exit inner repeat loop end if;
25 if ((∃(x,mset) ∈ D2.h quorap) ∧ (∃sr ∈ N)∧
26 (∃ set M of messages (PH1,−, rp, sr,−,−)), such that,
27 (∀(PH1,−,−,−, cl,−) ∈M,x ∈ cl)∧
28 (mset = {i : (PH1, i,−,−,−,−) ∈M})) then
29 if (all msgs in M contain the same estimate v) then
30 est2p← v else est2p←⊥ end if;
31 exit inner repeat loop;
32 else if (current labelsp 6= D2.h labelsp)∨
33 ((PH1,−, rp, sr,−,−) recvd with sr > srp) then
34 srp← srp + 1; current labelsp←D2.h labelsp;
35 broadcast (PH1, id(p), rp, srp, current labelsp, est1p)
36 end if
37 end if
38 end repeat;
39 // Phase 2
40 srp← 1; current labelsp←D2.h labelsp;
41 broadcast (PH2, id(p), rp, srp, current labelsp, est2p);
42 repeat
43 if ((COORD,−, rp + 1,−) received) then
44 exit inner repeat loop end if;
45 if ((∃(x,mset) ∈ D2.h quorap) ∧ (∃sr ∈ N)∧
46 (∃ set M of messages (PH2,−, rp, sr,−,−)), such that,
47 (∀(PH2,−,−,−, cl,−) ∈M,x ∈ cl)∧
48 (mset = {i : (PH2, i,−,−,−,−) ∈M})) then
49 let recp = the set of estimates contained in M ;
50 if ((recp = {v}) ∧ (v 6= ⊥)) then
51 broadcast (DECIDE, v); return(v) end if;
52 if ((recp = {v,⊥}) ∧ (v 6= ⊥)) then est1p← v end if;
53 if (recp = {⊥}) then skip end if;
54 exit inner repeat loop
55 else if ((current labelsp 6= D2.h labelsp)∨
56 ((PH2,−, rp, sr,−,−) received with sr > srp)) then
57 srp← srp + 1; current labelsp←D2.h labelsp;
58 broadcast (PH2, id(p), rp, srp, current labelsp, est2p)
59 end if
60 end if
61 end repeat
62 end repeat.
63
64 Task T2
65 upon reception of (DECIDE, v) do
66 broadcast (DECIDE, v); return(v).

Figure 9: Consensus algorithm in HAS [HΩ, HΣ] (code for process p). It uses detectors D1 ∈ HΩ and D2 ∈ HΣ.
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condition of Lines 45-48 for p1. Since for each message (PH2,−, r, sr1, cl,−) ∈ M1, it holds that x1 ∈ cl, if Q1 is

the set of senders of the messages in M1, we have that Q1 ⊆ S(x1). Additionally, m1 = {i : (PH2, i,−,−,−,−) ∈

M1} = I(Q1). We can define (x2,m2) and M2 analogously for p2. Then, from the Safety Property of HΣ,

Q1 ∩ Q2 6= ∅. Let pl ∈ Q1 ∩ Q2. Then, process pl must have broadcast messages (PH2, id(pl), r, sr1,−, v1)

and (PH2, id(pl), r, sr2,−, v2) (Lines 41 and 58). Since the estimate est2pl of pl does not change between sub-

rounds (inner repeat loop, Lines 42-61), it must hold that v1 = v2. From the condition of Line 51, recp1 = {v1} in

sub-round sr1 and recp2 = {v2} in sub-round sr2, and both processes decide the same value. Hence, no two processes

decide different values in the same round.

Using the above lemmas and reusing some of the results from [3] the correctness of the algorithm of Figure 9 can

be shown.

Theorem 8. The algorithm of Figure 9 solves consensus in HAS [HΩ, HΣ].

Proof: The proof of this theorem is similar to the proof of Theorem 5 of [3], with the following changes. Observe that

the Leaders’ Coordination Phase and Phase 0 of the algorithms in Figures 8 and 9 are the same. Hence, Lemmas 6

and 7 also apply to the algorithm of Figure 9. Then, the termination property can be proven in a similar way as in [3]

(Lemmas 1 and 2), but using those two Lemmas 6 and 7 together with Lemma 8. The proof of the agreement property

is also similar to Lemma 3 of [3] but using Lemma 9.

Observe that the algorithm of Figure 9 can be easily transformed into an algorithm that solves consensus in

AAS [AΩ, HΣ] (an anonymous system with detectors AΩ and HΣ). For that, given a failure detector D3 ∈ AΩ,

it is enough to remove the Leaders’ Coordination Phase, and in Phase 0 to replace (D1.h leaderp = id(p)) by

(D3.a leaderp). The resulting Phase 0 is the same as Phase 1 in the algorithm of Figure 3 of [6], and has the same

properties.

6. Conclusion

This paper studied the Consensus problem in a new distributed environment with homonymous processes. New

failure detectors have been defined for this homonymous model (called HΩ, 3HP and HΣ). We have studied

the relations among the failure detector classes Σ and its versions for homonymous systems (denoted by HΣ), and

for anonymous systems (denoted by AΣ). It has also been shown that HΩ, 3HP and HΣ can be implemented

in homonymous systems with different synchrony requirements (and in all cases without initial knowledge of the

membership). Interestingly, our class HΩ can be implemented with partial synchrony, while the analogous class AΩ

defined for anonymous systems cannot be implemented (even in synchronous systems). Finally, we have shown that

HΩ (and a majority of correct processes), and 〈HΩ, HΣ〉 failure detectors can be used to implement consensus in

homonymous asynchronous systems (even without initial knowledge of the membership). These results allow us to
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venture the conjecture thatHΩ could be the weakest failure detector to solve consensus in asynchronous homonymous

systems when a majority of processes never crashes, and 〈HΩ, HΣ〉 could be the weakest failure detector to solve

consensus in asynchronous homonymous systems whatever the number of faulty processes.
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