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Abstract In classical distributed systems each process has a unique identity. To-
day new distributed systems have emerged where a unique identity is not always
possible to be assigned to each process. For example, in many sensor networks
a unique identity is not possible to be included in each device due to its small
storage capacity, reduced computational power, or the huge number of devices to
be identified. In these cases we have to work with anonymous distributed systems
where processes can not be identified.

Consensus can not be solved in classical and anonymous asynchronous dis-
tributed systems where processes can crash. To bypass this impossibility result,
failure detectors are added to these systems. It is known that Ω is the weak-
est failure detector class for solving consensus in classical asynchronous systems
when a majority of processes never crashes. Although AΩ was introduced as an
anonymous version of Ω , to find the weakest failure detector in anonymous sys-
tems to solve consensus when a majority of processes never crashes is nowadays
an open question. Furthermore, AΩ has the important drawback that it is not
implementable. Very recently, AΩ ′ has been introduced as a counterpart of Ω for
anonymous systems.
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In this paper we show that the AΩ ′ failure detector class is strictly weaker
than AΩ (i.e., AΩ ′ provides less information about process crashes than AΩ). We
also present in this paper the first implementation of AΩ ′ (hence, we also show
that AΩ ′ is implementable), and, finally, we include the first implementation of
consensus in anonymous asynchronous systems augmented with AΩ ′ and where a
majority of processes does not crash.

Keywords Failure detectors · consensus · anonymity · fault-tolerance · anonymous
omega.

1 Introduction

From a theoretical and practical point of view, we are accustomed to define and
use distributed systems where each process has a unique identity (we can call
it classical distributed systems). However, new distributed systems have emerged
where a unique identity is not always possible to be assigned to each process. For
example, in many sensor networks a unique identity is not possible to be included
in each device due to its small storage capacity, reduced computational power, or
the huge number of devices to be identified ([1], [18]). In all these cases we have to
work with distributed systems where processes have no identity. Hence, we can use
anonymous systems where processes are not identifiable because all of them are
coded identically (i.e, processes have no identity, and there is no way to distinguish
among them).

Another important context where anonymity is very important is when the
users’ privacy is involved [16]. In this case, identification is not possible without
something that breaks the symmetry.

On the other hand, one of the most important coordination problems in dis-
tributed computing is consensus [13]. The consensus problem says that in a system
where a set of values are proposed, only one of them can be decided. Consensus
can not be solved in anonymous (and classical) asynchronous systems when even
one process may crash [20]. To bypass this impossibility result, failure detectors
are added to these anonymous asynchronous systems ([6], [8]).

A failure detector is a distributed device that provides information about pro-
cess crashes [13]. It is well known that Ω is the class of failure detectors that
provides the minimum information about process crashes (i.e., it is the weakest
failure detector) for solving consensus in classical asynchronous systems when a
majority of processes never crashes [12]. AΩ was introduced as an anonymous ver-
sion of Ω [6]1. Roughly speaking, AΩ states that eventually only a single process
identifies itself as the leader of all non-crashed processes. Nevertheless, to find the
weakest failure detector class to achieve consensus in anonymous systems when a
majority of processes never crashes is still an open question [8]. Furthermore, AΩ

has the important drawback that it is not implementable in anonymous systems [6].
Hence, any algorithm that implements consensus with AΩ is not implementable.

Very recently, AΩ ′ has been introduced as a new counterpart of Ω for anony-
mous systems [10]. Roughly speaking, AΩ ′ states that eventually a set L of non-
crashed processes will permanently identify themselves as leaders, and all these

1 AΩ was first proposed by Bonnet and Raynal in the preliminary DISC 2010 conference
paper [7].
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leader processes eventually will know the size of L (i.e., |L|).

Related Work

One of our main goals in this paper is to present the first implementation of the
AΩ ′ failure detector [10]. This failure detector is important because it is weaker
than other classes of failure detectors ([5], [6]). In [6] are introduced the anonymous
classes AP , AΩ and AΣ. They are the anonymous counterparts of the classes of
perfect failure detector P [13], eventual leader failure detector Ω [12], and quo-
rum failure detectors Σ [15], respectively. In the paper [11] is introduced another
slightly different anonymous version of Σ denoted AΣ′. In [5] the authors present
the failure detector AP which is the anonymous counterpart of the perfect fail-
ure detector P when the membership of the system is unknown. With respect
to the implementability, AΩ has the drawback that is not implementable even in
anonymous synchronous systems [6]. If the membership is unknown, AP is not
implementable either (applying similar techniques than in [22]).

In [19] is presented a distributed model where the system is a collection of
anonymous finite-state agents. A protocol is self-stable if it does not require ini-
tialization to work, and it is always able to recover from temporary failures. In
that paper [19] is shown that self-stabilizing eventual leader election is impossible
to achieve in such systems. To circumvent this result, they enrich the system with
the failure detector Ω?. When an agent invokes Ω?, this failure detector returns
the information of whether or not one or more processes are working as leaders.
The information returned by Ω? may be incorrect by a finite period of time, but
eventually Ω? will always provide accurate information. The authors show in [19]
that in this system augmented with Ω? it is possible to achieve self-stabilizing
eventual leader election in rings and complete graphs.

Failure detectors are important because they can help to solve important prob-
lems in distributed computing. One of the most important problems is consensus
[13]. Consensus in anonymous systems is introduced for first time in [5]. In it the
authors solve consensus with a majority of processes that never crashes and using
the failure detector AP . They show that 2t+1 is the lower bound on the number of
rounds to achieve consensus (t is the maximum number of crashed processes, and
all processes must know this value of t). In [17] is also solved consensus in anony-
mous systems with different synchrony assumptions (that is, they assume that
the system is not totally asynchronous but with partial synchrony). In the techni-
cal report [11] an algorithm is presented using the failure detector 〈AΩ′, AΣ′〉 to
solve consensus in anonymous systems where all processes are interconnected using
FIFO reliable links (hence, their anonymous system is stronger than the system
we present in this paper). Nevertheless, their solution allows to solve consensus
even if a majority of processes crashes.

Not only in anonymous message-passing systems the consensus problem is
solved. Several solutions are also presented in the literature to achieve consensus
in anonymous shared memory systems ([3], [4], [9], [14]). In all of them consensus
is implemented in an anonymous shared memory system bounding the step com-
plexity (i.e., the number of shared memory accesses) to O(n) by each invocation on
a read/write operation, being n the number of processes of the system. In [9] and
[14] the failure detector AΩ [6] is used to solve consensus and there is no bounds
in the number of crashed processes. In [9] the shared memory is formed by atomic
multi-writer and multi-reader registers, and in [14] these shared memory is made
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up by the weak set object (this object is a set from which values are never re-
moved). In [4] the authors implement consensus in an anonymous shared memory
where no processes can crash and where the shared memory is implemented using
atomic registers (namely, Ω(log n) is the number of atomic registers needed to
solve consensus). In [2] and [3] the anonymous shared memory is built by objects
denoted adopt-commit [21]. In [2] consensus is solved for the probabilistic-write
model. The algorithm presented is formed by an adopt-commit object to detect
agreement, and by a conciliator object to guarantee the agreement not determin-
istically but with some probability. In [2] the step complexity is O(logm), being
m the different values that processes can propose. In [3] the solution is improved
to O(n).

Our contribution

In this paper we show that AΩ ′ is strictly weaker than AΩ (i.e, AΩ ′ provides less
information about process crashes than AΩ). We also present the first implementa-
tion in the literature of AΩ ′ (hence, we also show that AΩ ′ is implementable). It is
worth noting that this implementation is communication-efficient (i.e., eventually
only leader processes send messages). Finally, it is included in this paper the first
implementation of consensus in anonymous asynchronous systems enriched with
AΩ ′ and where a majority of processes does not crash. Therefore, we also show in
this paper that consensus with this new and weaker version of Ω for anonymous
systems AΩ ′ is also implementable.

This paper is organized as follows. The model of the anonymous distributed
system is presented in Section 2. The failure detector AΩ ′ is presented in Section 3,
and consensus using AΩ ′ can be found in Section 4. It is noteworthy that in Section
3.2 we prove that AΩ ′ is weaker than the traditional definition of anonymous omega
failure detector AΩ . Finally, we present the conclusions in Section 5.

2 Anonymous System AS

AS is a message-passing system formed by a finite set Π = {pi}i=1,...,n of n
processes fully interconnected by links. Each process pi ∈ Π uses the primitive
broadcast to send a message to every process pj ∈ Π. This primitive, denoted by
broadcast(m), sends a copy of message m through each link.

Processes are executed by taking steps. A process crashes when it stops taking
steps. We assume that crashes are permanent. We say that process pi is correct

in a run if it does not crash, and faulty if pi crashes. We denote by Correct the
set of correct processes, and by Faulty the set of faulty processes. We denote by f

the maximum number of processes that may crash in a run. We consider that if
some process pi crashes while the primitive broadcast(m) is invoked by pi, a copy
of the message m can be delivered to any unknown subset of processes (including
the empty subset).

For analysis, we assume that time advances at discrete steps. We also assume
a global clock whose values are the positive natural numbers, but processes cannot
access it. We use the notation τ ∈ N to indicate an instant of time.

Processes are anonymous [6]. Then, processes have no identity, and there is no
way to differentiate between any two processes of the system (i.e., processes have
no identifier and execute the same code).
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A failure detector FD is a distributed device with a local module FDi for each
process pi ∈ Π. A failure detector FD returns information related with faulty
processes each time that a process pi invokes its module FDi. The addition of a
failure detector FD in a system S (denoted by S [FD ]) allows to solve a certain
problem P that it is impossible to overcome in S alone. According to the type and
the quality of the information about crashed processes, several classes of failure
detectors have been proposed ([23], [24]).

3 AΩ ′ Failure Detector Class

We introduce in this section the algorithm AAΩ ′ to implement the failure detector
AΩ ′ in anonymous partially synchronous systems (see Figure 1). This algorithm
has a nice property: communication-efficiency. That is, in every run, there is a
time after which only leader processes broadcast messages.

3.1 Definition of AΩ ′

The AΩ ′ [10] failure detector provides each process pi ∈ Π with two output vari-
ables leaderi and quantityi. Let L (resp., NL) be the subset of correct processes
such that eventually their variable leader = true (resp., leader = false) perma-
nently. We say that a correct process pi is an eventually leader process (for shorten,
a leader) if pi ∈ L, and an eventually non-leader process (for shorten, a non-leader)
if pi ∈ NL. A failure detector of class AΩ ′ [10] satisfies that:
1. Every correct process is either an eventually leader process, or an eventually
non-leader process.
2. There is at least one eventually leader process in the system.
3. There is a time after which every eventually leader process pi has quantityi = |L|
permanently, being L the set of eventually leader processes in the system.

More formally, the definition of AΩ ′ is the following. Let leaderτi and quantityτi
be the variables leaderi and quantityi provided by AΩ ′ at time τ . Let L = {pi ∈
Correct : ∃τ : ∀τ ′ ≥ τ , leaderτ

′

i = true}, and NL = {pi ∈ Correct : ∃τ : ∀τ ′ ≥ τ ,

leaderτ
′

i = false}. In each run R of the system, any failure detector of class AΩ ′

must satisfy the following three properties:
1. (L ∪NL = Correct) ∧ (L ∩NL = ∅).
2. L 6= ∅.
3. ∃τ : ∀τ ′ ≥ τ , ∀pi ∈ L, quantityτ

′

i = |L|.
Note that there is not a time after which a correct process pk ∈ NL must have

in quantityk the number of leaders |L| of the system.

3.2 AΩ ′ is Strictly Weaker than AΩ

First of all, we define AΩ [6]. Let us consider that each process pi ∈ Π has a
boolean variable li. Every failure detector of class AΩ satisfies that eventually:
(1) there is a correct process pl that has ll = true permanently, and (2) every
correct process pj other than pl has lj = false permanently. More formally, ∃τ ,

∃pl ∈ Correct : ∀τ ′ ≥ τ , ∀pj 6= pl ∈ Correct , lτ
′

l = true and lτ
′

j = false .
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A failure detector class X is strictly weaker than class Y in system S if (a) there
is an algorithm that emulates the output of a failure detector D′ of class X in the
system S augmented with a failure detector D of class Y (denoted by S[D]), and
(b) the opposite is not true (i.e., there is no algorithm that emulates the output of
a failure detector D′ of class Y in the system S augmented with a failure detector
D of class X).

Then, we now prove that AΩ ′ is strictly weaker than AΩ with the following
two cases.

Lemma 1 Class AΩ′ can be obtained from AS [AΩ ].

Proof: Let D be any failure detector of class AΩ . Let D′ be an emulated failure
detector with the following algorithm. Each process pi sets D′.quantityi = 1, and
permanently updates D′.leaderi with the value of D.li.

From definition of AΩ , eventually a single correct process pl has D.leaderl =
true permanently, and every correct process pj other than pl has D.leaderj = false

permanently. Hence, pl belongs to L, and the rest of correct processes belong to
NL (Condition 1 of AΩ ′). Then, |L| = 1, and, hence, L 6= ∅ (Condition 2 of AΩ ′).
Finally, process pl has D′.quantityl = |L| = 1 permanently (Condition 3 of AΩ ′).
Therefore, D′ is a failure detector of class AΩ′.

Lemma 2 Class AΩ can not be obtained from AS [AΩ ′].

Proof: Let D be a failure detector of class AΩ ′ with a run R where the following
six points are preserved: (1) the number of processes is greater than one, |Π| > 1,
(2) all processes are correct, Correct = Π, and all of them are leaders, L = Correct ,
(3) from the beginning of the run, D.leaderi = true and D.quantityi = |Correct |
permanently in each process pi (note that this is one of the possible outputs of
AΩ′ by previous points (1) and (2)), (4) all processes execute in R the same
deterministic code at the same speed in lock step, broadcasting each message m
at the same time, (5) the delay of m is the same in every link, and, hence, m will
be received by every process in the same step of the execution, (6) if two messages
m and m′ are received in the same step, both messages will be delivered in the
same order in every process.

Let us assume, by the way of contradiction, that AΩ can be deterministically
obtained from AΩ ′ in all runs. Then, we construct a run R as described above.
Then, because the six points of R and because processes have no identity, there
is no way to distinguish among all correct processes in R deterministically, and
it is impossible to break this symmetry. Thus, every process pi either outputs
D′.li = true or D′.li = false in R. Therefore, it is impossible to output D′.ll = true

in a single correct process pl, and D′.lj = false in every correct process pj other
than pl in all executions (which contradicts the properties of AΩ). Hence, a failure
detector D′ of class AΩ can not be obtained from AS [D].

Theorem 1 AΩ ′ is strictly weaker than AΩ.

Proof: It derives directly from Lemma 1 and Lemma 2.
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3.3 Anonymous Partially Synchronous System APSS

Let APSS be a system like AS but with the following particular features. Links are
eventually timely. A link between processes pi and pj is eventually timely if there
is an (unknown) stabilization time Tst after which if process pi sends a message
at time t ≥ Tst, this message is delivered without errors to pj in a bounded time
t′ ≤ t + ∆, being ∆ an unknown but finite time. Messages sent by pi at time
t′′ < Tst (i.e., before the global stabilization time) can be lost or delivered to pj
after a finite time greater than t′′ +∆.

We consider that the number of processes that may crash in the system APSS

is at most n− 1 (i.e., f ≤ n− 1).
Processes are partially synchronous in the sense that the time to execute a step

by a process pi is an unknown positive but bounded time.

3.4 The algorithm AAΩ ′ in APSS

We present in Figure 1 an algorithm to implement the AΩ ′ failure detector in
the system APSS . In every run, AAΩ ′ eventually elects a set of leaders among
all correct processes of the system APSS . This algorithm has a nice property:
communication-efficiency. That is, in every run, there is a time after which only
leader processes broadcast messages.

The description of the algorithm AAΩ ′ of Figure 1 is the following. A correct
process pi is one of the leader processes if the condition of line 15 of Task 1 is ever
satisfied, and hence, leaderi contains true forever. Note that this is so because after
line 1 there is no line in Tasks 1 and 2 of Figure 1 where leaderi is set to false

again.
In Task 1, each leader process pi broadcasts heartbeat messages (HB , seqi)

permanently, being seqi its number of sequence (lines 5-8). A process pi waits a
time timeouti (line 9) after which it checks how many acknowledgments it has
received (lines 10-16). If process pi is a leader process, it stores in reci the set of
messages (ACK HB , s, s ′) received with s ≤ seqi ≤ s′ (line 11). Note that reci,
when this line 11 is executed, can return messages that had been received before
line 7 is executed. Hence, quantityi has the number of these acknowledgments
contained in reci (line 12). If process pi is not a leader process, it stores in reci
the set of new messages (ACK HB ,−,−) received since its latest execution of line
14. If it does not receive any acknowledgment message, then process pi becomes a
leader (line 15).

In Task 2, each leader process pi uses the variable next acki to know the next
number of sequence s of the acknowledgment message (ACK HB , s,−) that process
pi has to broadcast. Initially, next acki ← 1 (line 2). When a leader process pi
receives a message (HB , sk ) not previously acknowledged (i.e., sk ≥ next acki)
(line 18), it broadcasts a message (ACK HB ,next acki , sk ) which acknowledges (in
only one message) all heartbeat messages with the number of sequence in the range
[next acki, sk] (line 20).

A leader process pi may broadcast heartbeat messages (HB , seqi) faster than
the time that another leader process pk broadcasts messages (ACK HB , sk , s

′
k ) with

sk ≤ seqi. In this case, process pi will receive outdated acknowledgment messages,
and timeouti will be incremented in one unit (lines 23-24). Then, leader process



8 Ernesto Jiménez et al.

pi will slow down its heartbeat broadcasting speed because it increases the time
that it is waiting at line 9.

Init:
(1) timeouti ← 1; leaderi ← false; seqi ← 0;
(2) next acki ← 1; quantityi ← 0;
(3) start Tasks 1 and 2.

Task 1:
(4) while true do
(5) if (leaderi) then
(6) seqi ← seqi + 1;
(7) broadcast(HB , seqi )
(8) end if;
(9) wait until timeouti units;
(10) if (leaderi) then
(11) let reci be the set of (ACK HB , s, s′)

received such that s ≤ seqi ≤ s′;
(12) quantityi ← |reci|
(13) else
(14) let reci be the set of new (ACK HB ,−,−)

received;
(15) if (reci = ∅) then leaderi ← true end if
(16) end if
(17)end while.

Task 2:
(18)upon reception of message (HB , sk )

such that (sk ≥ next acki) do:
(19) if (leaderi) then
(20) broadcast(ACK HB,next acki, sk);
(21) next acki ← sk + 1
(22) end if.

(23)upon reception of message (ACK HB , sk , s
′
k )

such that (sk < seqi) do:
(24) if (leaderi) then timeouti ← timeouti + 1 end if.

Fig. 1 The algorithm AAΩ′ in the system APSS (code for process pi).

3.5 Correctness of AAΩ ′ in APSS

We now present the formal proofs to show that AAΩ ′ implements AΩ ′ in APSS .
The following lemma shows that there is a time after which every correct

process pi has leaderi = x permanently. This value x is either true or false.

Lemma 3 For each run, (L ∪NL = Correct) ∧ (L ∩NL = ∅).

Proof: Let us consider, by contradiction, that there is a run with a correct process
pi such that pi /∈ L and pi /∈ NL. Then, by this hypothesis of contradiction, there
is some correct process pi such that leaderi is changing its boolean value infinitely
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often. However, process pi initially has leaderi = false (line 1), and it only may
change to true once (when the condition of line 15 is satisfied). Note that there is
no line in Tasks 1 and 2 of Figure 1 where leaderi is set to false again. Hence, we
reach a contradiction. Therefore, every correct process pi either pi ∈ L or pi ∈ NL,
and, hence, (L ∪NL = Correct) ∧ (L ∩NL = ∅).

Let TF be the time when every faulty process pf has crashed, and all messages
(HB ,−) and (ACK HB ,−) broadcast by pf have already been delivered or lost.

We prove in the following lemma that at least one correct process pc eventually
has leaderc = true permanently.

Lemma 4 For each run, L 6= ∅

Proof: By contradiction, let us consider that there is a run such that L = ∅. Note
that in Figure 1 if process pi changes from leaderi = false (line 1) to leaderi = true

(line 15), leaderi will never change to false again. So, if the hypothesis of contradic-
tion holds, there is no process that broadcasts messages (HB ,−) and (ACK HB ,−)
after TF , because leader = false in all correct processes (lines 5-8 and lines 19-
22). Note that the maximum number of faulty processes in the system is n − 1
(i.e., f ≤ n − 1). Then, after TF , at least one correct process pc will execute
leaderc ← true because it has not received any message since its latest execution
of line 14, and recc is empty (lines 14-15). Therefore, we reach a contradiction
because at least a correct process pc has leaderc = true permanently, and, hence,
for each run, L 6= ∅.

Let itsi be the sth iteration of process pi. This iteration is formed by all oper-
ations from line 4 to line 17 of Task 1 of Figure 1 executed by process pi for the
sth time.

We show in the following lemma that eventually each leader process pi has in
reci, when it executes line 11, one (and only one) message (ACK HB , s, s ′) with
s ≤ seqi ≤ s′ from every leader process pj .

Lemma 5 In each run, given processes pi ∈ L and pj ∈ L, there is an iteration itsai
such that ∀sb ≥ sa process pi has in reci exactly one message (ACK HB , s, s ′) with

s ≤ sb ≤ s′ of process pj when process pi executes line 11 at iteration itsbi .

Proof: Note that, after executing leaderi ← true of line 15, correct process pi ∈ L

broadcasts messages (HB , si) permanently, increasing in one unit the value of the
sequence number si at each iteration itsii .

Let us define a time Tl such that Tl ≥ Tst, and process pi and process pj are
already leaders. Then, leader process pi will be broadcasting messages (HB , si)
permanently at each iteration itsii with an increasing number of sequence si, such
that after time Tl we know that all of these heartbeat messages will be received
by leader process pj ∈ L. So, we also know that process pj after time Tl + ∆ will
broadcast acknowledgment messages (ACK HB , sj , s

′
j ) permanently with increas-

ing values of sj and s′j , being sj ≤ s′j . Note that process pj broadcasts one (and
only one) message (ACK HB , s ′, s ′′) in response to all messages (HB , si) received
from all leaders, s′ ≤ si ≤ s′′, (lines 18-21).

Let us consider the following sequence of iteration numbers s1 < s2 · · · < sa. Let
(ACK HB , s1 ,−) be the first acknowledgment message broadcast by pj after time
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Tl. Then, for the iteration its2i , there is a message (ACK HB , s, s ′) with s ≤ s2 ≤ s′
broadcast by process pj and delivered at process pi at most ∆ units of time after
being broadcast. Note that (ACK HB , s, s ′) with s ≤ si ≤ s′ can be the same
message for several consecutive iterations.

Note that if in an iteration itsxi , with sx > s1, when leader process pi executes
line 11, it has not received the message (ACK HB , s, s ′) with s ≤ sx ≤ s′ from
process pj , then, each time that this happens, timeouti will be incremented when
this message (ACK HB , s, s ′) with s ≤ sx ≤ s′ is finally received (lines 23-24). This
is so because seqi will be greater than sx.

Let sa be the iteration number where for the first time the value of timeouti
will be greater than time Treplyj = 2∆+φj , being ∆ the maximum time to deliver
a message from pj to pi, and where φj is the maximum time that process pj takes
to execute lines 18-22.

Now, let us assume, by contradiction, that there is an iteration itsbi , with sb >

sa, such that when leader process pi executes line 11 at this iteration itsbi , it has
not received the message (ACK HB , s, s ′) with s ≤ sb ≤ s′ from process pj . Note
that in this iteration process pi broadcasts the message (HB , sb), and waits until
timeouti > Treplyj because this time is never decreased in the algorithm. Then,
when process pi executes line 11 at this iteration itsbi , either: (a) will receive one
message (ACK HB , s, s ′) with s ≤ sb ≤ s′ from process pj , or (b) has already
received one message (ACK HB , s, s ′) with s ≤ sb ≤ s′ from process pj in response
to a faster leader.

Thus, for every iteration itsbi with sb ≥ sa, exactly one message (ACK HB , s, s ′)
with s ≤ sb ≤ s′ from process pj will be received by process pi when it executes line
11 at itsbi . Hence, we reach a contradiction, and the claim of the lemma follows.

This theorem proves that AAΩ ′ is communication-efficient. Note that in the
worst case all correct processes are in L.

Theorem 2 In the algorithm of Figure 1, there is a time after which only processes

in L broadcast messages permanently.

Proof: From Lemma 3 and definition of TF , we can observe in the algorithm of
Figure 1 that eventually after TF only correct processes are alive and all broadcast
and delivered messages belong to these correct processes. Then, if a correct pro-
cess pi broadcasts a message (HB ,−) or (ACK HB ,−), it must have leaderi = true

(lines 5-8 and lines 19-22, respectively). So, if this case happens, it has already
executed leaderi ← true of line 15. Finally, note that if process pi changes from
leaderi = false (line 1) to leaderi = true (line 15), this variable leaderi will never
change to false again, and, hence, pi is in L. Therefore, there is a time after which
only processes in L broadcast messages permanently.

Theorem 3 The algorithm of Figure 1 implements the failure detector AΩ ′ in APSS.

Proof: From Lemma 3 and Lemma 4, Conditions 1 and 2 of AΩ ′ are preserved in
each run. From Theorem 2 and Lemma 5, in each run, every process pi ∈ L eventu-
ally has reci = L permanently when it executes line 11, and, hence, quantityi = |L|
(line 12). Thus, Condition 3 of AΩ ′ is also preserved in each run. Therefore, the
algorithm of Figure 1 implements the failure detector AΩ ′ in a system APSS .



Title Suppressed Due to Excessive Length 11

4 Consensus with AΩ ′

We introduce in this section the algorithm Acons to implement consensus in anony-
mous asynchronous systems augmented with the failure detector AΩ ′, and with a
majority of correct processes (see Figure 2).

The consensus problem [13] specifies that all processes that take a decision have
to decide the same value v, and this value v has to be proposed by some process.
More formally, the definition of consensus for anonymous systems is the following.

4.1 Definition of Consensus

In each run, every process of the system proposes a value, and has to decide a
value satisfying the following three properties:
1. Validity: Every decided value has to be proposed by some process of the system.
2. Termination: Every correct process of the system eventually has to decide a
value.
3. Agreement: Every decided value has to be the same value.

4.2 Anonymous Asynchronous System AAS

Let AAS be a system such as AS but with the following particular features. Links
are reliable. A link between processes pi and pj is reliable if every message sent by
pi is delivered once to pj without errors in an unknown, positive and unbounded
time.

We consider that a majority of processes are correct in this system (i.e., f <
n/2).

Each process pi initially has no information about any other different process
pj of Π (i 6= j) except that the size of the system is n and f < n/2. In other words,
in every run, process pi only knows that of n processes at least the majority of
them are correct, but it does not know who they are or the exact number of them.

As we have mentioned in the introduction, it is impossible to solve consensus
in anonymous asynchronous systems. To avoid this result, failure detectors are
included. We denote by AAS [AΩ ′] the anonymous asynchronous system defined in
this section augmented with the failure detector AΩ ′.

4.3 The algorithm Acons in AAS [AΩ ′]

We present in Figure 2 an algorithm to solve consensus in AAS [AΩ ′]. This algo-
rithm is an adaptation of the leader-based consensus algorithm of [8] to the case
in which multiple leaders coexist in the anonymous system. The changes between
both algorithms are mainly focused in the phase PH0 where the failure detector is
used. Every process pi uses the while sentence of Task 1 to execute asynchronous
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rounds permanently (lines 4-24). Each round is formed by three phases: PH0 , PH1

and PH2 . Process pi uses the variable ri to know the number of the round that
it is executing. The variable esti contains the value proposed by pi in round ri
to be decided. Note that initially esti contains the value vi, that is, the proposal
of process pi (line 1). The boolean variable agreei allows process pi to indicate
whether it knows that a majority of processes has the same value in esti in round
ri. The boolean variable li is used to know whether process pi is a leader process
in round ri.

In phase PH0 the goal is to reach a round r after which every leader process
pj has the same value v in estj in each next round r′ ≥ r. To know if a process
pi is a leader process in a round x, it stores in li the boolean value of leaderi
returned by the failure detector D of class AΩ ′ (line 5). If it is a leader, process
pi broadcasts a message (PH0 , true, x , esti) (line 6), and waits to receive a number
D.quantityi of messages (PH0 , true, x ,−) (line 7-b). Note that this value quantityi,
returned by the failure detector D of class AΩ ′, is eventually the number of all
leader processes if process pi is a leader process (Case 3 of AΩ ′). After that, a
process pi sets in esti the minimal value of all received messages of phase PH0

(lines 8-10), and broadcasts a message (PH0 , false, x , esti) (line 11). This latter
message allows non-leader processes to finish of waiting in line 7-c in round x.
Note that there is an unknown time t′ after which the value leaderi returned by D
stabilizes (by definition of AΩ ′). Before this time t′, a process pi can believe that
it is a leader in round x because li = true, but D.leader may change to false in the
same round x. In order to avoid being blocked forever in the wait sentence of line
7, the failure detector is checked permanently to know if the value of li changes
with respect to D.leaderi while it is waiting in phase PH0 (line 7-a). Similarly,
the value D.quantityi is also checked permanently to eventually know the exact
number of leader processes in this round x.

In PH1 the goal is that processes can check whether in a round r each process pj
of a majority of processes has the same value v as the proposed value (i.e., estj = v).
To do so, each process pi broadcasts in round x a message (PH1 , x , esti) (line 12),
checking whether it receives the same value est in all messages (PH1 , x , est) from
a majority of processes, and esti = est (line 14). If this happens, agreei ← true,
otherwise, agreei ← false (lines 14-16).

In PH2 the goal is that a process pi can decide a value v in a round r. If this
happens, v has to be always the unique possible value to be decided by any other
process pj in any of the next rounds r′ ≥ r. To do so, each process pi broad-
casts, in a round x, a message (PH2 , x , esti , agreei) and waits to receive a message
(PH2 , x ,−,−) from a majority of processes (lines 17-18). Note that, due to phase
PH1 , given any two received messages (PH2 , x , estj , true) and (PH2 , x , estk , true),
the proposed value in this round x has to be the same (i..e, estj = estk). Hence, if
the fourth parameter of some received message is true, process pi establishes est as
the value to be decided in x or in a next round (lines 19-21). On the other hand,
if in all these messages the fourth parameter is true, process pi decides in this
round x the value est of all received messages (PH2 , x , est , true), and broadcasts a
message (DECIDE , esti) with its decision (lines 22-24).
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function propose(vi):
Init:
(1) ri ← 0; esti ← vi;
(2) start Tasks 1 and 2.
Task 1:
(3) while true do
(4) ri ← ri + 1;

% phase PH0
(5) li ← D.leaderi;
(6) if (li) then broadcast(PH0 , true, ri , esti ) end if;
(7) wait until

(7-a) ((li 6= D.leaderi)
∨

(7-b) ((li) ∧ (D.quantityi (PH0 , true, ri ,−) received)
∨

(7-c) ((PH0 , false, ri ,−) received));
(8) if ((PH0 ,−, ri ,−) received) then
(9) esti ← min{estk : (PH0 ,−, ri , estk ) received}
(10) end if;
(11) broadcast(PH0 , false, ri , esti );

% phase PH1
(12) broadcast(PH1 , ri , esti );
(13) wait until (PH1 , ri ,−) received

from > n/2 processes;
(14) if (all (PH1 , ri , est) received : esti = est) then
(15) agreei ← true else agreei ← false
(16) end if;

% phase PH2
(17) broadcast(PH2 , ri , esti , agreei );
(18) wait until (PH2 , ri ,−,−) received

from > n/2 processes;
(19) if ((PH2 , ri , est , true) received) then
(20) esti ← est
(21) end if
(22) if (all (PH2 , ri , est , true) received) then
(23) broadcast(DECIDE , esti ); return(esti)
(24) end if
(25)end while.

Task 2:
(26)upon reception of (DECIDE , v) do:
(27) broadcast(DECIDE , v); return(v).

Fig. 2 The algorithm Acons for solving consensus in the system AAS [AΩ ′] where is known
that a majority of processes are correct (process pi’s code).

4.4 Correctness of Acons in AAS [AΩ ′]

We define a round r as the set of sentences that every process pi executes while it
has ri = r.

Lemma 6 Validity: For each run, every decided value has to be proposed by some

process of the system.

Proof: Let us use induction on the number of rounds r to show that when a
process pi finishes a round in a run, it holds in its variable esti a value proposed
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by some process. For simplicity, we assume round r = 0 as base of our induction.
Clearly, the claim holds since the variable esti of process pi is initialized with its
own proposed value vi (line 1). Induction hypothesis: Let us assume that the claim
is true for round r = k. Then, for every process pi that finished round k, the value
held in variable esti, when ri = k, was proposed by some process. Step r = k + 1:

We now show that the claim also holds in round r = k + 1. For every process pi
that finished round k, the variable esti can be changed in round k + 1 with the
proposed value est broadcast in phase PH0 by some process (lines 8-10). After
that, the variable esti can only be changed with proposed values est broadcast by
processes in phase PH1 (line 14) and PH2 (line 20). Then, the claim is also held
in this step r = k + 1. Therefore, it is shown by induction that when a process pi
finishes round r it holds in its variable esti a value proposed by some process.

Thus, if a process pi finishes a round and decides esti = v when it executes line
23, this value v was proposed by some process. On the other hand, if pi decides
v executing Task 2, this value v was also proposed by some process because it is
broadcast when line 23 is executed. So, for each run, every decided value has to
be proposed by some process of the system.

Observation 1 If some correct process does not wait forever at line 7 of a round r,

then no other correct process will wait forever at line 7 of this round r.

Proof: If a correct process pi reaches line 11, it broadcasts a message (PH0 , false, r , esti)
that makes the condition of line 7-c true for every other correct process (recall that
links are reliable).

We say that a process pi changes its leading state if the value of li is changed.

Observation 2 If a correct process changes its leading state after executing line 5 of

round r, then no correct process will wait forever at line 7 of this round r.

Proof: If a correct process changes its leading state after executing line 5 of round
r, then the condition of line 7-a becomes true and it unblocks. Then, from Obser-
vation 1, every other correct process stops waiting at line 7 of this round r.

Observation 3 If any correct process waits forever at line 7 of a round r, then the

condition of line 7-b evaluates to false forever for every correct process.

Proof: Otherwise, some correct process would stop waiting and, from Observation
1, every other correct process would stop waiting at line 7 of round r.

Lemma 7 No correct process waits forever at line 7.

Proof: Let us assume, by the way of contradiction, that there is a correct pro-
cess that waits forever at line 7 of a round r. Then, every other correct process
waits forever too. Otherwise Observation 1 would not hold. Besides, every correct
process keeps its initial leading state. Otherwise Observation 2 would not hold.
Finally, since every other correct process waits forever, then from Observation
3, the condition of line 7-b evaluates to false forever for every correct process.
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Since every correct process keeps its initial leading state, the failure detector of
every correct process eventually computes D.quantity correctly. Since all the cor-
rect leader processes execute line 6, and they are leaders forever from Observation
2, then, eventually, at least one correct process will receive at least D.quantity
(PH0 , true, r ,−) messages (recall that the links are reliable), what contradicts the
initial assumption, completing the proof.

Lemma 8 Let pl be a leader process in run R. There is a round r of run R after which

every process pi that finishes phase PH0 has esti = estl at the end of phase PH0 of

each round r′ ≥ r.

Proof: Let t be the time in a run R when (a) all faulty processes have crashed
and their broadcast messages have already been delivered, (b) D.leader does not
change in any correct process anymore, and (c) D.quantity does not change in
any leader process anymore. Let r be the largest round in run R reached by any
correct process at time t. Let us consider that this process is pi. From Lemma
7, no process blocks in phase PH0 of this round r. From the assumption that a
majority of processes are correct, no process blocks in phases PH1 and PH2 of
round r. Then, all leader processes eventually reach this round r and broadcast
(PH0 , true, r , est). Hence, we have two cases:

Case 1. Process pi is a leader process. Its variable D.quantityi has the total num-
ber of leader processes and it receives this number of messages (PH0 , true, r , est)
(line 7-b). Then, it sets esti with the minimum value est of all processes. Each
leader process pl 6= pi will also receive the same messages and will also set in
its variable estl the same minimum value est. After that, process pi broadcasts
(PH0 , false, r , esti) (line 11). Therefore, variable est of all leader processes have the
same value.

Case 2. Process pi is a non-leader process. Each leader process, when finishes
phase PH0 , broadcasts (PH0 , false, r , est) with the minimum value est of all leader
processes (line 11). Hence, all messages (PH0 , false, r , est) received by process pi
have the value est of a same leader process.

Therefore, by the two previous cases, every process pi that finishes phase PH0

has esti with the same value of a leader process at the end of phase PH0 of this
round r. Note that after phase PH0 , the value in the variable est does not change
in the following two phases of the same round. Then, process pi keeps the same
common value in esti in phases PH1 and PH2 . Thus, in every round r′ ≥ r of a
run, every process pi that finishes phase PH0 of r′ has esti = estl at the end of
this phase PH0 , being pl a leader process.

Lemma 9 Agreement: For each run, every decided value has to be the same value.

Proof: Let us suppose that a process pi decides a value v in the round r of a run,
and a process pj decides a value v′ in round r′ ≥ r of the same run. Then, this
lemma is true if we show that v = v′.

Let us use induction on the number of rounds r′ to show this result. Let us
assume that the base case of our induction is r′ = r (both processes pi and pj
decide in the same round). If a process pi decides a value v in this round r, it is
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because a majority of processes broadcasts (PH1 , r , v) and (PH2 , r , v , true). Sim-
ilarly, if a process pj also decides in this same round r, another (or the same)
majority of processes broadcasts (PH1 , r , v ′) and (PH2 , r , v ′, true). Then, because
two majorities has at least one process in common, v = v′. Hence, the base case
is satisfied. Induction hypothesis: Let us assume that the claim is true until round
r′ = r + k, k ≥ 1. Then, if a process pi decides a value v in round r, every pro-
cess pj that decides until round r + k holds v in variable estj . Step k+1: We now
show that the claim also holds in round r′ = r + k + 1. Note that if a process
decides a value v′ in round r + k, this process receives messages (PH1 , r + k , v ′)
and (PH2 , r + k , v ′, true) of a majority of processes. Also note that if a process
that does not decide in round r+k wants to finish this round, it also has to receive
messages (PH2 , r + k ,−,−) of a majority of processes. Then, at least one message
of this majority has to be (PH2 , r + k , v ′, true). By induction hypothesis, v′ = v.
Hence, every process pj that reaches round r + k + 1 holds in its variable estj the
value v in round r+k. Clearly, if any process pj decides in this round r+k+1, the
value only can be v, hence, the claim is also satisfied for r′ = r+ k+ 1. Therefore,
the lemma is shown by induction.

Lemma 10 Termination: For each run, every correct process of the system eventually

has to decide a value.

Proof: From Lemma 8, there is a round r in every run after which every process
pi that finishes phase PH0 has esti = estl, being pl a leader process. Then, from
Lemma 7 and because a majority of processes never crashes, all received messages
in phase PH1 of round r are (PH1 , r , estl ) and its number is greater than n/2.
Hence, process pi does not block in phase PH1 and all received messages in phase
PH2 of round r are (PH2 , r , estl , true), and its number is also greater than n/2. So,
every process pi that finishes phase PH2 in round r can decide. Therefore, every
correct process of the system decides.

Theorem 1 The algorithm described in Figure 2 solves the consensus problem in

AAS [AΩ ′].

Proof: From Lemma 6, Lemma 9 and Lemma 10, validity, agreement and termi-
nation properties are satisfied in every run.

4.5 Analysis of rounds

A way to consider the costs of an algorithm for consensus in message-passing
systems is to evaluate the number of rounds needed to decide a value. In [5]
is shown that 2t + 1 is the lower bound on the number of rounds to achieve
consensus (t is the maximum number of crashed processes). They can determine it
exactly because they use the perfect failure detector for anonymous systems AP .
Differently of [5] because we do not use a perfect failure detector, the maximum
number of rounds in Acons for each run can not be bounded a priori. Therefore, we
are going to analyze the extreme cases. Our algorithm Acons works in asynchronous



Title Suppressed Due to Excessive Length 17

consecutive rounds, such that each round is formed by three phases (PH0 , PH1

and PH2 ).
The best case is when each process knows if it is a leader or a non-leader since

the beginning of the run. That is, (∀pi ∈ L, ∀pk ∈ NL, ∀τ) =⇒ (lτi = true and
lτk = false). Note that this happens if the failure detector D of class AΩ ′ stabilizes
since time τ = 0 and returns true or false accurately. Hence, in this best case a
process decides in the phase PH2 of the first round (line 23). The worst case for
a correct process pi is if when the failure detector stabilizes, it is in the highest
round r′ of all processes. In this case, pi has to wait until the rest of processes that
form the majority reach its round r′ (line 7). Then, this process pi will decide in
the phase PH2 of this round r′ (line 23).

5 Conclusion

Anonymous systems are necessary when an identity is not possible in the processes
of the system. Such cases are common, for example, in sensor networks where
devices have constraints in computational power, a small storage capacity, or when
there are a very big number of devices in the system.

The AΩ′ failure detector [10] has been proposed very recently as a new counter-
part of the omega failure detector for anonymous systems. We prove in this paper
that AΩ′ is strictly weaker than AΩ (which is the previously proposed version of
the anonymous omega failure detector proposed in the literature).

It has been shown in [6] that AΩ is not implementable, and we present in this
paper the first implementation of AΩ′. Therefore, we prove in this paper that AΩ′

is implementable.
Finally, we prove in this paper that consensus can be solved in anonymous

asynchronous systems using AΩ′ when a majority of processes does not crash.
Hence, we also show here that consensus is implementable in anonymous systems.
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