
www.ietdl.org

IE

d

Published in IET Communications
Received on 29th September 2013
Revised on 16th December 2013
Accepted on 26th January 2014
doi: 10.1049/iet-com.2013.0864
T Commun., 2014, Vol. 8, Iss. 8, pp. 1409–1416
oi: 10.1049/iet-com.2013.0864
ISSN 1751-8628
Design of improved Luby transform codes with
decreasing ripple size and feedback
Lei Zhang1,2, Jianxin Liao1,2, Jingyu Wang1,2, Tonghong Li3, Qi Qi1,2

1State Key Laboratory of Network and Switching Technology, Beijing University of Posts and Telecommunications,

Beijing 100876, People’s Republic of China
2EBUPT Information Technology Co., Ltd., Beijing 100191, People’s Republic of China
3Department of Computer Science, Technical University of Madrid, Madrid, Spain

E-mail: liaojx@bupt.edu.cn

Abstract: In this study, the design of improved Luby transform codes with decreasing ripple size (LTC-DRS) with feedback is
presented. Under the proposed design, a new degree distribution algorithm named generalised degree distribution algorithm
(GDDA) is proposed, which can achieve arbitrary ripple size revolution accurately. On the basis of GDDA, an accurate ripple
size revolution based on binomial fitting is proposed, which can keep the ripple size to a suitable value throughout the
decoding process. Furthermore, the authors introduce the feedback and propose a shifted ripple size revolution to diversify the
degree values. The improved LTC-DRS with feedback is evaluated and compared with the existing schemes. The simulation
results demonstrate that it outperforms other existing schemes in terms of average overhead, average degree of encoded
symbols, memory usage and energy consumption.
1 Introduction

In the past few years, lots of sensors like global positioning
system, accelerometer, camera and microphone have been
embedded in mobile devices. Thus, software updates need
to be broadcasted to all devices frequently over wireless
networks. However, communication over wireless networks
suffers from high packet loss rate and long delay. Forward
error correction codes such as Turbo codes [1] and low
density parity check code codes [2] are employed for
communication over wireless networks to recover symbols
that are lost during the transmission. However, they cannot
guarantee efficient transmission over broadcast networks
where there exist a variety of data loss patterns [3].
Fortunately, digital fountain codes, which was originally
proposed in 1998 [4], can provide reliable and efficient
information delivery over broadcast networks without any
knowledge of channel state information at transmitter. Its
key property is that the source data can be recovered from
any subset of encoded symbols, given that enough symbols
are received.
The first universal fountain codes named Luby transfer

(LT) codes was proposed in 2002 [5]. However, LT codes
have a constant ripple size during the decoding process,
which leads to a high overhead, in particular, when the
code length is small [6, 7]. Based on LT codes, Raptor
codes were proposed in [8], which is the concatenation of
systematic pre-codes and LT codes. Several degree
distributions were given [8] for particular sizes of input
symbols, but no general algorithm was proposed to
construct a suitable degree distribution for any size of input
symbols. In addition, a novel suboptimal degree distribution
algorithm was proposed in [9]. Several approaches were
introduced to construct the degree distribution [10–12], but
their performances are not optimised. In [13], the variance
of the ripple size was analysed throughout the LT decoding
process. LT codes with decreasing ripple size (LTC-DRS)
was proposed in [14], which uses a decreasing ripple size to
reduce the overhead. However, the ripple size revolution
does not consider the interaction between the ripple size
and the probability that an input symbol is released and
added into ripple.
In these codes, encoded symbols are generated without

knowledge of feedback, and thus the total number of
encoded symbols should be large enough to recover all
input symbols. The fixed-rate error control fountain codes
was proposed in [15], where a global decoding algorithm,
incorporating the feedback between component codes of
Raptor codes, is introduced to improve the performance over
memoryless and correlated fading channels. Growth codes,
employing feedbacks from receiver to keep transmitter
aware of decoding process, were proposed in [16]. It
increases the degree of encoded symbols to maximise the
recovery probability of each encoded symbol. Real time
oblivious approach was proposed in [17]. However, it is
only suitable for the receiver with limited memory, and
requires a large number of encoded symbols for recovering
all input symbols. shifted LT (SLT) codes was proposed in
[18], which achieves significant communication gain as the
feedback information is exploited to better distribute the
degree of encoded symbols. However, the diversity of
degree values is limited in SLT codes.
1409
& The Institution of Engineering and Technology 2014

www.ietdl.org

In this paper, we first present a new degree distribution

algorithm named generalised degree distribution algorithm
(GDDA), which can achieve arbitrary ripple size revolution
accurately. On the basis of an accurate ripple size
revolution, an improved LTC-DRS is proposed, which can
keep the ripple size to a suitable value in the decoding
process. With the introduction of feedback, our improved
LTC-DRS can dynamically adjust the degree distribution
according to the number of input symbols that have been
recovered. Furthermore, our improved LTC-DRS with
feedback diversifies the degree values. Simulation results
demonstrate that our improved LTC-DRS with feedback
outperforms the original LTC-DRS with feedback in terms
of average overhead, average degree of encoded symbols,
memory usage and energy consumption.
The rest of the paper is organised as follows. In Section 2,

the review of LT codes and SLT codes are given. In Section 3,
our GDDA is presented after some preliminaries are
demonstrated. In Section 4, our improved LTC-DRS with
feedback is presented. The performance of our improved
LTC-DRS with feedback is analysed in Section 5. In
Section 6, our experimental design is outlined, and the
efficiency of our improved LTC-DRS with feedback is
illustrated by our experiment results. Finally, our work is
summarised.
2 Review of LT codes and SLT codes

2.1 LT codes

In this section, we briefly review LT codes. Suppose bulk data
comprising of k input symbols need to be transmitted from
transmitter to receiver. Let ρ(1)…ρ(k) be the degree
distribution, such that ρ(d) denotes the probability that
degree d is chosen. An encoded symbol is generated as
follows:

1. A degree (d) is chosen at random according to the
distribution ρ(1)…ρ(k).
2. d Distinct input symbols are chosen uniformly at random
from k input symbols.
3. An encoded symbol is generated by performing bitwise
XOR operations on the selected d input symbols.

Any one of selected d input symbols is called the neighbour
of this encoded symbol. Let (1 + ε)k denote the sufficient
number of encoded symbols for successful decoding. The
process of belief propagation (BP) decoding process is
performed through the reverse bitwise XOR operations.
Initially, all input symbols are unrecovered. All encoded
symbols with degree one are firstly released to recover their
unique neighbours. All recovered input symbols that have
Fig. 1 Decoding process of LT codes

a Initial state
b Input symbol 1 is released
c Input symbol 2 and 3 are released
b Input symbol 3 is released again

1410
& The Institution of Engineering and Technology 2014
not been processed are called ‘ripple’. Symbols in the ripple
are processed one by one until all input symbols are
recovered. The processing of an input symbol in ripple is as
follows:

1. It is removed from the ripple.
2. It is removed as a neighbour from all encoded symbols that
have it as a neighbour.
3. For each encoded symbol with exactly one remaining
neighbour, its remaining neighbour is released; this
operation is called a symbol ‘release’.
4. New released input symbols previously unrecovered are
added into the ripple.

For example, in Fig. 1a, six encoded symbols are sufficient
for successful decoding. In the first step of decoding, shown
in Fig. 1b, input symbol 1 is added into ripple. In the
second step, shown in Fig. 1c, input symbol 1 in ripple is
processed, that is, input symbols 2 and 3 are released and
added into ripple. In the third step, shown in Fig. 1d, input
symbol 2 is processed, that is, input symbol 3 is released.
However, input symbol 3 is already in the ripple, in this
case the encoded symbol is redundant.

2.2 SLT codes

The encoding and decoding of SLT codes are similar to these
of LT codes, except that SLT codes shift the robust soliton
distribution (RSD) according to the number of input
symbols received. This feature enables SLT to experience
the same theoretical properties as LT codes, and achieve
significant throughput gain. In LT codes, encoded symbols
are generated according to the coding graph. The edge
between an input symbol and an encoded symbol is
randomly generated by using RSD. However, when some
input symbols have been recovered in receiver, it is
inefficient that new encoded symbols are still generated
according to RSD. Let k denote the number of input
symbols, and ‘round’ (x) is a function which returns the
nearest integer to x. The degree distribution of SLT codes is
shown in (1), which is proposed and proved in [18]

gk, n(d
′) = m k−n() d() for round kd

k − n

()
= d′ (1)
3 Design of generalised degree distribution
algorithm

In this paper, we assume that the BP decoding process is
adopted. We first analyse the proposition presented in [5],
IET Commun., 2014, Vol. 8, Iss. 8, pp. 1409–1416
doi: 10.1049/iet-com.2013.0864

www.ietdl.org

that is, the probability that a particular encoded symbol of
degree d is released when L input symbols remain
unprocessed. Since an encoded symbol chooses its
neighbours independently of all other encoded symbols, the
probability that this encoded symbol is released when L
input symbols remain unprocessed is independent of the
probability that any other encoded symbol is released. The
degree release probability is shown in (2) (see (2))

Lemma 1: (probability that an input symbol is released and
added into ripple): Consider LT codes with an arbitrary
degree distribution ρ(d), d = 1,…, k. Given that the ripple
size is R(L + 1) when L input symbols remain unprocessed,
the probability that an encoded symbol is released and
added into ripple when L input symbols remain
unprocessed is shown in (3)

r(L) = L− R L+ 1()
L

∑k
d=1

r(d)q(d, L) (3)

Proof: Referring to [5], the probability that an encoded
symbol is released when L input symbols remain

unprocessed is
∑k
d=1

r d()q d, L(). On the other hand, the

chance that a released encoded symbol is added into the
ripple is L− R(L + 1)/L. Hence, Lemma 1 holds up.

From Lemma 1, we can see that r(L) depends on ρ(d). On the
other hand, by using traditional degree distribution algorithms
such as these proposed in [9, 14], we can calculate ρ(d),
which relies on r(L). Thus, r(L) and ρ(d) are
interdependent. Owing to this fact, we cannot create an
accurate ripple size revolution directly, and instead we first
propose a degree distribution algorithm named GDDA that
can achieve arbitrary ripple size revolution accurately. By
using GDDA, the influence of the ripple size revolution
caused by the probability that a new released symbol is
already in this ripple is eliminated.

Definition 1 (impractical GDDA): Let Q(L) denote the
designed number of input symbols added into ripple in the
(k− L)th decoding step. Given that the number of encoded
symbols required to recover all k input symbols is E, the
impractical GDDA is shown in (4)

rimpractical(d) =
k × L× Q(L)

E × L− R L+ 1()() × d(d − 1)
,

L = k − d + 1, . . . , 1

(4)

Lemma 2: Impractical GDDA can achieve arbitrary designed
ripple size revolution Q(L), L = k, …, 1.

Proof: As in the proof of Proposition 10 in [5],∑k
d=1 q d, L()/d d − 1() = 1

k
for all L = k, …, 1. Hence, the
q(d, L) =

1,

d d − 1()L∏d−3
j=0 k − L+ 1((

∏d−1
j=0 k − j

()
0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

IET Commun., 2014, Vol. 8, Iss. 8, pp. 1409–1416
doi: 10.1049/iet-com.2013.0864
actual number of input symbols added into ripple in the
(k− L)th decoding step is calculated as follows

Qactual(L) = E × r(L) = E × L− R L+ 1()()
L

×
∑k
d=1

rimpractical(d)× q(d, L)

= k × Q(L)
∑k
d=1

q(d, L)

d(d − 1)
= Q(L)

Qactual(L) equals to the designed number Q(L), which means
that GDDA can achieve arbitrary designed ripple size
revolution Q(L). Hence, Lemma 2 holds up. □

We use the term ‘impractical GDDA’ because ρimpractical(d)
changes with L, which should be fixed in the encoding
process. As impractical GDDA cannot be used in LT codes,
we need to find a practical GDDA.

Definition 2 (practical GDDA): To simplify the expression of
degree distribution, we define the coefficient of degree d,
which is shown in (5). Thus, the practical GDDA is given
by (6)

t(d) =
∑k−d+1

L=1 Q(L)× q d, L()∑k−d+1
L=1 q d,L() L− R L+ 1()()()

/L
,

d = 1, . . . , k

(5)
r d() = k × t d()
E × d(d − 1)

, d = 1, . . . , k (6)

We have:
∑k

d=1 r d() = 1. Thus, E acts as the normalisation
factor.

Lemma 3: Practical GDDA achieves the same performance as
impractical GDDA.

Proof: Consider the number of encoded symbols with degree
d released and added into ripple in the (k− L)th decoding
step. If the degree distribution is calculated by impractical
GDDA, the number of input symbols added into ripple is
((L− R(L + 1))/L)ρ(d) × q(d, L). On the other hand, if the
degree distribution is calculated by practical GDDA, the
number of input symbols added into ripple is ((L− R(L +
1))/L)ρimpractical(d) × q(d, L). We can see that the total
number of encoded symbols with degree d added into ripple
from L = 1 to L = k− d + 1 in practical GDDA is equal to
the one in impractical GDDA, which is shown in (7).
) − j
)
,

L = k, d = 1
L = 1, . . . , k − d + 1,

d = 2, . . . , k
for all other d and L

(2)

1411
& The Institution of Engineering and Technology 2014

Fig. 2 RMS distance as a function of decoding step

www.ietdl.org

Hence, Lemma 3 holds up.

∑k−d+1

L=1

L− R L+ 1()
L

r d() × q d,L()
()

= k × t(d)

E × d(d − 1)

∑k−d+1

L=1

L− R(L+ 1)

L
q(d, L)

()

=
∑k−d+1

L=1

L− R(L+ 1)

L
rimpractical(d)× q(d, L)

()
(7)
Table 1 Set of degree values

LT codes SLT
codes

Improved LTC-DRS with
feedback

{1, 2, 3, 4, 5, 6, 7, 8, 9,
10}

{2, 4, 6,
8, 10}

{2, 3, 4, 5, 6, 7, 8, 9, 10}
4 Design of improved LTC-DRS with
feedback

For a good degree distribution, the ripple size throughout the
decoding process should be small and the ripple should not
become empty before the successful decoding. The
relationship between the degree of an encoded symbol and
the point of release has been derived in [5]. In this section,
we first present the ripple size revolution without feedback
and propose the design of our improved LTC-DRS.
Afterwards, we discuss the ripple size revolution with
feedback and propose the design of our improved
LTC-DRS with feedback.

4.1 Construction of ripple size evolution without
feedback

In [14], Sorensen et al. argued that the ripple size should be
larger than c1L

1/c2 , for the suitable constant c1 and c2,
which is justified by viewing the ripple evolution as a
simple random walk with variable bias, that is, each time an
encoded symbol is processed, the probability that the ripple
size is increased by one is less than the probability that the
ripple size is decreased by one. However, it is difficult to
create an accurate random walk model for the ripple [14].
In our design of GDDA, the number of input symbols
released at each step is extended to cover the probability
that a new released symbol is already in the ripple. Hence,
we expect that an input symbol is added into the ripple at
each decoding step. For example, if the probability that an
input symbol is added into the ripple is λ in the (k− L)th
decoding step, then Q(L)/λ input symbols are released in
this step. We choose the ripple size evolution based on a
random walk model for the ripple. This model is a simple
symmetric one-dimensional random walk model, that is, the
ripple size either increases with one or decreases with one.
We use the binomial fitting method to capture the dynamics
of the root mean square (RMS) distance. The ripple size is
shown in (8)

R L() = b1L
2 + b2L+ b3, L = k, . . . , 1 (8)

For example, the expected ripple size for k = 256 is shown in
Fig. 2, which shows that the binomial fitting method is better
than the method proposed in [5, 14].
After choosing the designed size of the ripple evolution, the

number of symbols that must be released in the (k− L)th
decoding step is shown in (9), where R(L + 1) is the ripple
size when L input symbols remain unprocessed. By
substituting the designed ripple size revolution R(L) and
1412
& The Institution of Engineering and Technology 2014
Q(L) into (5) and (6), the degree distribution of our
improved LTC-DRS is constructed

Q(L) = R(L), L = k
R(L)− R(L+ 1)+ 1, k . L . 0

{
(9)
4.2 Construction of ripple size evolution with
feedback

The RSD of LT codes is too sparse when n input symbols
have been recovered by receiver. These n recovered input
symbols are essentially the encoded symbols with degree
one. Thus, the degree distribution should be changed for
the future encoding. However, the diversity of degree
values generated by the method proposed in [18] is limited.
For example, assuming that five input symbols (the number
of all input symbols is ten) have been recovered in receiver.
The set of degree values is shown in Table 1. Only a subset
of degree is used to generate encoded symbols. However,
the diversity of degrees reduces the probability that encoded
symbols are linear dependent. In this section, a method of
diversifying the degree values is proposed.

Lemma 4: (degree release probability): The probability that an
encoded symbol of degree d is released when n input symbols
have been recovered is shown in (10)

u(d, k, n) = C1
k−nC

d−1
n

Cd
k

, d = 1, 2, . . . , n+ 1 (10)

Proof: The analysis of the classic balls and bins process can
be applied here. This is the probability that one neighbour
of the encoded symbol is among k − n input symbols that
are not recovered, and the other d− 1 neighbours are
among n recovered input symbols. □

Lemma 5: For k input symbols, the minimum degree of
degree distribution is given by d0 = k/k− n when n input
symbols have been recovered.
IET Commun., 2014, Vol. 8, Iss. 8, pp. 1409–1416
doi: 10.1049/iet-com.2013.0864

www.ietdl.org

Proof: Let P(X = i) denote the probability that i unrecovered
symbols are chosen when d input symbols are chosen from
k input symbols. It conforms to a hypergeometric
distribution, and its probability is shown in (11). Thus,
θ(d, k, n) is interpreted as the probability that only one
unrecovered symbol is chosen. The mathematical
expectation of P(X = i) is shown in (12). Substituting E(X) = 1,
we yield the statement of Lemma 5

P(X = i) = Ci
k−nC

d−i
n

Cd
k

d = 1, 2, . . . , n+ 1 (11)

E(X) = d(k − n)

k
(12)

Lemma 6: When L input symbols have not been processed
and n input symbols have been added into the ripple before
the start of the decoding process, the ripple size is shown in (13)

R′(L) = R′(L+ 1)− 1, R′(L+ 1) . R(L)+ 1
R(L), R′(L+ 1) ≤ R(L)+ 1

{
(13)

Proof: When R′(L + 1) > R(L) + 1, the ripple size is too large
and thus the possibility that the released symbol is redundant
is high. The ripple size should be decreased quickly.
However, the ripple size can be decreased by one at most
each time a symbol is processed. Thus, we yield the
statement of Lemma 6. □

Definition 3: Let Q′(L) denote the ripple size evolution when
feedback is introduced, which is shown in (14)

Q′(L) = R′(L), L = k
R′(L)− R′ L+ 1() + 1, k . L . 0

{
(14)
4.3 Improved LTC-DRS with feedback
Lemma 7: (degree distribution of improved LTC-DRS with
feedback): Let n denote the number of input symbols that
have been added into the ripple before the start of the
decoding process, and E′ denotes the number of encoded
symbols required to recover all k input symbols. To
simplify the expression of degree distribution, we define
coefficient of degree d, which is shown in (15). Thus, the
degree distribution of improved LTC-DRS with feedback is
given by (16)

t′(d) =
∑k−d+1

L=1 Q′(L)× q d, L()∑k−d+1
L=1 q d, L() L− R′ L+ 1()()()

/L
,

d = d0, . . . , k, d0 =
k

k − n

(15)

r′ d() = k × t′ d()
E′ × d(d − 1)

, d = d0, . . . , k, d0 =
k

k − n
(16)

Proof: The minimum degree in this degree distribution is
d0 = k/k− n, thus, we set ρ′(d) = 0, d = 1,…, d0− 1. By
IET Commun., 2014, Vol. 8, Iss. 8, pp. 1409–1416
doi: 10.1049/iet-com.2013.0864
substituting the designed ripple size revolution R′(L) and
Q′(L) into (5) and (6), we yield the statement of Lemma 7. □
5 Analysis of improved LTC-DRS with
feedback

In this section, we theoretically analyse the properties of
improved LTC-DRS with feedback. The following
proposition shows that the decoding graph of a reliable
decoding algorithm has at least an order of E′ encoded
symbols and the average degree of an encoded symbol is
relatively low.

Lemma 8: A decoder requires E′ encoded symbols to recover
k− n input symbols

E′ = k
∑k
d=1

t′ d()
d d − 1()

()
(17)

Proof: Note that Lemma 7 represents a degree distribution
algorithm, where E′ measures how many encoded symbols
must be collected in order to achieve the designed ripple
size. We sum the degree distribution of all degrees d, as
shown in (18). Thus, we yield the statement of Lemma 8 by
transforming (18)

1 =
∑k
d=1

r′ d() = k

E′
∑k
d=1

t′ d()
d d − 1()

()
(18)

Lemma 9: The average degree of an encoded symbol under
the proposed degree distribution of improved LTC-DRS
with feedback is given in (19)

�d =
∑k
d=1

t′ d()
d − 1()∑k

d=1 t′ d()/d d − 1()()
()

(19)

Proof: The proof is obtained from the definition, as shown in
(20). By substituting (15) and (16), we yield the statement of
Lemma 9

�d =
∑k
d=1

d × r′ d() (20)

Definition 4: The overhead (1 + ε) in improved LTC-DRS
with feedback is given by (21)

1+ 1() = E′

k − n
(21)

Table 2 shows the expected number of encoded symbols and
the average degree of encoded symbols required for
successful decoding. The expected overhead required for
successful decoding in improved LTC-DRS is smaller than
that in LTC-DRS. With 1024 input symbols, improved
LTC-DRS requires 1024 × 1.055 encoded packets, whereas
LTC-DRS requires 1024 × 1.087 [14]. When n = k/2, we
1413
& The Institution of Engineering and Technology 2014

Table 2 Expected number of encoded symbols and the
average degree of encoded symbols for a variety of k

k 256 512 768 1024
b1 −9.749 ×

10−5
−3.647 ×
10−5

−2.182 ×
10−5

−1.431 ×
10−5

b2 0.0658 0.0469 0.0403 0.0346
b3 1.791 2.741 3.177 3.910
n = 0 (1 + ε) 1.108 1.078 1.062 1.055

�d 7.017 7.715 7.911 8.186
n = k/2 (1 + ε) 1.268 1.227 1.203 1.194

�d 10.629 11.844 12.232 12.715

Fig. 3 Number of encoded symbols in memory as a function of the
number of encoded symbols transmitted

www.ietdl.org
assume that k/2 input symbols have been recovered, the
degree distribution is constructed to recover k− n input
symbols that have not been recovered. Interestingly, the
overhead of n = k/2 is larger than that of n = 0. This is
because many encoded symbols are redundant to recover
the input symbols that have not been recovered.
Fig. 4 Number of encoded symbols in memory as a function of the
number of input symbols

Fig. 5 Average overhead as a function of number of input symbols
6 Numerical results

We have presented our improved LTC-DRS with feedback
and outlined its properties for the practical implementation.
In this section, we evaluate its performance by comparing it
with our improved LTC-DRS, LTC-DRS with feedback and
LTC-DRS through simulations. LTC-DRS with feedback is
constructed by combining LTC-DRS with SLT codes.

6.1 Comparison of improved LTC-DRS and
LTC-DRS

We first compare improved LTC-DRS with feedback, against
improved LTC-DRS, LTC-DRS with feedback and LTC-DRS
in a single unicast stream. In each round of simulation an
encoded symbol is generated and transmitted, until all input
symbols are recovered by receiver. In the scheme with
feedback, there is a feedback channel between transmitter
and receiver, and the feedback is sent once every

��
k

√
input

symbols are successfully recovered by receiver, following
the configuration in a related literature [18]. Encoded
symbols are stored in the memory if they have not been
successfully recovered by the decoding process. We assume
that the channel between transmitter and receiver is an
erasure one, and loss rate r = 10%. The metrics used in our
evaluations are: (i) the memory usage; (ii) the average
overhead required for successful decoding, that is, when all
k input symbols are recovered; (iii) the average degree of
encoded symbols required for successful decoding; and (iv)
the energy consumption.
We set the number of input symbols k to 256. Fig. 3 shows

the number of encoded symbols cached in memory as a
function of the number of encoded symbols transmitted
from transmitter to receiver. We can see that the schemes
with feedback outperform the schemes without feedback. In
addition, we can see that improved LTC-DRS needs less
memory than LTC-DRS. This is because of the more
accurate degree distribution used, which releases the
encoded symbol with high probability. The maximum
number of encoded symbols cached in memory as a
function of the number of input symbols is shown in Fig. 4
(on average, over 100 000 trials). Improved LTC-DRS with
feedback saves more memory with the increase of k,
compared with other schemes. This is because in improved
LTC-DRS with feedback, the probability that an encoded
1414
& The Institution of Engineering and Technology 2014
symbol is released becomes smaller when k increases. The
average overhead of encoded symbols as a function of the
number of input symbols is shown in Fig. 5. When k is
small, all schemes show similar performances. However, as
the number of input symbols increases, improved LTC-DRS
with feedback performs best. For example, with 1024 input
symbols, improved LTC-DRS with feedback requires 1110
encoded symbols in the average compared with 1128
encoded symbols needed in LTC-DRS. Fig. 6 shows the
average degree of encoded symbols as a function of the
number of input symbols. Note that the average degree of
encoded symbols for improved LTC-DRS without feedback
and improved LTC-DRS with feedback increases more
slowly than the other two schemes. This is because of the
accurate degree distribution used, which approximates to
the ideal degree distribution. Fig. 7 shows the energy
consumption of different schemes by varying k. The energy
consumption is measured by using the PowerTOSSIM
simulator. Obviously, improved LTC-DRS without
IET Commun., 2014, Vol. 8, Iss. 8, pp. 1409–1416
doi: 10.1049/iet-com.2013.0864

Fig. 7 Total energy used by all nodes as a function of number of
input symbols

Fig. 6 Average degree of encoded symbols as a function of number
of input symbols

Fig. 9 Total energy used by all nodes as a function of symbol loss
in forward channel

www.ietdl.org
feedback requires less energy than improved LTC-DRS with
feedback, which needs the energy to send feedback to
receiver, and receive feedback and shift the degree
distribution in transmitter.
6.2 Communication of broadcast

In this section, we study the communication cost in broadcast.
Our experiment consists of six sensor nodes, in which one
node serves as the broadcaster and others serve as receivers.
All feedback channels from five nodes to the broadcaster
are set with 5% loss rate, and the loss rate of forward
channel are varied from 0 to 10%. The degree distributions
are pre-computed at the expense of increased memory usage
in order to save energy. Our results shown in Fig. 8 are the
averaged values over 100 trials. We can see that improved
LTC-DRS with feedback transmits fewer symbols than
Fig. 8 Average overhead of encoded symbols transmitted as a
function of symbol loss in forward channel

IET Commun., 2014, Vol. 8, Iss. 8, pp. 1409–1416
doi: 10.1049/iet-com.2013.0864
others for the complete dissemination of the data, thus
improved LTC-DRS with feedback is significantly more
efficient than others. Fig. 9 shows the energy measurements
of different schemes by using the Power TOSSIM
simulator. In this figure, we can see that improved
LTC-DRS without feedback achieves a roughly 17%
improvement in terms of energy savings compared with
LTC-DRS with feedback.
7 Conclusions

In this paper, we first propose our improved LTC-DRS, in
which a new degree distribution is designed based on our
GDDA, random walk and the binomial fitting method.
When the feedback is introduced, we note that the degree
diversity of SLT codes is limited, which means that the
probability that encoded symbols are linear dependent is
high. After analysing how the number of recovered symbols
impacts the minimum degree of encoded symbols, we
propose a new degree distribution with feedback to
diversify the degree value.
Through simulations, we demonstrate that improved

LTC-DRS with feedback outperforms improved LTC-DRS,
LTC-DRS and LTC-DRS with feedback in terms of average
overhead, average degree of encoded symbols, memory
usage. This is because improved LTC-DRS with feedback
uses a new shifted degree distribution, which can keep the
ripple size to a suitable value to reduce the redundancy of
encoded symbols. We also note that improved LTC-DRS
outperforms improved LTC-DRS with feedback in terms of
energy consumption. Note that our GDDA can achieve
arbitrary ripple size revolution in LT codes. Hence, different
types of LT codes can be constructed for different
scenarios. For example, if the ripple size revolution keeps
the ripple to a large size at the beginning of the decoding
process, the average degree of encoded symbol will be
decreased, and thus these LT codes are more suitable for
resource limited devices. Our future work plans to apply
this technology to the broadcast communication in wireless
relay networks.
8 Acknowledgments

This work was jointly supported by: (i) the National Basic
Research Program of China (no. 2013CB329102); (ii) the
National Natural Science Foundation of China (no.
61372120, 61271019, 61101119, 61121001, 61072057 and
60902051); (iii) PCSIRT (no. IRT1049); (iv) MICINN (no.
TIN2010-19077); and (v) CAM (no. S2009TIC-1692).
1415
& The Institution of Engineering and Technology 2014

www.ietdl.org

9 References

1 Berrou, C., Glavieux, A.: ‘Near optimum error correcting coding and
decoding: Turbo-codes’, IEEE Trans. Commun., 1996, 44, (10),
pp. 1261–1271

2 Gallager, R.G.: ‘Low-density parity-check codes’, PhD thesis,
Department of Electrical Engineering, MIT, Cambridge, MA, MIT
Press, 1963

3 Huang, W.Z.: ‘Investigation on digital fountain codes over erasure
channels and additive white Gaussian noise channels’, PhD thesis,
Department of Electrical Engineering, Ohio University, 2012

4 Byers, J., Luby, M., Mitzenmacher, M., Rege, A.: ‘A digital fountain
approach to reliable distribution of bulk data’. Proc. SIGCOMM,
Vancouver, BC, CA, September 1998, pp. 56–67

5 Luby, M.: ‘LT Codes’. Proc. ACM Symp. Foundations of Computer
Science, Vancouver, BC, CA, November 2002, pp. 37–47

6 Sejdinovic, D., Piechocki, R., Doufexi, A.: ‘AND-OR tree analysis of
distributed LT codes’. Proc. Information Theory Workshop on
Networking and Information Theory, 2009, pp. 261–265

7 Bodine, E.A., Cheng, M.K.: ‘Characterization of Luby transform codes
with small message size for low-latency decoding’. Proc. Int. Conf.
Communications, 2008, pp. 1195–1199

8 Shokrollahi, A.: ‘Raptor codes’, Inf. Theory, 2006, 52, (6),
pp. 2551–2567

9 Zhu, H.P., Zhang, G.X., Li, G.X.: ‘A novel degree distribution algorithm
of LT codes’. Proc. Int. Conf. Communication Technology Proc., 2008,
pp. 221–224
1416
& The Institution of Engineering and Technology 2014
10 Bodine, E.A., Cheng, M.K.: ‘Characterization of Luby transform codes
with small message size for low-latency decoding’. Proc. ICC, 2008,
pp. 1195–1199

11 Hyytia, E., Tirronen, T., Virtamo, J.: ‘Optimal degree distribution for LT
codes with small message length’. Proc. INFOCOM, 2007,
pp. 2576–2580

12 Chen, C.M., Chen, Y.P., Shen, T.C., Zao, J.K.: ‘Optimizing degree
distributions in LT codes by using the multiobjective evolutionary
algorithm based on decomposition’. Proc. Congress on Evolutionary
Computation, 2010, pp. 1–8

13 Maatouk, G., Shokrollahi, A.: ‘Analysis of the second moment of the LT
decoder’, IEEE Trans. Inf. Theory, 2012, 58, (5), pp. 2558–2569

14 Sorensen, J.H., Popovski, P., Ostergaard, J.: ‘Design and analysis of LT
codes with decreasing ripple size’, IEEE Trans. Commun., 2012, 60,
(11), pp. 1–7

15 Sivasubramanian, B., Leib, H.: ‘Fixed-rate Raptor codes over Rician
fading channels’, IEEE Trans. Veh. Technol., 2008, 57, (6),
pp. 3905–3911

16 Kamra, A., Misra, V., Feldman, J., Rubenstein, D.: ‘Growth codes:
maximizing sensor network data persistence’. Proc. Applications,
Technologies, Architectures, Protocols Computer Communications,
2006, pp. 255–266

17 Beimel, A., Dolev, S., Singer, N.: ‘RT oblivious erasure correcting’,
IEEE Trans. Netw., 2007, 15, (6), pp. 1321–1332

18 Hagedorn, A., Agarwal, S., Starobinski, D., Trachtenberg, A.: ‘Rateless
coding with feedback’. Proc. INFOCOM, Rio de Janeiro, Brazil, April
2009
IET Commun., 2014, Vol. 8, Iss. 8, pp. 1409–1416
doi: 10.1049/iet-com.2013.0864

