Brief Announcement: Fault-tolerant Broadcast in
Anonymous Distributed Systems with Fair Lossy
Communication Channels °

Jian Tang
Distributed Systems Laboratory (LSD)
Technical University of Madrid
28031 Madrid, Spain

tjiapply@gmail.com

Sergio Arévalo
Technical University of Madrid
28031 Madrid, Spain
sergio.arevalo@eui.upm.es

ABSTRACT

Fault-tolerant broadcast is a fundamental service in dis-
tributed systems, by which processes can communicate with
each other consistently and reliably. It has two main forms:
Reliable Broadcast (RB) and Uniform Reliable Broadcast
(URB). This service has been extensively investigated in
non-anonymous distributed systems where processes have
unique identifiers, usually assume the communication chan-
nels are reliable, which is not always the case in real sys-
tems. In this paper, the fault-tolerant broadcast service is
studied in an anonymous asynchronous message passing dis-
tributed system model with fair lossy communication chan-
nels. Firstly, two simple and non-quiescent algorithms im-
plementing RB and URB are given. Secondly, two new
classes of failure detectors A© and AP* are proposed. Fi-
nally, with the information provided by A© and AP*, qui-
escent algorithms for both RB and URB are given.

Categories and Subject Descriptors
H.3.4 [System and Software|: Distributed Systems

General Terms
Algorithms, Design, Theory

Keywords

Anonymous, reliable broadcast, failure detector, quiescent.

*The full version of this work can be found in [6].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s).
PODC’15, July 21-23, 2015, Donostia-San Sebastidn, Spain.

ACM 978-1-4503-3617-8 /15/07.

http://dx.doi.org/10.1145/2767386.2767443.

Mikel Larrea
University of Basque Country UPV/EHU
20018 San Sebastian, Spain
mikel.larrea@ehu.eus

Ernesto Jiménez
Technical University of Madrid
28031 Madrid, Spain
Prometeo Researcher
Escuela Politécnica Nacional
170515 Quito, Ecuador
ernes@eui.upm.es

1. INTRODUCTION

Fault-tolerant broadcast is a fundamental service in dis-
tributed systems, which is helpful to build dependable appli-
cations. This service is used to disseminate messages among
a set of processes, and has two forms according to its guar-
antee of delivery [1]. The weakest form is Reliable Broad-
cast (RB), with RB-broadcast() and RB-deliver() operations,
introduced in [2]. In short, RB is a broadcast service re-
quiring all correct processes to deliver the same set of mes-
sages, and this set must include all messages broadcast by
correct processes. However, this broadcast form can cause
some inconsistencies when a process fails after delivering
a message. Hence, a stronger broadcast form called Uni-
form Reliable Broadcast (URB) has been proposed [3], with
URB-broadcast() and URB-deliver() operations, guarantee-
ing that if a process (no matter correct or incorrect) delivers
a message m, then all correct processes must deliver m too.

In this paper, the fault-tolerant broadcast service is stud-
ied in the anonymous asynchronous message passing dis-
tributed system model with fair lossy communication chan-
nels.

2. SYSTEM MODEL AND DEFINITIONS

We consider an anonymous asynchronous message passing
distributed system in which processes have no identifiers and
communicate with each other via a completely connected
network of fair lossy channels. The system is composed of
n processes, and denoted by II = {p;}(: = 1,...,n) (i is the
index of each process in the system. This index is just used
as a notation to simplify the description of the model and
the algorithms, and it is not known by any process).

Processes can fail by crashing. A process that does not
crash in a run is correct in that run, otherwise it is faulty.
A process executes its algorithm correctly until it crashes.
A crashed process can neither execute any more statements
nor recover. There is a global clock whose values are positive
natural numbers, which is also used for notation purposes.

Processes communicate with each other by sending and
receiving messages through fair lossy communication chan-
nels. Formally, a channel between two processes p and ¢
is fair lossy if it satisfies the following properties [4]: If p
sends a message m to ¢ an infinite number of times and ¢
is correct, then ¢ eventually receives m from p (Fairness);
If g receives a message m from p, then p previously sent
m to ¢; and if ¢ receives m infinitely often from p, then p
sends m infinitely often to ¢ (Uniform Integrity). Two basic
primitives are used in the system to send and receive mes-
sages: broadcast(m) and receive(m). We say that a process
p; broadcasts a message m when it invokes broadcast;(m).
Similarly, a process p; receives a message m when it invokes
receive;(m). Note that in anonymous distributed systems,
when a process receives a message m it cannot determine
who is the sender of m.

The system model is denoted by either AAS_F, [0] or
AAS_F, +[D]. AAS_F is an acronym for anonymous asyn-
chronous message passing distributed system with fair lossy
communication channels; () means that there is no additional
assumption, while D means that the system is enriched with
a failure detector of class D. The variable n represents the
total number of processes in the system, and t represents
the maximum number of processes that can fail.

Reliable Broadcast (RB) is a broadcast form that satisfies
the following three properties:

e Validity: If a correct process broadcasts a message m,
then it eventually delivers m.

e Agreement: If a correct process delivers a message m,
then all correct processes eventually deliver m.

e Uniform Integrity: For any message m, every process
delivers m at most once, and only if m was previously
broadcast by a process.

Note that Validity and Agreement imply that all correct
processes deliver all the messages broadcast by correct pro-
cesses. Uniform Reliable Broadcast (URB) is a broadcast
form stronger than RB, satisfying Validity and Uniform In-
tegrity (as RB), and Uniform Agreement, defined as follows:

e Uniform Agreement: If some process (correct or not)
delivers a message m, then all correct processes even-
tually deliver m.

3. IMPLEMENTATION OF FAULT TOLER-
ANT BROADCAST IN AAS_F

A key point to implement the fault-tolerant broadcast ser-
vice in AAS_F is how to distinguish a process or a message
from others. In this paper, we solve this by making each
message to be unique. This idea is easily implemented in
non-anonymous systems, usually by using the identifier of
the sender process and a sequence number. However, in
anonymous systems this method cannot be used due to the
fact that processes do not have identifiers. Hence, we pro-
pose to use a random function, assigning a different random
number to each message as its unique label or tag. We as-
sume that each number generated randomly is unique in the
system. Note that assigning a label to a message is better
than to a process, because there is no way to deduce the
messages sent from a given process. Indeed, all processes
still maintain their anonymity in the system.

With the idea mentioned above and a simple flooding
transmission technique, an implementation algorithm of RB
in AAS_F[(] and another algorithm implementing URB in
AAS_F[t<n/2] are proposed in our full paper [6]. Both al-
gorithms are non-quiescent, i.e., delivered messages need to
be re-broadcast periodically in order to cope with fair lossy
communication. Additionally, we show that it is impossible
to implement URB without a majority of correct processes.
Hence, in the next section we enrich the anonymous sys-
tem model with two failure detectors in order to implement
RB and URB quiescently and with any number of correct
processes.

4. TWO CLASSES OF ANONYMOUS FAIL-
URE DETECTORS

The failure detector abstraction was proposed Chandra
and Toueg [5], which defined them in terms of completeness
and accuracy properties. A failure detector can be seen as a
module that gives (possibly unreliable) failure information
of processes. Usually, this failure information is composed
of the identifiers of processes in non-anonymous distributed
systems. However, in anonymous distributed systems pro-
cesses have no identifier. So, the key point to define and
implement a failure detector in an anonymous distributed
system is how to identify a process without breaking the
anonymity of the system. We were inspired by the defini-
tion of the failure detector class AY, which was introduced
by Bonnet and Raynal [7], that assigns a random label to
each process as a temporal identifier. This assignment does
not break the anonymity of the system, because this label
is given in the failure detector layer, and no process knows
the mapping relationship between labels and processes.

4.1 Failure Detector A©

AO provides each process p; with a read-only local vari-
able a_theta; that contains several pairs of (label, number),
in which each label represents a temporary identifier of one
process and number represents the number of correct pro-
cesses who have known this label. For example, process p;’s
local variable at time 7 a_theta] = {(labeli, numbery), ...
, (label;, number;), ..., (label,, numbery,)} if p; has known
the label of n processes of the system. As we said previ-
ously, labels are assigned randomly to each process without
breaking the anonymity of the system.

The definition of A© is given as follows:

e AO-completeness: There is a time after which vari-
ables a_theta only contain pairs of (label, number) as-
sociated to correct processes.

e AO-accuracy: If there is a correct process, then at ev-
ery time, all pairs of (label, number) output by failure
detector AO hold that every subset T of size number of
processes that know label contains at least one correct
process (i.e., for each label, there always exists one cor-
rect process in any set of number processes that know
this label).

Let us define A® more formally:
S(label)={i | 37 € N: (label, —) € a_theta] }. S(label)
is the set of all processes that know label at time .
o AO-completeness: 37 € N,V i € Correct, V1 > 1,

V (label, number) € a_theta] : |S(label) N Correct| =
number.

e AO-accuracy: Correct #) =— V 7 € N, V i € II,
V (label, number) € a_theta]: ¥V T C S(label), |T| =
number: T N Correct # 0.

4.2 Failure Detector AP*

The anonymous perfect failure detector AP* provides each
process p; with a read-only local variable a_p; that contains
several pairs of (label, number), similar to failure detector
A®. The definition of AP* is as follows:

e AP*-completeness: There is a time after which vari-
ables a_p* only contain pairs of (label, number) asso-
ciated to correct processes.

e AP*-accuracy: If a process crashes, the label of this
process and the corresponding number to the label will
be permanently removed from variables a_p*.

It is assumed that the number of each label is monoton-
ically non-increasing. Eventually the number of pairs of
(label, number) is equal to the number of correct processes.

Let us define AP* more formally:

S(label)={i | 3 7 € N: (label, —) € a_p*]}. S(label) is
the set of all processes that know label at time .

e AP*-completeness: 37 € N, Vi € Correct, V17" >
7, V (label, number) € a_p*] : |S(label) N Correct| =
number.

e AP*-accuracy: Vi, j € I, i € Correct, j € Faulty, 3
7,V 7' > 7: (label;, number;) ¢ a_p*7 .

S. QUIESCENT FAULT TOLERANT BROAD-

CAST IN AAS_F[A®, AP]

Before solving the quiescence problem, the impossibility
result of implementing URB without a majority of correct
processes is circumvented firstly with A®. To do so, in our
algorithm an adequate use of A© ensures that the acknowl-
edge of a message m has been received by at least one correct
process before delivering m.

The reason why both the RB and URB algorithms of Sec-
tion 3 are non-quiescent is that each correct process has to
broadcast periodically the messages it has delivered in order
to overcome message losses caused by the fair lossy com-
munication channels. Therefore, the intuitive idea to make
them to be quiescent is to stop the periodical broadcast when
a message has been delivered by all correct processes. The
following question arises: how can we confirm that a message
has been delivered by all correct processes in an anonymous
system? In order to answer this question, we propose to
combine two mechanisms: (1) each process broadcasts an
acknowledgment message after it has delivered a message
m, and waits for the acknowledgment messages of m from
all processes (including itself); (2) the failure detector AP*
is used to provide the information of all correct processes.
With these two mechanisms, a process p; can stop the pe-
riodical broadcast of message m when it has received the
acknowledgment of m from all correct processes. Note that
these two mechanisms do not break the anonymity of the
system.

Following this approach, a quiescent RB algorithm imple-
mented in AAS_F[AP”] and a quiescent URB algorithm in
AAS_F[A©, AP*] are given in our full paper [6].

6. CONCLUSION

In this paper, the fault-tolerant broadcast service has been
studied in anonymous asynchronous message passing dis-
tributed systems with fair lossy communication channels.
Initially, two non-quiescent algorithms have been proposed:
the non-quiescent reliable broadcast (RB) algorithm can be
implemented under the assumption of anynumber of correct
processes, while the non-quiescent uniform reliable broad-
cast (URB) algorithm requires either a majority of correct
processes or a failure detector of class A©®. In order to im-
plement the fault-tolerant broadcast service quiescently, a
new anonymous perfect failure detector AP* is proposed.
Finally, two quiescent algorithms using AP* and implement-
ing RB and URB respectively are proposed.

Acknowledgment

We would like to thank the anonymous reviewers. This re-
search is partially supported by the Community of Madrid
under grant S2013/ICE-2894, the Spanish Research Council
under grants TIN2013-41123-P and TIN2013-46883-P, the
Basque Government under grant IT395-10, the University
of the Basque Country (UPV/EHU) under grant UFI11/45,
and the scholarship of Chinese Scholarship Council.

7. REFERENCES

[1] C. Cachin, R. Guerraoui, and L. Rodrigues. Reliable
and secure distributed programming. Springer (second
edition), 2011.

[2] F. Schneider, D. Gries, and R. Schlichting.
Fault-tolerant broadcast. Science of Computer
Programming 4(1), pp. 1-15, 1984.

[3] V. Hadzilacos and S. Toueg. Fault tolerant broadcasts
and related problems. S.J. Mullender (Ed.),
Distributed Systems. New York: ACM Press &
Addison-Wesley, 1993.

[4] M. Aguilera, S. Toueg, and B. Deianov. Revisiting the
weakest failure detector for uniform reliable broadcast.
Proceedings of the 13th International Symposium on
Distributed Computing (DISC 1999), pp. 19-33,
Bratislava, Slovak Republic, September 1999.

[5] T. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM,
43(2), pp. 225-267, March 1996.

[6] J. Tang, M. Larrea, S. Arévalo, and E. Jiménez.
Fault-tolerant broadcast in anonymous distributed
systems with fair lossy channels. Technical Report
EHU-KAT-IK-06-14 of the University of the Basque
Country UPV/EHU, December 2014,
http://www.sc.ehu.es/acwlaalm /research/EHU-KAT-
TK-06-14.pdf.

[7] F. Bonnet and M. Raynal. Anonymous asynchronous
systems: the case of failure detectors. Proceedings of
the 24th International Symposium on Distributed
Computing (DISC 2010), pp. 206-220, Cambridge,
MA, USA, September 2010.

