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Abstract. The set agreement problem states that from n proposed values at most
n−1 can be decided. Traditionally, this problem is solved using a failure detector
in asynchronous systems where processes may crash but do not recover, where
processes have different identities, and where all processes initially know the
membership. In this paper we study the set agreement problem and the weak-
est failure detector L used to solve it in asynchronous message passing systems
where processes may crash and recover, with homonyms (i.e., processes may have
equal identities) and without a complete initial knowledge of the membership.

1 Introduction

The k-set agreement problem [9] guarantees from n proposed values at most k can be
decided. Two cases of this problem have received special attention: consensus (when
k = 1), and set agreement (when k = n − 1). The k-set agreement problem that is
trivial to solve when the maximum number of processes that crash (denoted by t) is
lesser than k, or the maximum number of different proposed values (denoted by d)
is equal or lesser than k (i.e., t < k or d ≤ k), becomes impossible to solve in an
asynchronous system where processes may crash when t ≥ k and d > k ([6], [16],
[22]). To circumvent this impossibility result, many works can be found in the literature
where the asynchronous system is augmented with a failure detector [21] to achieve
k-set agreement. A failure detector [7] is a distributed tool that each process can invoke
to obtain some information about process failures. There are many classes of failures
detectors depending on the quality and type of the returned information (3P , Σ, ψ,
. . . ).

A very important issue to solve k-set agreement is to identify the information needed
about processes failures. We say that a failure detector class X is the weakest [7] to
achieve k-set agreement if the information returned by any failure detector D of this
class X is necessary and sufficient to solve k-set agreement. In other words, with the
failure information output by any failure detector D′ of any class Y that solves k-
set agreement, a failure detector D ∈ X can be built on any asynchronous system
augmented with a failure detector D′ ∈ Y . We say that a class X is strictly weaker than
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Y (denoted by X ≺ Y ) if a failure detector D ∈ X can be obtained from a system
augmented with any failure detector D ∈ Y , and the opposite is not possible.

In message passing systems, Ω is the weakest failure detector to solve consensus
(i.e., 1-set agreement) when a majority of processes do not crash [8], and L [13] is
the weakest failure detector to solve set agreement (i.e., (n-1)-set agreement). For all
2 ≤ k ≤ n − 2, to find the weakest failure detector to achieve k-set agreement is an
open question.

New assumptions have been studied trying to solve k-set agreement in a more re-
alistic message passing systems. In [1] consensus and failures detectors are presented
in an extension of the crash-stop model where processes can crash and recover (called
crash-recovery model, and by extension, the systems with this failure model are denoted
by crash-recovery systems). It is easy to see that these systems are generalizations of
systems where processes fail by crashing-stop. A typical definition of a system [7] de-
fines links between processes as reliable (i.e., each sent message is delivered to all alive
processes without errors and only once). For the sake of extending traditional system as-
sumptions, consensus and failure detectors are studied when fair-lossy links are used [1]
(i.e., messages can be lost, but if a process sends permanently a message m to a same
alive process, message m is also received permanently).

Sometimes the assumption of knowing the membership in advance is not possible
when a run starts (e.g., in a p2p network where servers working as seeds are unknown
a priori, and they are possibly different in each run, or even in the same run). This
assumption is relevant because, for instance, even though Ω is implementable when
the membership is unknown, none of the original eight classes of failures detectors
proposed in [7] (P , 3P , S, . . . ) are implementable if each process does not know
initially the identity of all processes [18]. Note that any failure detector implementation
for a system S with the assumption of unknown membership initially also works in any
system S′ with the same assumptions except that the membership is known (we say that
S is a generalization of S′).

Finally, homonymy is a novel assumption included in current systems where pri-
vacy is an important issue [12]. Homonymy allows to assign the same identity to more
than one process (all processes with the same identity are homonymous). Note that a
classical system of n processes with a different identity per process is a particular case
of an homonymous system (there are n sets of homomymous processes of size 1). Sim-
ilarly, anonymity [5] can be considered as a particular case of homonymy (there is a
unique set of homomymous processes of size n, or, in other words, all processes are
homonymous).
Related work As we said previously, new assumptions have been studied trying to
solve k-set agreement in a more realistic way. Consensus and failure detectors were
presented in asynchronous systems where processes may crash and recover [1]. Besides
processes that in a run do not crash (permanently-up) and processes that crash and stop
forever (permanently-down), new classes of processes may appear in a run of a crash-
recovery system: processes that crash and recover several times but after a time are
always up (eventually-up), processes that crash and recover several times but after a time
are always down (eventually-down), and processes that are permanently crashing and
recovering (unstable). In these crash-recovery systems a process is said to be correct in



a run if it is permanently-up or eventually-up. On the other hand, an incorrect process
in a run is either a permanently-down, eventually-down or unstable process. In [1] is
proven that consensus with the failure detector 3P [7] is impossible to solve if the
number of permanently-up processes in a run can be lesser or equal to the number of
incorrect processes. There are in the literature several implementations of consensus
and Ω for crash-recovery message passing systems ([1], [17], [19]).

Even though the initial knowledge of the membership is not always possible, dif-
ferent grades of knowledge are also possible. For example, Ω is implementable if each
process initially only knows its own identity [18], or if each process also knows n (i.e.,
the number of processes of the system) [3].

In [2] new classes of failure detectors are presented to work in homonymous sys-
tems. In that paper consensus is also implemented with the counterparts of the weakest
failure detectors in classical message passing systems with unique processes’ identi-
ties: Ω [8] when a majority of processes are correct (its counterpart is called HΩ ),
and 〈Ω,Σ〉 [11] when a majority of processes can crash (its counterpart is called
〈HΩ ,HΣ 〉).

Regarding set agreement in message passing systems, in the literature we find only
two works using the weakest failure detector L in crash-stop asynchronous systems
([13], [4]). In [13] a total order of process’ identifiers and the initial knowledge of the
membership is necessary. In [4] set agreement is implemented in anonymous systems
but the knowledge of n is required.

The failure detector L is defined and implemented for crash-stop message passing
systems in [4] and [20]. L is a failure detector defined for crash-stop systems in such
a way that it always returns the boolean value false in some process pi, and, if there
is only a correct process pj , eventually pj returns true permanently. Nevertheless, in
both implementations the algorithms always output false in all processes in runs which
are most frequent in practice: where all processes are correct (i.e., in fail-free runs).
This behaviour is relevant because the complexity of all algorithms that implement set
agreement with L (our algorithm presented in this paper included) is improved if the
number of processes that return true increases.

Our work Trying to generalize the results to the maximum number of systems as pos-
sible, this paper is devoted to study set-agreement in message passing systems with the
weakest failure detectorL in crash-recovery asynchronous systems with homonyms and
without a complete initial knowledge of the membership. In our crash-recovery system
model the maximum number t = n of different processes that may crash and recover
is so weak that set-agreement can be solved but consensus can not [1]. An algorithm
that implements set-agreement for crash-recovery systems using L with homonyms and
without initial knowledge of membership is presented in this paper. This algorithm
works with different grades of initial knowledge of system membership (that is, either
(a) each process only knows its identity, or (b) the number n of processes is known by
every process, or (c) a subset of processes’ identities are known by all processes). Due
to the fact that, to our knowledge, there is no previous work in the literature that solves
set-agreement with L in crash-recovery systems, we compare our results with previous
papers that implement set-agreement and L in crash-stop systems.



This paper is organized as follows. The crash-recovery model is presented in Sec-
tion 2. Agreement definitions and failure detectors adapted to crash-recovery systems
are included in Section 3. In Section 4 we have an implementation of set-agreement. An
implementation of L is presented in Section 5. We finish our paper with the conclusions
in Section 6.

2 System Model

Processes The message passing system is formed by a set Π of processes, such that the
size n of Π is greater than 1. We use id(i) to denote the identity of the process pi ∈ Π .
Homonymy There could be homonymous processes [2], that is, different processes can
have the same identity. More formally, let ID be the set of different identities of all
processes in Π . Then, 1 ≤ |ID | ≤ n. So, in this system, id(i) can be equal to id(j) and
pi be different of pj (we say in this cases that pi and pj are homonymous). Note that
anonymous processes [5] are a particular case of homonymy where all processes have
the same identity, that is, id(i) = id(j), for all pi and pj of Π (i.e., |ID| = 1).
Knowledge of membership Every process pi ∈ Π knows its own identity id(i), but pi
does not know the identity of any subset I of processes, or the size x of any subset of
Π , different of their trivial values. That is, process pi does not know I ⊆ ID or x ≤ n,
except that {id(i)} ⊂ I and x > 1.
Time Processes are asynchronous, and, for analysis, let us consider that time advances
at discrete steps. We assume a global clock whose values are the positive natural num-
bers, but processes cannot access it.
Failures Our system uses basically the failure model of crash-recovery proposed in [1].
In this model processes can fail by crashing (i.e., stop taking steps), but crashed pro-
cesses may have a recovery if they restart their execution (i.e., they may recover). A
process is down while it is crashed, otherwise it is up. Let us define a run as the se-
quence of steps taken by processes while they are up. So, in every run, each process
pi ∈ Π belongs to one of these four classes:

– Permanently-up: Process pi is always alive, i.e., pi never crashes.
– Eventually-up: Process pi crashes and recovers repeatedly a finite number of times

(at least once), but eventually pi, after a recovery, never crashes again, remaining
alive forever.

– Permanently-down: Process pi is alive until it crashes, and it never recovers again.
– Eventually-down: Process pi crashes and recovers repeatedly a finite number of

times (at least once), but eventually pi, after a crash, never recovers again, remain-
ing crashed forever.

– Unstable: Process pi crashes and recovers repeatedly an infinite number of times.
Furthermore, pi is alive or crashed an unbounded and unknown time. We distin-
guish in this class a special case of unstable process:
• Eventually-less-unstable: Process pi eventually, in each recovery, executes more

lines of code until crashing again. More formally, there is a recovery rj of pi
after which if pi executed l(rj) lines of code before crashing, in each next
recovery ri+1 > ri, for all i ≥ j, pi will execute l(ri+1) > l(ri) lines of code.



In a run, a permanently-down, eventually-down or unstable process is said to be
incorrect. On the other hand, a permanently-up or eventually-up process in a run is said
to be correct. The set of incorrect processes in a run is denoted by Incorrect ⊆ Π .
The set of correct processes in a run is denoted by Correct ⊆ Π . Hence, Incorrect ∪
Correct = Π . Let us also denote by Down ⊆ Incorrect the set of permanently-down
and eventually-down processes in a run.

We will assume that there is no limitation in the number of correct (or incorrect) pro-
cesses in each run, that is, t = n (being t the maximum number of different processes
that can crash and recover).
Features and use of the network The processes can invoke the primitive broadcast(m)
to send a message m to all processes of the system (except itself). This communication
primitive is modeled in the following way. The network is assumed to have a directed
link from process pi to process pj for each pair of processes pi, pj ∈ Π (i 6= j). Then,
broadcast(m) invoked at process pi sends one copy of message m along the link from
pi to pj , for each pj 6=i ∈ Π . If a process crashes while broadcasting a message, the
message is received by an arbitrary subset of processes.

Unless otherwise is said, links are asynchronous and fair-lossy [1]. A link is fair-
lossy if it can lose messages, but if a process pi sends a message m permanently (i.e.,
an infinite number of times) to a correct process pj , process pj receives m permanently
(i.e., infinitely often). A fair-lossy link [1] does not duplicate or corrupt messages per-
manently, nor generates spurious messages.
Process status after recovery Following the same model of [1], when a process pi
recovers, it has lost all values stored in its variables previously to crash, and it has also
lost all previous received messages. An special case are stable storage variables. All
values stored in this type of variables will remain available after a crash and recovery.
Note that stable storage variables have their cost (in terms of operations latencies), and
the algorithms have to reduce their use as far as possible.

Unless otherwise is stated, we consider, like in [1], that when a process pi crashes
executing an algorithm A, if process pi recovers, it knows this fact, that is, pi starts
executing from a established line of A different of line 1.
Nomenclature The asynchronous system with homonymy and with unknown member-
ship defined in this section is denoted by HASf [∅, ∅, c/r]. We will use HAS when the
parameters are not relevant. When it is needed, we useAAS instead ofHAS to indicate
that it is an anonymous system, that is, all processes have the same identity. Similarly,
AS is an asynchronous system where each process has a different identity.

We denote by HASf [X,Y, c/r] the system HASf [∅, ∅, c/r] augmented with the
failure detector X (∅ means no failure detector), and where all processes initially know
the identities of processes of Y (∅ means unknown membership). Note that the third
parameter c/r means that processes can crash and recover (we will use c if processes
can crash but do not recover), and the sub-index f that links are fair-lossy. For example,
HASf [L, Π, c/r] denotes the asynchronous system with homonymous processes and
fair-lossy links, enriched with the failure detector L, and where all processes know the
identity of the members of Π . The classical definition of asynchronous systems found
in the literature could be denoted by ASr[∅, Π, c]. That is, an asynchronous system
without homonymy, with reliable links (i.e., where each sent message is delivered to



all alive processes without errors and only once), where processes can crash but not
recover, and where all processes initially know the identity of the members of Π .

We extend the notation toHASnf [∅, ∅, c/r] if it is a system likeHASf [∅, ∅, c/r] but
augmented with the knowledge of n. Then, every process pi in this system knows the
size n of Π (i.e., process pi knows n despite it does not know the identity of the rest of
processes ofΠ). Similarly, we extendAASnf [∅, ∅, c/r] with respect toAASf [∅, ∅, c/r].

3 Definitions

We will formalize first the set agreement problem [9].

Definition 1. (Set agreement). In each run, every process of the system proposes a
value, and has to decide a value satisfying the following three properties:
1. Validity: Every decided value has to be proposed by some process of the system.
2. Termination: Every correct process of the system eventually has to decide some value.
3. Agreement: The number of different decided values can be at most n− 1.

It is easy to see that if t = n and there is not any stable storage variable, if all
processes crash jointly and previously to decide, and after that they recover, all proposed
values will be lost forever. Then, the Validity Property can not be preserved, and, hence,
set agreement can not be solved. Thus, any algorithm that implements set agreement
needs to use stable storage variables.

Like in [1], we consider that a process pi proposes a value v when process pi writes
v into a predetermined stable storage variable. Similarly, a process pi decides a value
v when process pi writes v into another predetermined stable storage variable. Hence,
after a recovery a process pi can know easily if a value has already been proposed and/or
decided reading these variables.

The set agreement problem can not be solved in asynchronous systemsASr[∅, Π, c]
where any number of processes can crash ([6], [16], [22]). To circumvent this impossi-
bility result, we use a failure detector [7].

The failure detector L [13] was defined for asynchronous systems with the crash-
stop failure model. We adapt here this definition of L to asynchronous systems where
processes can crash and recover. Let us consider that each process pi has a local boolean
variable outputi. We denote by outputτi this variable at time τ . Let us assume that the
value in outputi is false while process pi is crashed (i.e, outputτi = false, for all time
τ while pi is down). In each run, a failure detector of class L satisfies the following two
properties:
1. Some process pi always returns in its variable outputi the value false, and
2. If pi is the unique correct process and the rest of processes are (permanently or even-
tually) down, then there is a time after which pi always returns in its variable outputi
the value true.

More formally, the definition of L for crash-recovery systems is the following.

Definition 2. (Failure detector L). For all process pi ∈ Π and run R, outputτi =
false if process pi is down at time τ in run R. Furthermore, the variable outputi of



every process pi ∈ Π must satisfy in each run R:
1. ∃pi : ∀τ , outputτi = false, and
2. (Correct = {pi} ∧ |Down| = n− 1) =⇒ ∃τ : ∀τ ′ ≥ τ, outputτ ′

i = true

To solve set agreement, we augment our asynchronous system HASf [∅, ∅, c/r] with
the loneliness failure detector L, which is the weakest failure detector to achieve set
agreement in message passing systems ASr[∅, Π, c] [13]. As we said previously, we
denote this system enhanced with L as HASf [L, ∅, c/r].

In the following definition we say that an algorithm A implemented in a system S
generalizes A′ implemented in S′, if A can be implemented in S′ and the opposite is
not possible.

Definition 3. (Generalization). An algorithm A that solves the problem P in a system
S is a generalization of the algorithm A′ that solves the same problem P in S′, denoted
by A′ ⊂ A, if A also solves P in S′ and the opposite does not happen (i.e., A′ does not
solve P in S).

4 Implementing Set Agreement in the Crash-Recovery Model

In this section we present the algorithmAset (see Figure 1) to implement set agreement
in homonymous asynchronous systems with unknown membership and with the failure
detector L, that is, in HASf [L, ∅, c/r].

We can observe that in systems where processes can crash and recover, eventually-
up and eventually-down processes are an extension of the permanently-up and permanen-
tly-down processes (respectively) of systems with the crash-stop model of failures. An
special case is the existence of unstable processes. These processes are unpredictable,
in the sense that they could be so fast on crashing and recovering that even though fail-
ure detectors consider them as permanently alive, they can not execute enough lines of
code of the set agreement algorithm to communicate its state (sending messages) be-
fore crashing again. Then, the assumption of unstable processes in the system requires
a property to guarantee that an unstable process collaborates to decide when there is a
unique correct process.

Property 1. (Less-unstability) For each run, if there is some unstable process pj and
Correct = {pi}, then some process pk has to be eventually-less-unestable in the sys-
tem HASf [L, ∅, c/r].

Note that this property does not enforce any condition in HASf [L, ∅, c/r] when there
is no unstable processes, or when there is at least one unstable procress but there is not
only one correct process.

The algorithms presented in [4] and [13] implement set agreement inAASnr [L, ∅, c]
and ASr[L, Π, c], respectively. We show in this section that the algorithm of Figure 1
implements set agreement in HASf [L, ∅, c/r] enriched with Property 1. Hence, it is



easy to see that Aset implemented in HASf [L, ∅, c/r] with Property 1 is a generaliza-
tion of the algorithms of [13] and [4]. More formally, letA′ andA′′ be the set agreement
algorithms of [13] and [4], respectively. From Definition 3,A′ ⊂ Aset andA′′ ⊂ Aset.

4.1 Explanation of Aset

Aset is the algorithm of Figure 1 executed in HASf [L, ∅, c/r] to solve set agreement.
Let id(i) be the identifier of process pi. Note that the values of these process iden-

tifiers could be whatever that imposes an order that allows to compare them. Also note
that several identifiers can be the same (homonymous processes). To simplify the code
of the algorithm, we consider that the execution of each concurrent taskX of every pro-
cess pi is not perpetually postponed (i.e., starvation is not possible). Hence, in each run,
process pi eventually takes steps executing lines of task X if it is up, and the conditions
that activate X are fulfilled.

Like in [1], we consider that a process pi proposes a value v (that is, proposei(v)
is invoked) by writing v into a stable storage variable PROPi . Similarly, a process
pi decides a value v (that is, decidei(v) is invoked) by writing v into another stable
storage variable DECi . Let us suppose that both variables have ⊥ previously to any
invocation. If a process pi recovers, it can see easily if it has already proposed or decided
a value (that is, if proposei(v) or decidei(v) were invoked) reading these stable storage
variables and checking if their values are different of ⊥.

The variable vi is used by process pi to keep the current estimate of its decision
value (lines 10 and 17). This variable vi contains initially the value v proposed by
process pi when it invokes proposei(v) (line 2). In order to remember, in case of re-
covering, the changes in vi before crashing, a process pi uses an stable storage variable
statusi (lines 9, 16 and 22).

proposei(v) starts four tasks. For simplicity, we consider that tasks 2, 3 and 4 are
executed atomically. Task 1 is used in phase 0 (PH0) by each process pi to broadcast
(PH0, id(i), vi) messages permanently with a proposal vi (initially vi is pi’s proposal
v, line 2) to the rest of processes of the system. Task 2 allows process pi to decide a
proposed value when a (PH0, id(k), vk) message is received. This value vk is only
decided if the condition 〈id(k), vk〉 ≤ 〈id(i), vi〉 happens. This condition is a shortcut
for (id(k) < id(i)) ∨ [(id(k) = id(i)) ∧ (vk ≤ vi)]. That is, process pi decides vk if
process pk has a lesser identifier or, if they have the same identifier, vi is greater or equal
than vk. When a process decides, it moves to phase 1 (PH1). Task 3 allows process pi
to decide a value already decided by another process when a (PH1, vk) message is
received. With task 4 process pi decides its value vi when the failure detector D (L in
HASf [L, ∅, c/r]) returns true, i.e., D .outputi = true . Note that at most n−1 processes
can execute this task 4 to solve set agreement (from Condition 1 of Definition 2).

As links are not reliable (but fair-lossy) and processes may crash and recover, with
task 5 process pi guarantees the propagation of its decided value to the rest of processes
(decision taken in either task 2, 3 or 4).

If a process pi crashes and recovers meanwhile it is running the algorithm, then it
always executes lines 29-38. If process pi proposed a value v but it crashed before writ-
ing any estimate or decision value in statusi, then pi will get the proposed value from
the stable storage variable PROPi (line 31). In other case, vi will obtain its estimate or



init:
(1) statusi ← ⊥; % stable storage variable

proposei(v): % by writing v into stable storage PROPi

(2) vi ← v;
(3) start tasks 1, 2, 3 and 4 %tasks 2, 3 and 4 executed atomically

task 1:
(4) repeat forever each η time
(5) broadcast (PH0, id(i), vi);
(6) end repeat

task 2:
(7) when (PH0, id(k), vk) is received:
(8) if (〈id(k), vk〉 ≤ 〈id(i), vi〉) then
(9) statusi ← vk;
(10) vi ← vk;
(11) decidei(vk); % by writing vk into stable storage DECi

(12) stop tasks 1, 3 and 4;
(13) start task 5
(14) end if

task 3:
(15) when (PH1, vk) is received:
(16) statusi ← vk;
(17) vi ← vk;
(18) decidei(vk); % by writing vk into stable storage DECi

(19) stop tasks 1, 2 and 4;
(20) start task 5

task 4:
(21) when D .outputi=true: % returned by the failure detector D
(22) statusi ← vi;
(23) decidei(vi); % by writing vi into stable storage DECi

(24) stop tasks 1, 2 and 3;
(25) start task 5

task 5:
(26) repeat forever each η time
(27) broadcast (PH1, vi);
(28) end repeat

when process pi recovers:
(29) if (proposei() was invoked) then % by checking PROPi

(30) if (statusi 6= ⊥) then vi ← statusi
(31) else vi ← PROPi

(32) end if
(33) if (decidei() was invoked) then % by checking DECi

(34) start task 5
(35) else
(36) start tasks 1, 2, 3 and 4 %tasks 2, 3 and 4 ex. atomically
(37) end if
(38) end if

Fig. 1. The algorithm Aset for set agreement in HASf [L, ∅, c/r] (code for process pi).



decided value from stable storage variable statusi (line 30). If it has already proposed
and decided a value, process pi starts task 5 to propagate this decided value (line 34). If
process pi has proposed a value but it has not decided yet, it starts tasks 1, 2, 3 and 4 to
look for a value to decide (line 36).

4.2 Proofs of Aset in HASf [L, ∅, c/r]

Due to space limitations, proofs are omitted here.

Lemma 1. (Validity) For each run, if a process pi of the system HASf [L, ∅, c/r] de-
cides a value v′, then v′ has to be proposed by some process of the system.

Lemma 2. (Agreement) For each run, the number of different decided values in the
system is at most n− 1.

Lemma 3. (Termination) For each run, every process pi ∈ Correct in the system
eventually decides some value.

Theorem 1. The algorithm of Figure 1 implements set agreement in a system where
t = n and preserving Property 1 (Less-unstability).

Proof. From Lemma 1, Lemma 2 and Lemma 3, the validity, agreement and termination
properties (respectively) are satisfied in every run. Hence, the algorithm of Figure 1
solves set agreement in a system where t = n and preserving Property 1.

5 Implementing L in the Crash-Recovery Model

We now enrich here the system with a property such that we can circumvent this impos-
sibility result. This property reduces to t = n−1 the number of processes that can crash
and recover in a synchronous system. Therefore, we present in this section an imple-
mentation of L (denote it byAD(knowledge)) for a synchronous system with homony-
mous processes, a different knowledge of the membership, and where until t = n − 1
different processes can crash and recover.

It is worthy to note that AD(knowledge) does not need to use any stable storage
variable.

5.1 Model

Let HSS be a system like HAS but with two differences: it is synchronous, and when
a process pi recovers, it does not need to know it, i.e., if pi recovers, it starts to execute
line 1 again. By synchronous we mean that the time to execute a step is bounded and
known by every process, and the time to deliver a message sent through a link is at most
∆ units of time, and this time is also known by all processes.

The following property states that only t = n − 1 processes can crash and recover
in the system.

Property 2. (Up-permanency) For each run, some process has to be permanently-up in
the system (HSSr[∅, ∅, c/r], HSSr[∅, Y, c/r], or HSSnr [∅, ∅, c/r]).



This Property 2 in a system with the crash-stop model only states that until t =
n− 1 different processes can crash. Note that all algorithms found in the literature that
implement the loneliness failure detector L ([4], [20]) work in systems where processes
can crash but not recover and where up to t = n− 1 processes can crash.

The algorithms presented in [20] and in [4] (let us denote them by A′) implements
the loneliness failure detector in SSr[L, Π, c] when up to n−1 processes can crash. We
show in this section that the algorithm of Figure 2 (calledAD(knowledge)) implements
the failure detector L in HSSr[∅, ∅, c/r], HSSnr [∅, ∅, c/r] and HSSr[∅, Y, c/r] (when
|Y | ≥ 2, and two processes of Y have different identities) enriched with Property 2.
Hence, from Definition 3, it is easy to see that A′ ⊂ AD(knowledge).

5.2 Algorithm AD(knowledge)

In Figure 2 we present an algorithm that implements L with different grades of initial
knowledge of the system membership, and without using any stable storage variable.
The parameter knowledge states the kind of system in which the algorithm is run-
ning. Then, if process pi executes the algorithm with the argument none in knowledge
(denoted by AD(none)), process pi is running in HSSr[∅, ∅, c/r]. Similarly, the ar-
gument size in knowledge (AD(size)) states that it is running in HSSnr [∅, ∅, c/r],
and the argument partial in knowledge (AD(partial)) states that it is running in
HSSr[∅, Y, c/r], being |Y | ≥ 2, and two processes of Y have different identities.

For each process pi, outputi is initially false (line 1). If knowledge = partial,
process pi knows at least two identifiers with different value because it is running in
HSSr[∅, Y, c/r], being |Y | ≥ 2, and two processes of Y have different identities (these
two known identifiers of Y with different value are IDENT1 and IDENT2 in Fig-
ure 2). Then, all process pi whose identifier is neither IDENT1 nor IDENT2 changes
to true (lines 2-6).

In task 1, every η time, each process pi broadcasts (alive, counti) messages that
arrive synchronously (at most ∆ units of time later) to the rest of processes of the
system (line 10). If knowledge = size, the variable counti is used by each process
pi to indicate the maximum number of processes that pi believes may have had true
in their variable output at some moment of the run. After ∆ units of time, process pi
analyzes the messages received (reci) to see if pi sets outputi to true (lines 12-26).
Note that once outputi = true, process pi never changes it to false again while it is
running. Only if process pi crashes and recovers, line 1 is executed again and outputi is
false another time. We have two cases to analyze depending on the value of knowledge:

– knowledge = none or knowledge = partial. If the number of messages received
is 0, then outputi = true (lines 20-22).

– knowledge = size. Process pi, using its variable auxi, adds the values of count
from all (alive, count) messages received (reci). Then, counti is updated by pi
with auxi and the number of messages received (lines 13-19). If process pi does
not receive any message or counti is lesser than (n−1), then it sets outputi = true
and increases counti in 1 (lines 23-26).



(re)init: % if pi recovers, it starts executing line 1
(1) outputi ← false;
(2) if (knowledge = partial) then

% IDENT1 and IDENT2 are two
% identifiers known by all processes

(3) if ((id(i) 6= IDENT1) ∧ (id(i) 6= IDENT2)) then
(4) outputi ← true
(5) end if
(6) end if;
(7) counti ← 0;
(8) start task 1

task 1:
(9) repeat forever each η time
(10) broadcast (alive, counti);
(11) wait ∆ time;
(12) let reci be the set of (alive, count) messages received;
(13) if (knowledge = size) then
(14) auxi ← 0;
(15) for each (alive, count) ∈ reci do
(16) auxi ← auxi + count;
(17) end for each;
(18) counti ← counti + auxi + |reci|;
(19) end if
(20) if ((knowledge 6= size) ∧ (|reci| = 0)) then
(21) outputi ← true
(22) end if
(23) if ((knowledge = size) ∧

((|reci| = 0) ∨ (counti < n− 1))) then
(24) outputi ← true;
(25) counti ← counti + 1
(26) end if
(27) end repeat

Fig. 2. Algorithm AD(knowledge) for process pi to implement L (the parameter knowledge
establishes the initial knowledge of the system membership of pi)

.



5.3 AD(partial), AD(size) and AD(none) implement L

We show in this section that the algorithmAD executed with the arguments partial, size
or none in the parameter knowledge implements the failure detector L where t = n−1
(i.e., Property 2 has to be preserved).

The proofs of this section are not included here due to space limitations.

Theorem 2. The algorithm AD(partial) implements the failure detector L in a sys-
tem HSSr[∅, Y, c/r], where |Y | ≥ 2 and two processes of Y have different identities,
enhanced with Property 2.

Theorem 3. The algorithm AD(size) implements the failure detector L in a system
HSSnr [∅, ∅, c/r] enhanced with Property 2.

Theorem 4. The algorithm AD(none) implements the failure detector L in a system
HSSr[∅, ∅, c/r] enhanced with Property 2.

6 Conclusions

We study the set-agreement problem in message passing systems with the weakest fail-
ure detector L in crash-recovery asynchronous systems with homonymous processes
and without a complete initial knowledge of the membership. An implementation of
set-agreement using L is presented for crash-recovery systems with homonyms and
without initial knowledge of membership.
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