
ERCIM NEWS 89 April 201232

Special Theme: Big Data

a reducer function that processes inter-

mediate values associated with the same

intermediate key. For the example of

simply counting the number of terms

occurring across the entire collection of

documents, the mapper takes as input a

document URL (key) and the document

content (value) and outputs pairs of

term and term count in the document.

The reducer then aggregates all term

counts of a term together and outputs

the number of occurrences of each term

in the collection. Our experiments are

made of several such MapReduce pro-

grams: We extract anchor texts from

web pages, we gather global statistics

for terms that occur in our test queries,

we remove spam pages, and we run a

search experiment by reading web

pages one at a time, and on each page

we execute all test queries. Sequential

scanning allows us to do almost any-

thing we like, for instance sophisticated

natural language processing. If the new

approach is successful, it will have to be

implemented in a search engine’s

indexing and querying facilities, but

there is no point in making a new index

if the experiment is unsuccessful.

Researchers at Google and Microsoft

have recently reported on similar exper-

imental infrastructures.

When implementing a MapReduce

program, users do not need to worry

about partitioning of the input data,

scheduling of tasks across the

machines, machine failure, or inter-

process communication and logging:

All of this is automatically handled by

the MapReduce runtime. We use

Hadoop: an open source implementa-

tion of Google’s file system and

MapReduce. A small cluster of 15 low

cost machines suffices to run experi-

ments on about half a billion web

pages, about 12.5 TB of data if uncom-

pressed. To give the reader an idea of

the complexity of such an experiment:

An experiment that needs two sequen-

tial scans of the data requires about

350 lines of code. The experimental

code does not need to be maintained:

In fact, it should be retained in its orig-

inal form to provide data provenance

and reproducibility of research results.

Once the experiment is done, the code

is filed in a repository for future refer-

ence. We call our code repository

MIREX (MapReduce Information

Retrieval EXperiments), and it is avail-

able as open source software from

http://mirex.sourceforge.net

MIREX is sponsored by the

Netherlands Organization for Scientific

Research NWO, and Yahoo Research,

Barcelona.

Links:

MIREX: http://mirex.sourceforge.net

Database Group:

http://db.cs.utwente.nl

Web Information Systems Group:

http://wis.ewi.tudelft.nl

Please contact:

Djoerd Hiemstra

University of Twente, The Netherlands

E-mail: hiemstra@cs.utwente.nl

Proud researchers and their cluster.

In many emerging applications, the

volume of data being streamed is so

large that the traditional ‘store-then-

process’ paradigm is either not suitable

or too inefficient. Moreover, soft-real

time requirements might severely limit

the engineering solutions. Many sce-

narios fit this description. In network

security for cloud data centres, for

instance, very high volumes of IP

packets and events from sensors at fire-

walls, network switches and routers and

servers need to be analyzed and should

detect attacks in minimal time, in order

to limit the effect of the malicious

activity over the IT infrastructure.

Similarly, in the fraud department of a

credit card company, payment requests

should be processed online and need to

be processed as quickly as possible in

order to provide meaningful results in

real-time. An ideal system would detect

fraud during the authorization process

that lasts hundreds of milliseconds and

deny the payment authorization, mini-

mizing the damage to the user and the

credit card company.

A Big Data Platform

for Large Scale Event Processing

by Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patiño-Martinez, Claudio Soriente and Patrick

Valduriez

To date, big data applications have focused on the store-and-process paradigm. In this paper we

describe an initiative to deal with big data applications for continuous streams of events.

ERCIM NEWS 89 April 2012 33

In this context, researchers have pro-

posed a new computing paradigm called

Complex Event Processing. A complex

event processor (CEP) is a system

designed to process continuous streams

of data in near real-time. Data flows in

streams that are not stored, but are

rather processed on-the-fly.

Similar to database management sys-

tems (DBMS), a CEP processes queries

over tuples. However, while in the con-

text of DMBS the set of tuples to be

processed is fairly static, CEP deals

with an infinite sequence of events.

Data processing is performed through

continuous queries based on the sliding

window model. This approach differs

from queries in traditional DBMS

because a continuous query is con-

stantly ‘standing’ over the streaming

events and results are output any time

the actual data satisfies the query predi-

cate. A continuous query is modelled as

a graph where edges identify data flows

and nodes represent operators that

process input data.

Centralized CEPs suffered from single

node bottlenecks and were quickly

replaced by distributed CEPs where the

query was distributed across several

nodes, in order to decrease the per-node

tuple processing time and increase the

overall throughput. Nevertheless, each

node of a distributed CEP must process

the whole input flow, which severely

limits scalability and application scope.

The real research challenge is how to

build a parallel-distributed CEP where

data is partitioned across processing

nodes that (i) does not require any node

to process the whole input and (ii) pro-

vides the same results of an ideal cen-

tralized execution (ie without any delay

due to input tuples queuing up).

The gist of the problem is how to dis-

tribute input tuples, so that tuples that

must be aggregated or joined together

are actually received by the same pro-

cessing node.

Moreover, a parallel CEP should also

feature elasticity in order to adapt the

amount of computing resources to the

actual workload and achieve cost-effec-

tiveness. Indeed, any parallel system

with a static number of processing

nodes might experience under-provi-

sioning (ie the overall computing power

is not enough to handle the input load)

or over-provisioning (ie the current load

is lower than the system maximum

throughput and some nodes are running

below their capacity).

With those goals in mind, we are devel-

oping StreamCloud, a parallel-distrib-

uted and elastic CEP that delivers

unmatched performance in terms of

throughput and allows for cost-effective

resource utilization. The StreamCloud

project is carried out by the Distributed

System Lab at Universidad Politecnica

de Madrid in collaboration with the

Zenith team at Inria and LIRMM,

Montpellier. The system is being exer-

cised for a Security Information and

Event Management system in the

MASSIF project.

StreamCloud leverages a novel paral-

lelization strategy that allows splitting

the logical input stream in multiple

physical streams that are pushed

towards processing nodes. The logical

stream is never concentrated in a single

node, in order to avoid bottlenecks.

Communication between nodes is mini-

mized and only used to guarantee

semantic transparency, ie that the out-

come of the computation matches the

one of a traditional centralized solution.

With this parallelization, StreamCloud

is able to aggregate the computing

power of hundreds of nodes to process

millions of events per second.

Further, StreamCloud is elastic and con-

tinuously monitors its processing nodes

and makes autonomous decisions on

whether to add or remove nodes to cope

with the incoming load with the min-

imal set of resources. This is crucial in

cloud environments with a pay-per-use

model. Node provisioning and decom-

missioning is complemented by

dynamic load balancing so that

StreamCloud can re-distribute the load

among processing node in case of

uneven load distribution.

Link:

http://www.massif-project.eu

Please contact:

Vicenzo Gulisano, Ricardo Jimenez-

Peris, Marta Patiño-Martinez, Claudio

Soriente, Universidad Politécnica de

Madrid, Spain

Tel: +34 913367452

E-mail: vgulisano@fi.upm.es,

rjimenez@fi.upm.es,

mpatino@fi.upm.es,

csoriente@fi.upm.es

Patrick Valduriez

Inria, LIRMM, France

Tel: +33 467149726

E-mail: Patrick.Valduriez@inria.fr

Figure 1: Overall architecture

