
Building Trust for λ-Congenial Secret Groups
Di Ma

University Of Michigan-Dearborn
dmadma@umd.umich.edu

Claudio Soriente
Universidad Politécnica de Madrid

csoriente@fi.upm.es

Abstract—Establishing trust while preserving privacy is a
challenging research problem. In this paper we introduce λ-
congenial secret groups which allow users to recognize trusted
partners based on common attributes while preserving their
anonymity and privacy. Such protocols are different from au-
thentication protocols, since the latter are based on identities,
while the former are based on attributes. Introducing attributes
in trust establishment allows a greater flexibility but also brings
up several issues. In this paper, we investigate the problem of
building trust with attributes by presenting motivating examples,
analyzing the security requirements and giving an informal
definition. We also survey one of the most related techniques,
namely private matching, and finally present solutions based on
it.

I. INTRODUCTION

Social networks and Web 2.0 applications allow effective
information sharing but raise a number of privacy challenges.
As a result, privacy preserving authentication techniques have
gained dramatic importance in building secure distributed
systems. In this paper, we introduce protocols to setup λ-
congenial secret groups in two-party and multi-party scenarios.
The goal is to effectively establish a secure, anonymous and
unobservable communication channel among two or more
parties that are mutually “congenial”, i.e., they all fulfill a
number of common requirements encoded in attributes. Unlike
authentication protocols where trust is built on identities, in a
λ-congenial secret group, trust is built on attributes. Hence,
λ-congenial groups are a perfect match for environments
where fine-grained authentication, anonymity and privacy are
essential requirements.
By congenial group, we mean a group where all members

possess one or more common attributes which represent level
of rank, authority, skills and so on. A congenial group is
called λ-congenial if all members share λ common attributes.
Such groups may be found in a several domains. For instance,
parties from a given state might form a 1-congenial group
where the one common attribute is their state; parties from
the same university within that state might form a 2-congenial
group where the two attributes are the state and the university.
A λ-congenial group is called secret if the trust setup proto-

col is both anonymous and privacy-preserving. By anonymous,
we mean that the identity of any participant is kept hidden
to other users engaged in the protocol and to both active
and passive adversaries. By privacy-preserving, we mean that
from the transcripts of the protocol, an adversary cannot learn
whether the congenial group has been established or not.
We also mean that if the protocol is unsuccessful, none of

the participants learns any of the attributes of other parties
involved in the protocol, i.e. all participants will disclose their
attributes to each other only if the congenial group can be
established.
The definition of λ-congenial group allows users to require

a degree of trust based on a subset of their own attributes.
If a participant acknowledges that the others share a certain
number of attributes with her, she can trust them and thus
is willing to interact. If the attributes are issued by a group
authority, the protocol also guarantees that a member of a
group is a legitimate owner of the attributes used to set up the
group.
In real world scenarios, users might resort to trusted third

parties, who get proof of users’ attributes and output a list
of the members of the congenial group. This unconditional
trust is fraught with security risks; the trusted party may
be dishonest or compromised, as it is an attractive target.
Moreover, in many real life scenarios, an online trusted third
party may just not be available.
Our motivating example comes from the intelligence com-

munity. For security purposes, agents of this community do
not know each other and they are required not to disclose
their identities to others at any time. Each member may have
some skills or roles in the organization and members might
be required to cooperate. It is easy to understand the need of
a protocol that allows agents to group together on a role/skills
basis, without leaking any confidential information. The goal
is to form a task force without revealing personal information
to parties that will not be part of it. As an example, suppose
some agents are needed to cooperate to accomplish a task.
They want to cooperate with members who hold the same
rank, speak a given language, have certain background and
know the secret task code. Before cooperation can start, they
need to acknowledge each other as agents and as owners of
the required skills; still, they are not willing to disclose their
affiliation and their skills to any other party that lacks the
requirements for cooperation. A 4-congenial secret group and
subsequently an anonymous and unobservable communication
channel can be established if all the participants engage in the
protocol using as attributes their rank, language, background
and task code. If any of the participants does not have one
of the required attributes, the communication channel cannot
be established and all the participants learn nothing beside the
fact that they cannot form the congenial group.
In this paper, we define congenial group systems where

members setup λ-congenial secret groups through trust setup

2011 International Conference on Broadband and Wireless Computing, Communication and Applications

978-0-7695-4532-5/11 $26.00 © 2011 IEEE

DOI 10.1109/BWCCA.2011.35

222

protocols. Our protocols achieves completeness, anonymity,
privacy-preserving, impersonator resistance, unspoofability
and unlinkability through a combination of techniques of
private-matching, secret sharing and group key distribution. At
the same time, low computational overhead make our protocols
suitable for a range of scenarios, allowing trust establishment
even with resource constrained devices.
The rest of the paper is organized as follows. Section II gives

a brief introduction to our main building blocks while Section
III presents the security model for λ-congenial group trust
setup protocols. Section IV gives definition and overview of
a congenial group system and presents the system operations.
In Section V we presents our two-party and multi-party trust
setup protocols. Section VI analyzes the security properties
while Section VII evaluates the performances. Finally Section
VIII provides a brief overview of related work and Section IX
concludes the paper.

II. PRELIMINARIES

This sections provides an overview of the two main building
blocks used in our secret trust setup protocols.

A. Private Matching

Private matching or privacy-preserving set intersection
refers to the problem of computing common elements, i.e.
the intersection over two or more private datasets. A private
matching scheme is designed to guarantee that participating
parties do not learn anything more than they would have learnt,
had they given the data to a trusted third party and got back the
answer. Private matching schemes proposed so far fall into two
categories: those employing commutative encryption schemes
[1], [2] and those employing polynomials and homomorphic
encryption schemes [3], [4].
Two-party private matching protocols based on commutative

encryption are proposed in [1], [2]. In these protocols, each
party’s input is encrypted twice by both the parties. Since
encryption is commutative, resulting values from the two
encrypted sets will be equal if and only if the original values
were the same (the items were present in both the sets).
Freedman et al. proposed protocols for two-party private

matching based on the representation of sets as roots of
polynomials [3]. Their work does not use properties of the
polynomial beyond evaluation at given points. Kissner et al.
explored the power of polynomial representation of multi-
sets, using operations on polynomials to obtain composable
privacy-preserving multisets operations [4]. Both schemes
assume set elements are drawn from a large domain so that
an element drawn uniformly from this domain has negligible
probability of representing an element in the set.
Two-party private matching schemes [1], [2], [3] can be

extended to support multi-party private matching. We compare
the communication cost and computation cost of the extended
multi-party private matching schemes with [4] in Table I.
Note that the computation cost of [3] can be optimized using
Horner’s rule fromO(nk2) to O(nk log log k) and Table I only
lists un-optimized results.

TABLE I
COMPARISON OF COMMUNICATION AND COMPUTATION COSTS AMONG

SCHEMES [2], [3] AND [4] UNDER HONEST-BUT-CURIOUS ADVERSARY

MODEL. THERE ARE N ≥ 2 PLAYERS, c < N DISHONESTLY COLLUDING,
EACH WITH AN INPUT MULTISET OF SIZE k. THE DOMAIN OF THE

MULTISET ELEMENTS IS D.

Schemes Communication Cost Computation Cost

Agrawal et al. [2] O(N2k log |D|) O(Nk2)
Freedman et al. [3] O(N2k log |D|) O(Nk2)
Kissner et al. [4] O(cNk log |D|) O(ck2)

B. Secret Sharing

Secret sharing was introduced by Shamir [5] in 1979. The
basic idea in secret sharing is to divide a secret into pieces and
distribute them to different parties so that the secret can only
be reconstructed when the shares are combined; individual
shares are of no use on their own.
More formally, in a (q, n)-threshold secret sharing scheme,

there is one dealer and n players. The dealer divides the secret
into n shares and gives each player a share in such a way that
any group of q (the threshold) or more players can together
reconstruct the secret but no group of less than q players can.
An efficient (n, n) secret sharing scheme, which means all

shares are necessary to recover the secret, is as follows. The
secret is encoded as an integer s. Each player i ∈ {1, . . . , n−
1} is given a random integer ri. The n-th player receives s−∑n−1

i=1 ri. The secret is the sum of the shares of all players.

III. SECURITY PROPERTIES

A λ-congenial secret group protocol must be complete,
anonymous, privacy-preserving, impersonator-resistant, un-
spoofable and unlinkable.
Complete. Informally, completeness states that if two or

more honest parties run the protocol to establish the congenial
group with the same set of λ attributes, then each party will
output “accept” at the end of the protocol.
Anonymous. Identities of the parties engaged in establishing

a congenial group must remain hidden to any other party
involved in the protocol and to both passive and active
adversaries.
Privacy-Preserving. If two or more parties run the protocol

to establish the congenial group with a different set of at-
tributes, they will only learn that the congenial group cannot
be established, i.e. they will not learn any information about
the attributes owned by other parties involved in the protocol.
Impersonator Resistance. An adversary who is not a mem-

ber of the system and wants to join a congenial group
pretending to own some attributes, will be “rejected” by others
with high probability.
Unspoofability. Anyone who wants to join a congenial

group without having all the necessary attributes, cannot do
so with high probability.
Unlinkability. Given the transcripts of two or more different

protocol executions, deciding whether these two transcripts
involve the same user is computationally hard.

223

IV. SYSTEM MODEL

A. System Overview

A congenial group system consists of a group authority
(GA), N users, a set of attributes X , and several groups, each
of them associated with a subset of X .1 The GA authorizes
user i to be a legitimate member of a group G by assigning to
i the attributes of the group, namely XG. We will refer to the
set of attributes given to user i, by Xi. Users with the same
set of attributes are logically affiliated with the same group,
but are not aware of the group they belong to, its size, and of
other members in it. Members of the system can use a subset
of their attributes to form a congenial group CG; such group
will be a λ-congenial group if |CG| = λ.
The set of attributes that defines each congenial group may

overlap. In Figure 1, each circle denotes a group. Member i
belongs to a group G if Xi ⊃ XG. An arrow from G′ to
G′′ means an overlap between X ′

G and X ′′
G; more specifically

G′ ⊃ G′′. Thus members of G′ are automatically members of
G′′. That is, a member in a group G will be able to establish
congenial groups with any members in any group within the
subtree rooted in G. Members of isolated groups (e.g., I) and
leaf groups (e.g., B, E, F andG), can only establish congenial
groups with members of the same group.
Admission and revocation of users to the system are man-

aged by the GA like in a key distribution scheme [6]. As
in such schemes, time is divided in rounds and a transition
from round t to round t + 1 is necessary each time one or
more users are revoked at once. In a specific round, members
can use their attributes to engage in as many congenial group
establishments as desired.

A

D

B

I

C

E F

G

Fig. 1. Sample group assignment.

A legitimate member i after getting Xi can use part (or all)
of the attributes in Xi as she needs to initiate/join a congenial
group through a trust setup protocol. However, a legitimate
member i of the system might not be entitled to join CG
if Xi � CG. To avoid impersonator attacks, attributes are
encrypted with a group key, while to avoid spoofing attacks,
they are also masked with nonces. Hence, attributes Xi are
not directly used in the trust establishment protocol, but they
are replaced with an encrypted version. (Details of encryption
are given below). In particular, we will refer to the set of
encrypted attributes of user i as Ci; elements in Ci will be
referred as secrets. Both Xi and Ci are kept secret and the

1Actual groups are the elements of the power set P (X).

latter are revoked by the GA when i is no longer a legitimate
member of the system.
When a member i wants to form a λ-congenial secret group,

she selects λ secrets from Ci as input to the trust establishment
protocol. Suppose there are m players, the protocol will be
successful iff |

⋂m

i=1 Ci| = λ. For example, in Figure 1 if
member i from group A wants to form a congenial group
with members of group E, she may only use group E set of
secrets as her input in the protocol. Members from groups A,
C and E are all able to join the congenial group. However, no
one can get any information about which groups the others
belong to. That is, members know nothing about the group
affiliation, size, hierarchy, etc.

B. System Operations

The congenial group system consists of four operations:
system-init, member-admit, member-revoc and trust-setup. The
GA is required to be online only for the first three operations.
The protocols for the congenial group formation do not need
interaction with the GA.
We describe the first three operations here while we present

our two-party and multi-party trust setup protocols in the next
section. Our notation is summarized in Tab. II:

TABLE II
NOTATIONS

Notation Meaning

MKt group key at round t

X set of all secrets (each user will be given a subset
of X)

Xi set of secrets owned by user i
xik

k-th element of Xi

nt

k
nonce associated to the k-th element of X at
round t

ct
k

ct
ik

= EMKt (xik

⊕
nt

k
)

Ct set of all ck at round t

Ct

i
set of ct

ik
owned by user i at round t

System-Init. At round 0 the GA initializes the system with
a set of attributes X = {x1, . . . , xn}. Also it picks a random
group key MK0 for a symmetric encryption scheme (e.g.,
AES). Finally, for each xk in X , the GA picks a nonce n0

k

and computes c0k = EMK0(xk

⊕
n0
k), where

⊕
is the bitwise

XOR operation. Since the domain of the attributes might be
small and a member of the system might have non-negligible
probability to guess them, nonces are drawn from a large
domain.
Member-Admit. At round t, user i wants to be included in

the system. The GA determines i’s legitimate status and sends
her MKt, Xi and Ct

i = {c
t
k = EMKt(xk

⊕
nt
k) : xk ∈ Xi},

where E·(·) is the symmetric encryption algorithm.
Member-Revoc. Members are revoked when the system ad-

vances from one round to the following one. Assume user i is
revoked when moving from round t to round t+1. At this time,
the GA randomly picks a new group key, namely MKt+1 and
securely distributes it among all legitimate users. The latter can
be achieved via broadcast encryption techniques [7]. Then, the
GA and each legitimate user i computes the following: for
each xk ∈ Xi, they calculate nt+1

k = H(nt
k,MKt+1) and

ctk = EMKt+1 (xk

⊕
nt+1
k).

224

V. TRUST SETUP PROTOCOLS

Our two-party and multi-party trust setup protocols are
based on the two-party private matching scheme due to Freed-
man et al. [3] and the multi-party private matching scheme due
to Kissner et al. [4], respectively.
The main idea is to enhance private matching protocol in

order not to leak private information when the congenial group
cannot be established.
To simplify the discussion, we assume that the protocols

are carried out within one round, so we drop all superscripts
referred to the actual round. Also, from now on we will use Xi

and Ci to denote both the set of attributes and secrets owned
by user i or the set of attributes and secrets that she inputs to
the trust setup protocol.

A. All-or-Nothing

We modify the private-matching schemes so that our trust
setup protocols have the “all-or-nothing” property [8]. That is,
if the protocol succeeds, every player recognizes that all the
other players have input the same set of secrets; if the protocol
fails, no player gets to know anything beyond the fact that not
all the parties used the same set of secrets to run the protocol.
We adapt an (n, n) secret sharing scheme described in Section
II-B to afford “all-or-nothing” as follows.
In both private matching schemes [3], [4], user elements

are represented as roots of polynomials. User i defines a
polynomial Pi(·) whose roots are the set of her secrets and
encrypts its coefficients with an homomorphic encryption
system. Encrypted coefficients are sent to user j. For each
xk ∈ Xj , user j computes yk = rk · Pi(xk) + 1, where
rk is a random nonce, and sends the results back to i. If
xk ∈ Xj is a root of Pi, after decryption of yk, user i gets
“1”, otherwise, she gets a random value. Hence, i learns the
intersection between Xi and Xj .
In our protocols, each user i computes a hash of the

attributes she uses as inputs. In particular, user j computes
hj = H(xj1 , . . . , xjλ) (we assume attributes are always
sorted lexicographically) and divides hj using a (λ, λ) secret
sharing scheme into λ shares: hj1 , . . . , hjλ . Then, for each
ck ∈ Cj , user j evaluates the received polynomial Pi as
rk · Pi(ckj

) + hkj
, where rk is a random nonce.

In the two-party trust setup protocol, when i gets all the
encrypted evaluations from j and decrypts them, if the sum
of the decrypted results ĥj is equal to hi, then i outputs
“accept” to indicate that j is acknowledged as a member of
the congenial group. The protocol succeeds when both i and
j output “accept”. Otherwise, the protocol fails.
In the multi-party trust setup protocol, all players work to-

gether to get a polynomial representation P of the intersection
of their inputs and then all of them evaluate P . If there are
m players (1, . . . ,m), after the group decryption, the sum of
the results is h = h1 + · · · + hm. If all the players used the
same set of secrets as input, then h1 = . . . = hm. Player i
(i = 1, . . . ,m) checks if hi =

h
m

and outputs “accept” if the
equation holds. The protocol succeeds when all the players
output “accept”. Otherwise, the protocol fails.

B. Two-Party Trust Setup Protocol

The trust setup protocol between two parties i and j is
depicted in Figure 2. We assume before engaging in the
protocol, each party computes a fresh key pair of a common
homomorphic encryption system.2 Algorithms SSq,n(·) and
Recq,n(·) are the algorithm to share and recover a secret
according to a (q, n)-threshold secret sharing scheme, respec-
tively. User i defines a polynomial whose roots are the set
of her secrets and encrypts it under her homomorphic public
key. The encrypted coefficient are sent to the other party. Next,
user i shares the hash of her attributes (i.e., hi) into λ shares,
according to a (λ, λ)-threshold secret sharing scheme. The
received polynomial is evaluated for each secret and the result
is first masked with randomness and later added to one of
the share just computed. Results are sent to the other party.
Finally, results of the polynomial evaluation by the other party
are decrypted using the homomorphic secret key and input
to recovery algorithm of the (λ, λ)-threshold secret sharing
scheme. If the output of the recovery algorithm equals hi,
then user i output “accept” otherwise she rejects.
The protocol succeeds when both i and j output “accept”

and fails otherwise.

C. Multi-Party Trust Setup Protocol

In a multi-party scenario, members collusion is an important
issue. While in general private matching schemes, elements
of any member are arbitrarily chosen, in our congenial group
system, attributes and thereby groups are managed by the GA
in a way such that colluding attacks are discouraged: no one
gets benefit by colluding with other users. This can be achieved
using the following rules in group management:
• The set of secretes of an ancestor group is strict larger

than the union of the set of secrets owned by all its
offspring groups.

• Groups without ancestor-offspring relations should have
disjoint set of secrets.

While in the two-party protocol each party generates a
public/private key pair, in the multi-party scenario, the GA
generates a system wide public/private key pair (sk, pk). The
public key is known by everybody while the secret key is
shared by all the legitimate members using a (l, n) secret
sharing scheme where l is threshold and n is the number of le-
gitimate members in the congenial group system. This requires
at least l legitimate members to participate in the protocol in
order to make group decryption available. As a consequence
any group of l legitimate members, even though they do not
take part in the protocol, can decrypt the evaluations of the
polynomial and learn information about the intersection of
the actual players: if one of the colluding members has the
same set of secrets that are involved in the protocol, they
learn the intersection set. To solve this problem we introduce
randomness in the shares, using the Burmester and Desmedt
conference key distribution scheme [9]. Thus, during System-
Init, the GA sets up the conference key distribution scheme

2Reusing the same key pair would trivially violate user anonymity.

225

User i User j
On input: Xi = {xi1 , · · · , xiλ}, On input: Xj = {(xj1 , · · · , xjλ},

Ci = {ci1 , · · · , ciλ}, pki, ski Cj = {cj1 , · · · , cjλ}, pkj, skj

Pi =
∏λ

k=1(c− cik) Pj =
∏λ

k=1(c− cjk)

P̂i = E(pki, Pi) P̂j = E(pki, Pj)
hi = H(xi1 , · · · , xiλ) hj = H(xj1 , · · · , xjλ)
{hi1 , · · · , hiλ} = SSλ,λ(hi) {hj1 , · · · , hjλ} = SSλ,λ(hj)

P̂i,pki
−−−−→
P̂j ,pkj

←−−−−
For k = 1, . . . , λ For k = 1, . . . , λ

rk
$
←− rk

$
←−

wik = rk · P̂j(cik) + E(pkj , hik) wjkrk · P̂i(cjk) + E(pki, hjk)
wi1

,...,wiλ−−−−−−−→
wj1

,...,wjλ←−−−−−−−

ĥi = Rec({Dec(ski, wjk)}1≤k≤λ) ĥj = Rec({Dec(skj, wik)}1≤k≤λ)

If hi == ĥi then ACCEPT If hj == ĥj then ACCEPT
else REJECT else REJECT

Fig. 2. Two-party trust establishment protocol.

parameters as follows: picks a prime p = Θ(2cN) where N
is a security parameter and c ≥ 1 is a constant, chooses an
element α ∈ Zp of order q = Θ(2N), and publishes p, α and
q.
Suppose there are m (m ≥ l) parties playing the protocol,

our multi-party protocol is shown in Figure 3. The multi-party
trust setup protocol starts with all involved parties running the
conference key scheme of [9] to agree on a random value
Oi which is to be used to randomize the attribute values. It
involves two rounds of broadcast communications. Following
the conference key agreement scheme is the multi-party secret
matching scheme which also involves two rounds of broadcast
communications. The protocol successes when all the players
output “accept” and fails otherwise.

VI. SECURITY ANALYSIS

In this section we analyze our protocols with the security
properties listed in Section III.

A. Completeness

In our two-party protocol, if i and j execute the protocol
with the same set of attributes (i.e. Ci = Cj), each cjk
in Cj is a root of Pi. Thus, for each cjk in Cj , we get
Epki

(rk · Pi(cjk) + hjk) = Epki
(hjk). User i will receive

λ such values, decrypt them with her secret key and re-
assemble them to obtain hj . Since hj = H(cj1 , · · · , cjλ) =
H(ci1 , · · · , ciλ) = hi, then i outputs “accept”. A similar
argument holds for j.
In our multi-party protocol, the resulted polynomial P in

step 2 is the polynomial whose roots are the intersection of
the inputs from all parties. Every party evaluates P with her
set of inputs. If all parties input the same set of secrets, then
h1 = · · · = hm and P is evaluatedm times in the same points.

Thus s = h1 + · · · + hm = m · hi. So if hi = s
m
, player i

outputs “accept”.

B. Anonymity

Since our protocols are based on user attributes rather than
identities, no unique value is bound to the identity of any given
party that runs the protocols. Thus their identity is kept secret.

C. Privacy

In the two-party protocol, suppose that i and j run the
protocol with different set of attributes (i.e. Ci �= Cj). For
each cjk ∈ Ci∩Cj , Epki

(rk ·Pi(cjk)+hjk) = Epki
(hjk). For

each cjk /∈ Ci∩Cj , Epki
(rk ·Pi(cjk)+hjk) = random. Since j

compute the shares randomly, i will not be able to distinguish
between one of the shares hjk and a random value. Thus i
will not be able to tell which of her attributes are owned by
j. A similar argument holds for j.
In the multi-party protocol, since the evaluated polynomial

P has as roots the intersection of all the users’ inputs and
shares are computed randomly by all the parties, no one can
distinguish between one of the shares hjk and a random value;
moreover, no one can link a pair of shares to any user.

D. Impersonator Resistance

Both protocols use elements drawn from C. Since its
domain is very large, an adversary has very little probability
to guess any of those elements. Furthermore, if she wants to
be acknowledged in a λ-congenial group, she has to guess λ
secrets. Even if the adversary recovers all the secrets, she will
not be able to tell which attributes are owned by the members
of the congenial group, since she misses both MKt and the
nonces.

226

Each user i computes broadcasts

Move 1: bi
$
←− Zq

zi = αbi (mod p)
zi−→

zj(j �=i)
←−−−−−

Move 2: wi = (zi+1/zi−1)
bi (mod p)

wi−→
wj(j �=i)
←−−−−−

Move 3: oi = (zi−1)
mbi · (wi)

m−1 · (wi+1)
m−2 · · ·wi−2 (mod p)

Pi =
∏λ

k=1(c− cik)

P̂i = E(pk, Pi)
Ri ← Rλ[x]

φi = P̂i ×Ri

φi
−→

φj(j �=i)
←−−−−−

Move 4: F =
∑l

j=1 φj

hi = H(xi1 , · · · , xiλ , oi)
(hi,1, · · · , hiλ) = SSλ,λ(hi)
For k = 1, · · · , λ

rk
$
←−

vik = rk × E(pk, F (cik ⊕ oi)) + hij
Vi={vi1 ,··· ,viλ}−−−−−−−−−−→

Vj(j �=i)
←−−−−−

All participants
Move 5: (together decrypt each element of V = {V1, · · · , Vm})

For k = 1, · · · ,m

V̂i = {Dec(sk, vi1), · · · , Dec(sk, viλ)}

si = Rec({V̂i}) = Rec({Dec(sk, vik)}1≤k≤λ)

s =
∑λ

k=1 Rec(d)
Each user i
Move 6: If hi == s/m then ACCEPT

else REJECT

Fig. 3. Multi-party trust establishment protocol.

E. Unspoofability

Let i and j have set of attributes Xi and Xj = Xi

⋃
xz

respectively, i.e. i has all but one of the j’s attributes. Suppose
they play the trust setup protocol using all of their attributes
and suppose i pretends to have xz . Even though i knowsMKt

and guesses xz (X domain might be small) she has very little
probability to guess the nonce (which are drawn from a large
domain) to compute EMKt(xz

⊕
nt
z). Thus she is unable to

produce all the ci (i = 1, · · · , |Xj |) to join the congenial
group.

F. Unlinkability

In the two-party setting, each time a different key pair
is used to achieve unlinkability. Since a semantically secure
homomorphic encryption scheme is used, two executions of
the protocol performed by a legitimate member will not give
to any adversary enough information to link the two executions

to any user. In the multi-party setting, a random polynomial
is used each time the protocol is executed. Again, no enough
information are given to any adversary to link two executions
of the protocol to any user.

VII. PERFORMANCE ANALYSIS

In this section we analyze the computation and communi-
cation overhead of our protocols for the GA and a legitimate
member.

A. System-Init

Only the GA is involved in the system-init operation during
which it chooses a random key for a symmetric encryption
system, generates |X | nonces and performs |X | symmetric
key encryptions. The GA must also setup parameters for the
conference key distribution scheme as in [9].

227

B. Member-Admit

The GA sends to the new user the group key MK , Xi

and the corresponding ciphertexts Ci. There is no computation
overhead while the communication overhead is linear in the
number of attributes provided to the user.

C. Member-Revoc

When the system moves to a new round, malicious users
detected during the previous round are revoked.3 A new group
key is randomly chosen by the GA and distributed among all
legitimate users through broadcast encryption, e.g., [7]. Let X̄
be the union of all attributes owned by users being revoked at
the current round. For each attribute in X̄ , the GA computes a
hash (to get the nonce for the current round) and a symmetric
encryption operation. User i is required to compute hash and
encryption for each attribute in Xi.

D. Two-party Trust-Setup

Part of the trust establishment protocol can be carried off-
line. At this time, user i (1) defines a polynomial of degree
λ through interpolation, (2) encrypts its coefficient using her
fresh homomorphic public key, (3) computes the hash of λ
attributes and (4) breaks the computed hash in λ shares.
During the online part of the protocol, user i (1) picks

λ random values, (2) computes λ public key encryptions
and decryption, (3) performs λ polynomial evaluations and
(5) reassembles λ shares. Each user also need to send 2λ
ciphertexts and one public key. Table III shows communication
and computation overhead of the trust setup protocol. In the
two-party scenario, communication and online computation
overhead is linear in the number of attributes of the congenial
group. The offline part of the protocol is more involving.

TABLE III
OVERHEAD OF THE TWO-PARTY AND MULTI-PARTY TRUST SETUP

PROTOCOLS.

Communication Computation Computation
(offline) (online)

Two-Party O(λ) O(λ2) O(λ)
Multi-Party O(mλ) O(λ2) O(mλ)

E. Multi-party Trust-Setup

The multi-party trust setup protocol starts with all involved
parties running the conference key scheme of [9] to agree on a
random key. It requires two communication rounds and three
modular exponentiations for each user.
Next each user employs interpolation to define a polynomial

of degree λ, encrypts it and multiplies it with a random
polynomial of the same degree. The encryption and multipli-
cation involve λ and λ2 modular exponentiations respectively.
This constitutes the offline part the protocol. When a user
receives all the encrypted polynomials, she computes their sum
with λ(m − 1) multiplications. The resulting polynomial is
evaluated λ times, once with each of the user input secrets.
For verification each user performs mλ decryptions.

3Techniques to identify malicious users are beyond our scope.

Each user also needs two broadcast messages to send its
encrypted polynomial and later λ evaluated results to others
respectively.
Thus the multi-party trust setup protocol requires four

communication rounds and the last two rounds involve m
participants sending coefficients encrypted polynomials or
evaluations of polynomials with λ values. The communication
complexity of the multi-party protocol is O(mλ). The total
cost of offline computation per user is O(λ2) and the total
cost of online computation per user is O(mλ).

VIII. RELATED WORK

Two-party secret handshakes [10], [11] are mostly related
to our work. They allow secret key establishment between
two parties only if they have the same affiliation; otherwise
no information is leaked. Multi-party secret handshakes were
introduced by [12] and later enhanced in [13]. Our protocol
does not lead to a secret key establishment but is only focused
on trust establishment . (It could be easily extended to provide
a secret key shared between the members of the congenial
group).
However, secret handshakes only provide “static” affiliation,

i.e., groups are defined by the authority and members can
belong to one or more groups. Our protocols allow for
“dynamic” affiliation. Given its set of attributes, a member
can dynamically define an affiliation using any subset of its
attributes. Ateniese et al. [14] introduced “Fuzzy Matching”
for secret handshakes where Alice and Bob establish a secret
only if the cardinality of attribute matching is above an
arbitrary threshold. However, their protocol only allows two-
party handshakes and requires bilinear map operations, what
makes it more involving.

IX. CONCLUSION

Motivated by the secret congenial group example in the
intelligence community, with the objective to enhance the trust
and privacy of electronic communities, we proposed a conge-
nial group system where legitimate members form congenial
groups through an anonymous and privacy-preserving trust
setup protocol. Our trust setup protocols achieve complete-
ness, anonymity, privacy-preserving, impersonator resistance,
unspoofability and unlinkability through a combination of
techniques related to private-matching, secret sharing and
group key distribution. We believe that our work can be
improved in both efficiency and flexibility: communication
and computation costs can be optimized and other desirable
properties can be achieved.

Acknowledgments. This research has been partially funded
by the Madrid Regional Council – CAM under project
CLOUDS (S2009TIC-1692), the Spanish Research Agency –
MICINN under project CloudStorm (TIN2010-19077), and the
European Commission under projects MASSIF (FP7-257475)
and STREAM (FP7-216181).

228

REFERENCES

[1] B. A. Huberman, M. K. Franklin, and T. Hogg, “Enhancing privacy
and trust in electronic communities,” in ACM Conference on Electronic
Commerce, 1999, pp. 78–86.

[2] R. Agrawal, A. V. Evfimievski, and R. Srikant, “Information sharing
across private databases,” in ACM SIGMOD International Conference
on Management of Data (SIGMOD), 2003, pp. 86–97.

[3] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” in International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), 2004, pp. 1–
19.

[4] L. Kissner and D. X. Song, “Privacy-preserving set operations,” in 25th
Annual International Cryptology Conference(CRYPTO), 2005, pp. 241–
257.

[5] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[6] S. Rafaeli and D. Hutchison, “A survey of key management for secure
group communication,” ACM Computing Surveys, vol. 35, no. 3, pp.
309–329, 2003.

[7] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast
encryption with short ciphertexts and private keys,” in 25th Annual
International Cryptology Conference(CRYPTO), 2005, pp. 258–275.

[8] B. Schneier, Applied cryptography, J. W. . Sons, Ed., 1996.
[9] M. Burmester and Y. Desmedt, “A secure and efficient conference key

distribution system (extended abstract),” in International Conference
on the Theory and Applications of Cryptographic Techniques (EURO-
CRYPT), 1994, pp. 275–286.

[10] D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters, J. Staddon, and H.-
C. Wong, “Secret handshakes from pairing-based key agreements,” in
IEEE Symposium on Security and Privacy (S&P), 2003, pp. 180–196.

[11] C. Castelluccia, S. Jarecki, and G. Tsudik, “Secret handshakes from
ca-oblivious encryption,” in 10th International Conference on the The-
ory and Application of Cryptology and Information Security (ASI-
ACRYPT’04), 2004, pp. 293–307.

[12] G. Tsudik and S. Xu, “Brief announcement: a flexible framework for
secret handshakes,” in 24th Annual ACM Symposium on Principles of
Distributed Computing (PODC), 2005, p. 39.

[13] S. Jarecki, J. Kim, and G. Tsudik, “Authentication for paranoids: Multi-
party secret handshakes,” in 4th International Conferenceon Applied
Cryptography and Network Security (ACNS), 2006, pp. 325–339.

[14] G. Ateniese, J. Kirsch, and M. Blanton, “Secret handshakes with dy-
namic and fuzzy matching,” in Network and Distributed System Security
Symposium (NDSS), 2007.

229

