
Computer Communications 34 (2011) 1243–1257
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom
A token-bucket based notification traffic control mechanism for IMS
presence service

Jianxin Liao a,⇑, Jinzhu Wang a, Tonghong Li b, Jingyu Wang a, Xiaomin Zhu a

a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 296, Beijing 100876, PR China
b Department of Computer Science, Technical University of Madrid, Madrid 28660, Spain

a r t i c l e i n f o
Article history:
Received 18 August 2010
Received in revised form 26 November 2010
Accepted 31 December 2010
Available online 7 January 2011

Keywords:
Notification traffic control
Delayed update
Presence service
IMS
0140-3664/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.comcom.2010.12.017

⇑ Corresponding author.
E-mail addresses: liaojianxin@ebupt.com (J. Liao)

Wang), tonghong@fi.upm.es (T. Li), wangjingyu@ebup
n@ebupt.com (X. Zhu).
a b s t r a c t

Presence is a service that allows a user to be informed about the specified state of another user. Presence
service has become a key enabler for next-generation applications such as instant messaging, push-
to-talk and web2.0. However, recent studies show that the notification traffic of presence service causes
heavy signaling load on IP multimedia subsystem (IMS) network. This paper introduced a token-bucket
based notification traffic control (TNTC) mechanism, which is an application layer solution deployed at
the presence server. The TNTC aims at upgrading valid access probability while controlling the notifica-
tion traffic. A mathematical model of a queuing system is proposed to describe TNTC. We analyzed its
main probability features and investigated the effects of different parameters on the performance of
TNTC. Extensive simulations verified that TNTC can effectively control notification traffic and perform
better than the existing schemes in terms of valid access probability and update arrival rate.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Presence is a service that allows a user to be informed about the
specified state of another user. The specified state, such as online/
offline status, disposition (out to lunch, away from the computer),
activity status (busy, idle), mood (happy, sad) and location of user,
reflects the user’s accessibility, availability and will to communi-
cate. Presence has become a key enabler for next-generation ser-
vices such as push-to-talk (PTT), instant messaging (IM) and
web2.0, which have facilitated communications among communi-
ties of interest, such as groups of friends, colleagues working on the
same projects and families [1,2].

There are four fundamental entities in a presence service [3–5]:
a principal, a presentity, a watcher and a presence server, which
may exist independently or as part of application servers (e.g.,
PTT, IM and Web2.0). A principal refers to a user who uses presence
service and is the owner of presentities or watchers; a presentity is
an entity that is capable of providing state information to presence
server; a watcher is an entity that subscribes to or requests the
state information about a presentity; and a presence server is a
network entity which has three main responsibilities: managing
the subscription relationships between watcher and presentity;
ll rights reserved.

, wangjinzhu@ebupt.com (J.
t.com (J. Wang), zhuxiaomi-
keeping the latest presentity state; and notifying corresponding
watchers when the presentity state is updated.

Fig. 1 illustrates a simplified IP multimedia subsystem (IMS)
network architecture for presence service [4]. In this architecture,
users (referred to as principals) with several kinds of user equip-
ments (UEs) access presence service. The UE plays the role as a
presentity when it provides state information to the presence ser-
ver. On the other hand, the UE is called a watcher if it accesses
other UEs’ state information from the presence server. In IMS
domain, call session control function (CSCF) is responsible for car-
rying out the session initiated protocol (SIP) control signaling. It
consists of Proxy-CSCF (P-CSCF), which acts as the outbound proxy
for UE; Interrogating-CSCF (I-CSCF), which is the entry point in
home domain; and Serving-CSCF (S-CSCF), which takes charge of
triggering services. As an IMS application server, the presence ser-
ver mainly interacts with S-CSCF via SIP protocol to collect the up-
dated presentity states and notify them to watchers. Besides that,
it also accesses the home subscriber server (HSS) to get the user
information through DIAMETER protocol.

Three basic SIP requests surrounding the presence service are
presented in Fig. 2 [6,7]: SUBSCRIBE, PUBLISH and NOTIFY. Firstly,
the watcher A subscribes to a particular presentity via a SUBSCRIBE
request. The presence server internally verifies whether watcher A
is authorized to subscribe to this presentity. If so, it acknowledges
with a 200 OK response and sends the presentity’s current state to
watcher A via a NOTIFY request. In the mean while, the presence
server generates the subscription relationship between watcher A
and the presentity. Secondly, watcher B subscribes to identical

http://dx.doi.org/10.1016/j.comcom.2010.12.017
mailto:liaojianxin@ebupt.com
mailto:wangjinzhu@ebupt.com
mailto:tonghong@fi.upm.es
mailto:wangjingyu@ebupt.com
mailto:zhuxiaomin@ebupt.com
mailto:zhuxiaomin@ebupt.com
http://dx.doi.org/10.1016/j.comcom.2010.12.017
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

Fig. 1. The IMS architecture for presence server.

Fig. 2. Presence call flow.

1244 J. Liao et al. / Computer Communications 34 (2011) 1243–1257
presentity through the same process as watcher A. Finally, when
the presentity’s state is updated, it uses a PUBLISH request to notify
the presence server. Depending on the subscription relationships,
the presence server sends NOTIFY requests to both watcher A
and B, notifying them of the renewed presentity state.

A key feature of presence service is always-on [8]. This means
that even if the watcher does not actually use the presentity state
information after subscribing to the presentity, the presence server
still notifies it of the updated presentity state. Considering a pres-
entity often has lots of online watchers in practice, the presence
server can generate a high volume of signaling traffic when there
are many presentities [9]. A traffic model for presence service is
proposed in [1] and it shows that the presence service related load
on CSCF could be as high as 50%. Simulation study on the perfor-

J. Liao et al. / Computer Communications 34 (2011) 1243–1257 1245
mance of a SIP based presence and instant messaging service for
UMTS indicates that high traffic load has bad impact on the IMS
network performance and it is necessary to reduce the signaling
traffic load [10]. An admission control mechanism is proposed to
control the watcher’s subscription time such that the traffic load
can be reduced [11]. Analysis of the traffic load distribution in
the presence service reveals that NOTIFY messages account for
the largest portion of the traffic load on a presence server
[12,13]. Therefore, controlling notification traffic in IMS presence
service is essential for handling the total signal traffic load in IMS
core network.

In this paper, we propose and design TNTC, a token-bucket
based notification traffic control mechanism. By delaying arrival
updates, TNTC can control the notification traffic for presence ser-
ver. The remainder of this paper is organized as follows: Section 2
surveys related work. Section 3 first proposes the design of TNTC,
then analyzes TNTC using queuing theory and calculates its main
probability features. Section 4 investigates the effects of different
parameters on the performance of TNTC through analytical model-
ing and uses simulations to compare TNTC with other implementa-
tions proposed in [14,15]. Finally, conclusions and possible future
work are described in Section 5.
2. Related work

There are several notification traffic control mechanisms pro-
posed in the research literature. Resource list server (RLS) is intro-
duced in [16] to manage all subscriptions to presentities on a
resource list. Instead of subscribing to all members on the list
and receiving multiple notifications, the watcher subscribes to
the resource list on the RLS. The RLS subscribes to the individual
presentity. After that, the RLS accumulates the state information
of all presentities and notifies watcher through one NOTIFY mes-
sage. This approach can reduce the number of SUBSCRIBE and NO-
TIFY messages related to watchers. An extensive RLS mechanism is
proposed in [8] to reduce unnecessary notifications for mobile
users when they do not need it. When the user deactivates his
phone (e.g. locks the phone), the presence server does not send
notifications to the user. Once the user activates his phone (e.g. un-
locks the phone), his subscription to RLS is renewed. As the RLS
never stops collecting presence state information, the user imme-
diately gets the latest presence states. Partial notifications [17]
allow a presentity to send only parts of the full state information.
As a result, the watcher receives only the changed part of the state
information. This does not decrease the number of NOTIFY mes-
sages, but significantly reduces the volume of NOTIFY messages.
Compressing SIP messages is another technique to reduce the
volume of messages sent in the network [18,19]. Usually these
compression algorithms substitute words with letters in SIP mes-
sages. The compressor builds a dictionary that maps the long
expressions to short pointers and sends this dictionary to the de-
compressor. In this technique, the number of messages transmis-
sion is not reduced. An on-demand presence model is proposed
in [20], where watchers are not notified every state updating of
all the buddies. Instead, watchers only receive state updating of
some buddies they are recently interested in. But for other buddies,
watchers pull the state information from the presence server at the
time they want to call. This on-demand presence model can be
useful in reducing notifications at the cost of downgrading the
richness of presence information. In [21], a presence network agent
(PNA) is implemented to improve the performance of presence ser-
vice without modifying presence server. It is a new logic entity
within the IMS core network that is able to publish the presence
state information on behalf of the presentity. The PNA reduces
the presence signaling load within the radio access network
without downgrading the freshness and richness of the presence
information. In inter-domain presence service scenarios [20,22],
NOTIFY messages between different domains are aggregated at a
specific function entity. As a result, the total number of notifica-
tions is reduced.

Besides, research on controlling notification traffic through
delaying update is currently in progress. The work in [14] proposed
a basic delayed update mechanism to control the notification traf-
fic. In this mechanism, when the presence server receives PUBLISH
messages from presentity, the watcher is not notified of the up-
dated information immediately. Instead, the presence server starts
a delayed timer with a period T. This period is referred to as the de-
layed threshold. If the presentity state is updated again within the
period T, the old information in the presence server is replaced by
the new one. When the timer expires, the presence server notifies
the watcher of the presentity state. Therefore, the notifications for
the update messages in T are saved and the notification rate is de-
creased. However, the watcher may access the obsolete informa-
tion if an access occurs in T. This work recommends the delayed
threshold to be 5 s. In [15], Chen et al. proposed a mechanism sim-
ilar to the basic delayed update mechanism, where they set the de-
layed threshold value to be a random value. This work proposed
two specific performance metrics: the probability that the watcher
accesses the valid presentity state, and the number of updates
saved in the delayed threshold. Both the fixed and exponential de-
layed thresholds were considered. Simulation results showed that
the performance of these two thresholds are almost identical and it
is appropriate to select the exponential delayed threshold when
the variance of update intervals is small, whereas the fixed delayed
threshold should be selected when the variance of update intervals
is large. Chi et al. proposed a queuing system with controlled vaca-
tion to process NOTIFY messages [13]. That is, NOTIFY messages for
updates are put into the queuing system and sent periodically.
When there is no NOTIFY message in the queue, the server control-
ling the queue is on vacation. When the vacation is ended, NOTIFY
messages in the queue are sent. Using this mechanism, the pres-
ence server can have more time to process other messages (e.g.
SUBSCRIBE messages) and the NOTIFY messages are not sent too
frequently. Although it does not aim at controlling notification traf-
fic, the vacation time can also play the effect of reducing the noti-
fication rate. Niemi et al. proposed a notification rate control (also
referred to as event throttling) framework [23], which specifies a
mechanism to limit the rate of NOTIFY message received by each
watcher. Each watcher can indicate the minimum period of time
between two consecutive notifications when subscribing. The
presence server maintains a buffer for each watcher. If the arrival
interval of updates is less than the minimum period, NOTIFY mes-
sages will be delayed in the watcher’s buffer. Although this mech-
anism cannot limit the total NOTIFY message rate sent by presence
server when the number of watchers increases, it can reduce the
number of NOTIFY messages and limit the NOTIFY message rate re-
ceived by each watcher.

To sum up, the mechanisms proposed in [8,16–22] reduce the
notification traffic volume by optimizing the presence service pro-
cess, but they cannot limit the notification rate when the number
of users or the update rate of presentity state increases. In delayed
update mechanisms, [14,15] reduce the number of NOTIFY mes-
sages through predefined delayed update time without significant
overhead on the presence server. Although they can reduce the
notification rate, the predefined delayed update time degrades
the valid access probability when updates arrive at a lower rate.
The vacation time of [13] is also predefined and it has the same dis-
advantage as [14,15]. [23] can limit the NOTIFY message receiving
rate for each watcher, but the total NOTIFY message sending rate of
presence server is impossible to control since each watcher is free
to set its rate limitation. Besides, maintaining a buffer and tracing

1246 J. Liao et al. / Computer Communications 34 (2011) 1243–1257
the notification interval for each watcher may result in significant
overhead on presence server. Therefore, it is necessary to develop a
delayed update mechanism which is able to upgrade valid access
probability while control the notification traffic.

3. TNTC design and analytical modeling

3.1. TNTC design

In this section, we propose the design of TNTC. There are three
main functional modules in a presence server to process arrival up-
dates as shown in Fig. 3, where TNTC is the module proposed in
this paper to control notification traffic and the other two are tra-
ditional functional modules.

The presence server records presentity states. Once a presentity
state is updated, a PUBLISH message is sent to the presence server.
After receiving the message, the presence server puts it into the RE-
SPONSE module, which replies the user with a 200 OK message
immediately to indicate that the update has been received success-
fully. Then, the PUBLISH message is sent into TNTC module, which
is responsible for controlling notification traffic. After leaving
TNTC, the PUBLISH message goes to the NOTIFICATION module,
where the presence server sends each online watcher, who has
subscribed to the state of the user, a NOTIFY message to notify
them of the updated state.

Fig. 3 shows the model of TNTC consisting of a token bucket and
a waiting queue. When TNTC receives a PUBLISH message from the
RESPONSE module, it tries to acquire a token from the token bucket
for the PUBLISH message. If acquiring a token successfully, TNTC
sends the PUBLISH message to the NOTIFICATION module immedi-
ately. At the same time, the token acquired is consumed. On the
other hand, if the PUBLISH message cannot acquire a token, it is in-
serted into the waiting queue. Messages in the waiting queue are
served in a first-come-first-serve (FIFO) fashion to acquire a token.

Notification traffic control of TNTC consists of two functions:
using a token bucket to limit the output rate of PUBLISH messages,
and using a waiting queue to reduce the amount of output PUBLISH
messages. The token bucket is a common mechanism widely used
in computer networks to guarantee QoS, which controls the
amount of data injected into the network. Its main functions com-
prise network traffic shaping and rate limiting [24]. From the
knowledge of the token bucket, we know that the maximum PUB-
LISH message output rate is the token generating rate. Therefore,
Fig. 3. Update related functional
we can limit the output rate of PUBLISH messages by setting the
appropriate token generating rate. If PUBLISH message arrival rate
is continuously higher than the token generating rate, the tokens
will be consumed. Once there is no token left in token bucket,
the arrival PUBLISH messages are put into waiting queue to reduce
their output rate. On the other hand, the messages waiting in the
queue can reduce the number of output PUBLISH messages. Once
a PUBLISH message arrives, it will find in the waiting queue
whether there is a message belonging to the same user as itself.
If so, it will replace the older message. Thus the notifications for
this PUBLISH message are saved and the amount of output PUB-
LISH messages is decreased.

Compared to the previous notification traffic control methods in
[14,15], the fundamental difference between TNTC and the others
is the waiting time (also referred to as delayed update time), which
in previous methods is predefined while in TNTC is decided by the
parameters of TNTC and changes with the varying update arrival
rate. We propose an analysis modeling in the following sections
to calculate the distribution of waiting time and its expected value
in TNTC.

3.2. The parameters of TNTC

The model of TNTC is shown in Fig. 3, and its parameters are de-
scribed as follows:

� The capacity of token bucket is c. It is the maximum burst vol-
ume of notification traffic sent by the presence server. The pres-
ence server can process at most c PUBLISH messages at the
same time. Therefore, the maximum number of NOTIFY mes-
sages sent simultaneously by the presence server is:
Nmax
notify ¼ c � nw ð1Þ

where nw is the average number of online watchers for each user.
� The number of online users is N. Thus, the maximum number of

waiting messages in TNTC is also N. This is because the arrival
PUBLISH message firstly finds in the waiting queue whether
there is a message belonging to the same user as itself. If the
number of waiting messages is N, there exists a PUBLISH mes-
sage in waiting queue belonging to the same user as the arrival
one. Thus, the arrival PUBLISH message will replace the older
one instead of being inserted into the queue as a new waiting
message.
modules in presence server.

J. Liao et al. / Computer Communications 34 (2011) 1243–1257 1247
� The length of the waiting queue is s. Thus s need not be larger
than N as shown above. Different s leads to different waiting
time and loss probability of TNTC, which will be discussed in
Section 4.1.2.
� From the functional description of RESPONSE module, we can

see that the arrival process of PUBLISH messages at presence
server is equal to that at TNTC, thus in this paper we do not dif-
ferentiate these two kinds of arrival processes. Suppose that the
arrival process of PUBLISH messages of each user conforms to
Poisson distribution with mean ka and arrival processes of dif-
ferent users are independent of each other [13]. From the con-
clusion in [25] that the sum of N independent Poisson
variables with the same mean ka is a Poisson variable with
mean N � ka, we can conclude that the arrival process of PUB-
LISH messages of all online users conforms to Poisson distribu-
tion with mean k, as shown in (2):
k ¼ N � ka ð2Þ
� The token generating time interval is set to be exponential dis-
tributed with mean u�1. Thus, the token generating process
conforms to Poisson distribution with mean u. From the analy-
sis in the last section, we can see that u is the maximum PUB-
LISH message output rate of TNTC. Therefore, the maximum
NOTIFY message sending rate of presence server is:
Rmax
notify ¼ u� nw ð3Þ
3.3. Analytical modeling

The TNTC can be modeled as a queuing system, where the arri-
val PUBLISH messages are treated as ‘‘customers’’ and the token
bucket is seen as the ‘‘service window’’. Let S(t) denote the number
of tokens left in token bucket at time t. Specially, when S(t) is neg-
ative, it stands for the number of messages waiting in the queue,
e.g. S(t) = �3 represents that there are three messages waiting in
the queue, and also there is no token left in token bucket. The
S(t) is decreased by one unit when a PUBLISH message arrives
and increased by one unit at the time a token is generated. We also
denote Ek as the state space of S(t), which means S(t) = k.

From the definition of S(t), we can conclude that it has Markov
property. Since both the inter-arrival times of PUBLISH messages
and the token generating time conform to exponential distribution,
S(t) is only permitted to transit to neighboring states Ek+1 or Ek�1

from state Ek when t tends to be zero. Therefore {S(t), t P 0} is
the birth–death process as shown in [26], which is the special case
of Markov process.

Fig. 4 shows the state-transition-rate diagram of S(t). In order to
simplify the expression of the calculation results, we remark this
state-transition-rate diagram as shown in Fig. 5, where the state
of S(t) is indexed from zero.

In Fig. 5, when S(t) 6 c, it means there are c � S(t) tokens left in
the token bucket and no message is waiting in the queue. All arri-
val PUBLISH messages are sent to the token bucket. Thus, the rate
of updates arriving at token bucket is a fixed value k. When S(t) > c,
it means that there is no token left in the token bucket and S(t) � c
messages are waiting in the queue. In this circumstance, since the
Fig. 4. State-transition-rate d
PUBLISH messages arrival process of each user is independent
identically distributed, the waiting message in queue belongs to
each user with the same probability. Therefore, when a PUBLISH
message arrives, the probability of finding message in waiting
queue which belongs to the same user as itself is SðtÞ�c

N . As the arri-
val message will replace the older one if it finds such a message,
the probability that the arrival PUBLISH message is inserted into
the waiting queue is 1� SðtÞ�c

N

� �
. From the theory of decomposition

of Poisson process in [25], the rate of updates arriving at token

bucket is 1� SðtÞ�c
N

� �
k. Since the rate of updates arriving at token

bucket is equal to the increasing rate of S(t), and the token gener-
ating rate of token bucket is equal to u in each case, which results
in constant decreasing rate of S(t), the state-transition-rate dia-
gram of S(t) can be deduced as shown in Fig. 5.

3.3.1. Equilibrium distribution of S(t)
From the above analysis, we can deduce that the rate of updates

arriving at token bucket is zero when S(t) is equal to c + N, i.e., if the
PUBLISH messages of all online users are waiting in the queue, the
increasing rate of S(t) is zero. Therefore, from the theory of Markov
chain, S(t) has a unique equilibrium distribution and this queue
model is stable [26].

Setting

p½s�k ðtÞ ¼ PfSðtÞ ¼ kg; k ¼ 0;1; . . . ; c þ s ð4Þ
p½s�k ¼ lim

t!1
p½s�k ðtÞ; k ¼ 0;1; . . . ; c þ s ð5Þ

where p½s�k ðtÞ is the probability of S(t) = k when the length of waiting
queue is s, and p½s�k is the limitation of p½s�k ðtÞ when t goes to infinity.
Since S(t) has a unique equilibrium distribution, p½s�k exists and is un-
ique. From Fig. 5, we obtain the following state-transition-rate
equations:

p½s�0 k ¼ p½s�1 u ð6Þ
p½s�k ðkþ uÞ ¼ p½s�k�1kþ p½s�kþ1u; 1 6 k 6 c ð7Þ

p½s�k 1� k� c
N

� �
kþ u

� �
¼ p½s�k�1 1� k� 1� c

N

� �
kþ p½s�kþ1u;

c < k < c þ s ð8ÞXcþs

k¼0

p½s�k ¼ 1 ð9Þ

where c > 0, s > 0. The solution of this linear equations array (6)–(8)
can be calculated recursively. The result is:

p½s�k ¼
qkp½s�0 ; 0 6 k 6 c

1
Nk�c Pk�c

N qkp½s�0 ; c < k 6 c þ s

(
ð10Þ

where q = k/u, Pk�c
N ¼

Qk�c�1
i¼0 ðN � iÞ. From (9) and (10), we can figure

out:

p½s�0 ¼
1Pc

k¼0qk þ
Pcþs

k¼cþ1qk 1
Nk�c Pk�c

N

¼ 1Pc
j¼0qj þ

Ps
j¼1qcþj 1

Nj Pj
N

ð11Þ

Substitute (11) into (10) to obtain the unique equilibrium distri-
bution of S(t):
iagram indexing from c.

Fig. 5. State-transition-rate diagram indexing from 0.

1248 J. Liao et al. / Computer Communications 34 (2011) 1243–1257
p½s�k ¼

qkPc

j¼0
qjþ
Ps

j¼1
qcþj

Pj
N

Nj

; 0 6 k 6 c

qkPc

j¼0
qjþ
Ps

j¼1
qcþj

Pj
N

Nj

Pk�c
N

Nk�c ; c < k 6 c þ s

8>>><
>>>:

ð12Þ
3.3.2. Arriving customer’s equilibrium distribution of S(t)
As defined in Section 3.3.1, p½s�k ðtÞ is the probability that S(t) is in

state Ek at time t. Stated differently, p½s�k ðtÞ is the probability that an
outside observer, who observes S(t) at time t, will find that S(t) is in
state Ek. Now consider the state distribution as seen by the arriving
customers (e.g., arriving PUBLISH messages), let p½s�k ðtÞ be the prob-
ability that S(t) is in state Ek just prior to time t, where t is now an
arrival epoch. p½s�k ðtÞ

n o
is thus the distribution that represents the

viewpoint of the arriving customer at time t. We define p½s�k as:

p½s�k ¼ lim
t!1

p½s�k ðtÞ; k ¼ 0;1; . . . ; c þ s ð13Þ

Referring to [25], we can draw a conclusion, which is deduced in
Appendix A, as follows:

p½s�k ¼
kkp½s�kPcþs
j¼0kjp

½s�
j

; k ¼ 0;1; . . . c þ s ð14Þ

where kk denotes the rate of updates arriving at token bucket when

S(t) is in state Ek, p½s�k

n o
denotes arriving customer’s equilibrium dis-

tribution and p½s�k

n o
denotes outside observer’s equilibrium distribu-

tion [25]. From the Fig. 5, we can write:

kk ¼
k; 0 6 k 6 c

1� k�c
N

� 	
k; c < k 6 c þ s

(
ð15Þ

Furthermore, we obtain the average PUBLISH messages arrival
rate �k:

�k ¼
Xcþs

j¼0

kjp
½s�
j ð16Þ

When the length of waiting queue is s, an arrival PUBLISH mes-
sage is dropped by TNTC if and only if the arrival one finds that
there are s messages waiting in the queue and there is no message
in queue belonging to the same user as itself. Thus, the message
loss rate P½s�loss is:

P½s�loss ¼ p½s�cþs ð17Þ

Substituting (14) and (16) into (17), we have:

P½s�loss ¼
kcþsp

½s�
cþs

�k
ð18Þ

As a special case, when s = N, we can see kc+N = 0 from Fig. 5.
Thus the rate of updates arriving at token bucket is zero, when
S(t) is in state Ec+N. As shown in (18), kc+N = 0 then leads to
P½N�loss ¼ 0. Therefore, we can conclude that if we set s P N, the TNTC
is lossless.
3.3.3. The number of waiting PUBLISH messages
Let Lw denote the number of PUBLISH messages waiting in the

queue. In our system, when S(t) 6 c, Lw = 0 because there are to-
kens left in the token bucket and no message waiting in the queue.
When S(t) > c, Lw = S(t) � c because there is no token left in the to-
ken bucket and the number of messages waiting in the queue is
S(t) � c. Therefore, the distribution of Lw is:

PfLw ¼ kg ¼
p½s�cþk; 0 < k 6 sPc
j¼0

p½s�j ; k ¼ 0

8><
>: ð19Þ

The mean Lw and standard deviation d(Lw) of Lw are:

Lw ¼ EðLwÞ ¼
Xs

k¼1

kp½s�cþk ð20Þ

E L2
w

� �
¼
Xs

k¼1

k2p½s�cþk ð21Þ

dðLwÞ ¼
ffi
E L2

w

� �
� E2ðLwÞ

r
ð22Þ
3.3.4. The waiting time of arrival PUBLISH message
Let Tw denote the waiting time of arrival PUBLISH message. From

the analysis of TNTC in Section 3.1, we find that Tw is only subject to
the token generating time and the number of waiting messages in
the queue. Thus we can conclude that if there is no token left in to-
ken bucket when a PUBLISH message arrives at TNTC, the waiting
time of this message is the time that token bucket needs to generate
a certain amount of tokens, where the number of these tokens is
equal to the number of messages waiting in front of this message
plus one; if there are tokens in the token bucket when a PUBLISH
message arrives, its waiting time is zero. For example, if an arrival
PUBLISH message finds that there are three messages waiting in
the queue, the waiting time of this message is the time token bucket
needs to generate four tokens; if an arrival PUBLISH message finds
that there is no message waiting in the queue and no token in token
bucket, the waiting time of this message is the time token bucket
needs to generate one token; if an arrival PUBLISH message finds
that there are tokens in token bucket, the waiting time is zero.

Let Q be the number of messages waiting for a token when a
PUBLISH message arrives. Then, from the theorem of total proba-
bility [25], we have:

PfTw > tg ¼
Xs�1

i¼0

PfTw > tjQ ¼ igPfQ ¼ ig ð23Þ

If Q = s, the arrival PUBLISH message will either replace the old-
er one in waiting queue belonging to the same user as itself or be
dropped. Thus, For each arrival PUBLISH message, if it is permitted
to wait in the queue, the maximum number of waiting messages in
viewpoint of this arrival one is s � 1. That is the reason why the
maximum value of Q in (23) is s � 1.

From the definition of Q, we have:

PfQ ¼ ig ¼ p½s�cþi ð24Þ

J. Liao et al. / Computer Communications 34 (2011) 1243–1257 1249
On the condition that the number of waiting messages in view-
point of arrival PUBLISH message is i, the waiting time distribution
of this arrival PUBLISH message is shown as (25), which is deduced
in Appendix B.

PfTw > tjQ ¼ ig ¼
Xi

j¼0

ðutÞj

j!
e�ut ð25Þ

Substituting (24) and (25) into (23), we can conclude that the
distribution of waiting time is:

PfTw > tg ¼
Xs�1

i¼0

p½s�cþi

Xi

j¼0

ðutÞj

j!
e�ut

 !
ð26Þ

Now calculate the mean and standard deviation of waiting time.
Because the expression of waiting time distribution is complex, it
is difficult to directly calculate its mean and standard deviation.
Fortunately, the theorem of Laplace transform can help us to solve
this problem. The Laplace transform of probability density function
of waiting time is shown in (27), which is deduced in Appendix C.

f �ðs0Þ ¼ �s0
Xs�1

i¼0

p½s�cþi

Xi

j¼0

uj

ðs0 þ uÞjþ1

 !
ð27Þ

where f⁄(s0) is the Laplace transform of the probability density func-
tion of Tw and s0 is the argument of Laplace transform. From [27], we
can see that the appropriate derivative of the Laplace transform
evaluated at its argument s0 = 0 gives rise to moments of the ran-
dom variable, as shown:

f �ðkÞð0Þ ¼ dkf �ðs0Þ
ds0k

�����
s0¼0

¼ ð�1ÞkE Tk
w

h i
ð28Þ

Thus, we have the mean Tw and standard deviation d(Tw) of Tw:

Tw ¼ E½Tw� ¼ ð�1Þdf �ðs0Þ
ds0

����
s0¼0
¼
Xs�1

i¼0

p½s�cþi

iþ 1
u

ð29Þ

E½T2
w� ¼

d2f �ðs0Þ
ds02

�����
s0¼0

¼
Xs�1

i¼0

p½s�cþi

ðiþ 1Þðiþ 2Þ
u2 ð30Þ

dðTwÞ ¼
ffi
E T2

w

h i
� E2½Tw�

r
ð31Þ

Note that there is an easier method of calculating the mean of
waiting time. From the Little’s result in [26]: ‘‘the average number
of customers in a queuing system is equal to the average arrival
rate of customers to that system, times the average time spent in
that system’’, using (16) and (20), we have:

Tw ¼
Lw

�k
¼
Ps

k¼1kp½s�cþkPcþs
j¼0kjp

½s�
j

¼
Xs�1

i¼0

p½s�cþi

iþ 1
u

ð32Þ

The result of (32) is the same as (29).
In TNTC, the maximum waiting time occurs when an update ar-

rives at the system and finds that there are s � 1 messages waiting
in the queue. Thus when p½s�cþs�1 ¼ 1 and p½s�cþi ¼ 0 ði ¼ 0;
1; . . . ; s� 2Þ, the average waiting time is maximal and it is calcu-
lated using (29):

E½Tw�max ¼ p½s�cþs�1
s� 1þ 1

u
¼ s

u
ð33Þ
4. Performance evaluation

In this section, firstly, we investigate the performance of TNTC
with different parameters, based on the analysis in Section 3. Sec-
ondly, we use the simulation experiments to validate the analytical
modeling of Section 3.3 and compare TNTC with other notification
traffic control methods proposed in [14,15].

4.1. Mathematic analysis

In this section, depending on the analytical modeling of Section
3.3, we investigate the effects of different parameters defined in
Section 3.2 on the performance of TNTC by using Matlab. The re-
sults of analysis give a better understanding of performance of
TNTC.

4.1.1. Effects on average waiting time
When investigating the effects of different parameters on aver-

age waiting time, we set s = N, which means that the length of
waiting queue is equal to the number of online users and TNTC
is lossless as shown in Section 3.3.2.

Fig. 6 plots the effects of ka and c on E[Tw]. Clearly, as ka in-
creases, E[Tw] increases. We explain this phenomenon as follows.
The increase of ka results in more messages waiting in the queue,
which leads to the increase of E[Tw]. When ka is small, Lw < s. In this
circumstance, as ka increases, E[Tw] increases significantly with the
remarkable increasing of Lw. On the other hand, when large ka is
observed, Lw is close to s and will not increase significantly. In this
circumstance, the arrival PUBLISH message will probably replace
the older one in the waiting queue. Thus as ka increases, the
increasing rate of E[Tw] decreases and E[Tw] gets closer to the max-
imum average waiting time E[Tw]max. This phenomenon reflects an
important feature of TNTC: the average waiting time will not con-
tinuously increase as the state update rate of each user increases.
Considering the conclusion demonstrated in [15] that longer aver-
age waiting time degrades the valid access probability, which is an
important indicator of the user experience, we can conclude that
TNTC ensures the user experience even if the state update rate of
each user continuously increases.

Fig. 7 shows the effects of N and c on E[Tw]. We can see that
E[Tw] continuously increases as N increases. It is explained as fol-
lows. The increasing N also results in more messages waiting in
the queue, which leads to the increase of E[Tw]. We set s = N to
guarantee that TNTC is lossless, s thus increases as N increases.
Therefore, when N increases, Lw keeps increasing as the increase
of s, which leads to the continuous increase of E[Tw]. In order to
guarantee that the valid access probability is higher than some
threshold, we calculate the proper value of average waiting time
as shown in [15]. Depending on that value, the system capacity,
which is the maximum number of online users the presence server
can support, is determined by using the relationship as shown in
Fig. 7.

From Figs. 6 and 7, we can also see the effects of c on E[Tw]:
when k 6 u, E[Tw] increases as c decreases; when k > u, E[Tw] is
not sensitive to the value of c. The reason is as follows: if k 6 u,
there are tokens left in token bucket when system is stable. Since
the arrival PUBLISH message will be sent without delay when a to-
ken is acquired, the more tokens left in token bucket, the shorter
waiting times the arrival messages have. Thus E[Tw] increases as
c decreases. On the other hand, if k > u, there is no token left in to-
ken bucket when system is stable. Therefore, c has little effect on
E[Tw].

4.1.2. Effects of waiting queue length
Let q denote the utilization factor, which is the ratio between k

and u as mentioned in (10). Fig. 8 shows the distribution of Lw with
different q. In this figure, we set c = 10, N = 20, s = 20. It can be seen
that when q 6 1, Lw tends to be zero, and Lw increases as q in-
creases. This phenomenon is explained as follows. When q 6 1
(i.e., k 6 u), it is more likely that there are tokens left in token buck-
et. At this moment, the arrival PUBLISH message will be sent to the

Fig. 7. Effects of N and c on E[Tw].

Fig. 6. Effects of ka and c on E[Tw].

1250 J. Liao et al. / Computer Communications 34 (2011) 1243–1257
NOTIFICATION module without delay, and thus Lw tends to be zero.
When q > 1 (i.e., k > u), it is more likely that there is no token left in
token bucket and there are messages waiting in the queue, thus Lw

is greater than zero. When q continuously increases, the difference
between k and u increases, which then leads to the increase of Lw.

It is worthwhile to note that although setting s = N can guaran-
tee TNTC is lossless, in some cases s can be set to be smaller than N
in order to achieve this goal. For example, when q = 2, the probabil-
ity, that Lw is equal to 18, 19 or 20, tends to be zero. Therefore,
s = 17 is enough for us to avoid the waste of storage resource while
control the loss probability under certain threshold.

It is important to select the appropriate value for parameter s in
TNTC. Fig. 9 shows the effects of different s values on the message
loss probability and the probability that the message waiting time
is greater than a given value (e.g. 5 s). We set ka = 0.2, u = 2, N = 20,
c = 10. From the figure, it can be seen that as s increases, the mes-
sage loss probability decreases and the probability that the waiting
time is greater than 5 s increases. Therefore, among all the possible
values of s meeting the requirements of both message loss and
waiting time, the minimum one is selected as the value of s in
practice.

4.2. Simulation results

The proposed model of TNTC has been implemented in the dis-
crete-event simulator SIMPROCESS [28]. The purpose of this simu-
lation is twofold: firstly, to validate the accuracy of analytical
modeling in Section 3.3; secondly, to compare TNTC with other

Fig. 8. Distribution of Lw with different q.

Fig. 9. Effects of s on message loss probability and waiting time.

J. Liao et al. / Computer Communications 34 (2011) 1243–1257 1251
notification traffic control methods. In our simulation, we created a
network consisting of one presence server and N online users. Both
the state update interval of each user and token generating interval
conform to the exponential distribution, and the PUBLISH mes-
sages in the waiting queue are served in a FIFO fashion.
4.2.1. Analytical model validation
In this section, we set u = 3, s = 10, N = 10, c = 10.
The calculated results and simulated results under different ka

in terms of the mean and standard deviation of Lw are compared
in Fig. 10. We set the aðSÞ ¼ jS

0�Sj
S as the difference between the sim-

ulated result S0 and calculated result S. It can be seen that
maxa(E[Lw]) 6 0.067 and maxa(d[Lw]) 6 0.043, which indicates
that (19) can accurately describe the distribution of Lw.
Similar comparisons of Tw are shown in Fig. 11. We can see that
maxa(E[Tw]) 6 0.093 and maxa(d[Tw]) 6 0.027, which indicates
that (26) is a pretty accurate description of the distribution of Tw.

The distribution of Lw and that of Tw are two key indicators for a
queuing system. From the above experiments, we find that the cal-
culated results of these two indicators are consistent with the sim-
ulation results. Thus, we can conclude that the analytical modeling
proposed in Section 3.3 is an accurate description of TNTC.
4.2.2. Compare with other methods
In this section, we compare TNTC with other notification traffic

control methods. In [14], the fixed delay for each arrival PUBLISH
message is suggested by IETF, we denote it as the Fixed method.
In [15], the delay for each arrival PUBLISH message is proposed

Fig. 10. Comparison between calculated results and simulated results in terms of E[Lw] and d[Lw]. (a). The mean of Lw, (b). The standard deviation of Lw.

1252 J. Liao et al. / Computer Communications 34 (2011) 1243–1257
to conform to exponential distribution, which is denoted as the Exp
method. Both of these methods are named as timer methods and
we adopt E[Tw] as shown in Section 3.3.4 to denote the delayed
threshold.

In order to make a comprehensive performance comparison, we
adopt an important evaluation metric proposed in [15]: valid ac-
cess probability p, which stands for the probability that each
watcher accesses the valid presence state information. It is calcu-
lated as follows:

p ¼ 1
1þ ka � E½Tw�

ð34Þ

Besides, we define a new metric: output rate OR, which stands
for the PUBLISH message output rate of TNTC and timer methods,
to indicate the notification traffic load that presence server may
generate on IMS network. From Section 3.1, we see that OR is equal
to the rate of updates arriving at the NOTIFICATION module. There-
fore, we can calculate the NOTIFY message sending rate of presence
server as:

Rnotify ¼ OR� nw ð35Þ

OR is an important metric because if OR is large, the high noti-
fication traffic sent by the presence server may cause the conges-
tion in IMS network, which will then degrade the metric p since
the NOTIFY messages sent by the presence server may not be re-
ceived by users in time due to network congestion. Furthermore,
network congestion also has bad impact on other IMS services.
Thus, an appropriate notification traffic control method must be
able to control OR under certain threshold. The maximal threshold
of OR is referred to as ORmax.

For a presence server, ka and N are the parameters that influence
the total update arrival rate k. Thus, we design experiments to

Fig. 11. Comparison between calculated results and simulated results in terms of E[Tw] and d[Tw]. (a). The mean of Tw, (b). The standard deviation of Tw.

J. Liao et al. / Computer Communications 34 (2011) 1243–1257 1253
compare TNTC with timer methods by varying the values of these
two parameters.

In the first experiment, we set ORmax = 2, N = 10 and ka varies
between 0.1 and 2.

In timer methods, the minimum delayed threshold E[Tw]min is
calculated as follows:

E½Tw�min ¼
1

ORa
max

¼ 1
ORmax

N

¼ N
ORmax

ð36Þ

where ORa
max denotes the maximum PUBLISH message output rate

for each user. Referring to (34), we can see that p increases as
E[Tw] decreases. In order to obtain higher p while ensuring that
OR is under ORmax, we set E[Tw] as E[Tw]min for timer methods,
which is equal to 5 s.

In TNTC, we keep s = N to ensure that the TNTC is lossless and
set u = ORmax to limit OR. We observe that OR 6 u = ORmax when
c = 0. In the experiment, we set c = 0 and explain its reason as fol-
lows. When k 6 u, we can see from Section 4.1.1 that the larger c,
the smaller E[Tw] in TNTC, which further results in higher p and
OR. As OR 6 k and k 6 u = ORmax, OR is always smaller than ORmax.
On the other hand, when k > u, from the analysis in Section 4.1.1,
we conclude that the value of c has little effect on E[Tw], which
means that p and OR are not sensitive to the value of c. To sum
up, if TNTC with c = 0 has higher p and OR than timer methods
while its OR is under ORmax, we have a good reason to believe that
TNTC with c > 0 also has higher p and OR than timer methods while
its OR is under ORmax.

From (33), we can calculate that the maximum average waiting
time in TNTC is 5 s, which is equal to the delayed threshold in timer
methods. Thus the average waiting time in TNTC is smaller than
that in timer methods in the first experiment.

In TNTC p can be calculated as follows: first using (29) to obtain
E[Tw], and then using (34) to obtain p. We compare the calculated

Fig. 12. Comparison of p with varying ka between TNTC and timer methods.

1254 J. Liao et al. / Computer Communications 34 (2011) 1243–1257
results and simulated ones in terms of p in Fig. 12, which shows
that the calculated results match quite well with the simulated
ones. Thus, we conclude that this approach of calculating p is accu-
rate in TNTC.

From Figs. 12 and 13, we can see that with varying ka, p in TNTC
is higher than that in timer methods while OR in all methods is un-
der ORmax. This is because the E[Tw] in TNTC is smaller than that in
timer methods, which further leads to higher p in TNTC. Besides, in
Fig. 13, the OR in TNTC is higher than that in timer methods, which
indicates that the TNTC makes better use of available bandwidth.
On the other hand, we can also see in Fig. 12 that if the p in TNTC
and timer methods are kept the same, the update arrival rate of
each user which presence server can handle in TNTC is higher than
Fig. 13. Comparison of OR with varying k
that in timer methods. Thus, TNTC can deal with higher update ar-
rival rate for user.

In the second experiment, we set ORmax = 2, ka = 0.1 and N varies
between 1 and 30. In this experiment, the maximum number of
online users the system can support, which is denoted as Nmax, is
equal to 30.

The PUBLISH message output rate for each user ORa is calculated
as:

ORa ¼ ka � p ð37Þ

Besides, OR can be calculated as:

OR ¼ ORa � N ð38Þ
a between TNTC and timer methods.

J. Liao et al. / Computer Communications 34 (2011) 1243–1257 1255
In timer methods, OR increases as N increases. In order to keep
OR under threshold ORmax, we make sure OR 6 ORmax when
N = Nmax = 30. Considering that p increases as OR increases, in order
to obtain higher p, we set OR to be the maximum value ORmax when
N = Nmax = 30. Thus, p is calculated by using (37) and (38). Further
referring to (34), we can obtain E[Tw], which is equal to 5 s. This de-
lay value is used for timer methods in this experiment for all values
of N.

In TNTC, we set s = Nmax, u = ORmax and c = 0. The reason is sim-
ilar to that in the first experiment.

From Figs. 14 and 15, we observe that with varying N, the calcu-
lated results match quite well with the simulated results and p in
TNTC is higher than that in timer methods while OR in all methods
is under ORmax. Besides in Fig. 15, OR in TNTC is also higher than
Fig. 14. Comparison of p with varying N

Fig. 15. Comparison of OR with varying N
that in timer methods, and thus TNTC makes better use of available
bandwidth.

Note that the behavior of TNTC and timer methods converge to
the same results in terms of p and OR when N = 30. This can be ex-
plained as follows: in timer methods, E[Tw] is set to be 5 s for all
values of N. While in TNTC due to the characteristic of token buck-
et, in order to guarantee that OR is under threshold ORmax, we only
need to set u to be ORmax. Referring to (29), when N = 30, the E[Tw]
in TNTC is calculated to be 5 s. Thus, when N = 30, first using (34),
we can see that TNTC has the same p as timer methods, then refer-
ring to (37) and (38), we conclude that both TNTC and timer meth-
ods have same OR, which is ORmax.

From above two experiments, we conclude that while keeping
PUBLISH message output rate under threshold ORmax, TNTC can
between TNTC and timer methods.

between TNTC and timer methods.

1256 J. Liao et al. / Computer Communications 34 (2011) 1243–1257
deal with higher update arrival rate and provide higher valid access
probability than timer methods.

5. Conclusion and future work

In this paper, we proposed TNTC, which is a token-bucket based
notification traffic control mechanism for IMS presence service.
TNTC aims at upgrading the valid access probability while control-
ling the notification traffic. We firstly presented the design of the
proposed approach, then modeled the TNTC using queuing theory
and calculated its main probability features. Based on the analyti-
cal modeling, we investigated the effect of different parameters on
the performance of TNTC, and presented a guideline about the set-
tings of these parameters. Finally, we compared the performance of
TNTC with Fixed and Exp methods through simulations. Simulation
results show that TNTC outperforms other methods in terms of the
valid access probability and the update arrival rate.

In our future work, the selection of appropriate value for param-
eter c needs to be further studied. Besides, as the presence-based
enterprise services for inter-domain enterprise mobility are now
receiving more and more attentions [22], we will explore the dis-
tributed notification traffic control mechanism among multiple
presence servers from different domains to ensure that the band-
width resources are rationally utilized. In addition, we will investi-
gate the differentiated service in presence service, which selects
the different notification traffic control policy depending on the
user class to improve the QoS of presence service.

Acknowledgements

This work was jointly supported by National Science Fund for
Distinguished Young Scholars (No. 60525110); National 973
Program (No. 2007CB307100, 2007CB307103); National Natural
Science Foundation of China (No. 61072057, 60902051); the
Fundamental Research Funds for the Central Universities
(BUPT2009RC0505); Development Fund Project for Electronic and
Information Industry (Mobile Service and Application System
Based on 3G); National Key Science & Technology Specific Project
of China (No. 2011ZX03002-001-01, 2011ZX03002-002-01). MIC-
INN (No. TIN2010-19077); CAM (No. S2009TIC-1692).

Appendix A

In order to further explain (14), this appendix shows the deduc-
tion from [25].

Let C(t, t + h) be the event that a message arrives in the interval
(t, t + h), and define

p½s�k ðtÞ ¼ lim
h!0

PfSðtÞ ¼ kjCðt; t þ hÞg ðA:1Þ

Because {S(t), t P 0} is the birth–death process, we have:

lim
h!0

PfCðt; t þ hÞjSðtÞ ¼ kg ¼ kkhþ oðhÞ ðA:2Þ

For the purpose of making calculations for our system, we ex-
press (A.1) in the form commonly referred to as Bayes’s rule:

p½s�k ðtÞ ¼ lim
h!0

PfCðt; t þ hÞjSðtÞ ¼ kgP½s�k ðtÞPcþs
j¼0PfC t; t þ hð ÞjSðtÞ ¼ jgP½s�j ðtÞ

ðA:3Þ

Substitute (A.2) into (A.3), and simplify the result, we can
write:

p½s�k ðtÞ ¼
kkP½s�k ðtÞPcþs
j¼0kjP

½s�
j ðtÞ

ðA:4Þ
Substituting (5) and (13) into (A.4), we conclude that:

p½s�k ¼ lim
t!1

p½s�k ðtÞ ¼ lim
t!1

kkP½s�k ðtÞPcþs
j¼0kjP

½s�
j ðtÞ

¼ kkP½s�kPcþs
j¼0kjP

½s�
j

ðA:5Þ
Appendix B

This appendix deduces the waiting time distribution of arrival
PUBLISH message on the condition that the number of waiting
messages in viewpoint of this arrival message is i.

A PUBLISH message arrives and finds there is no token left in
token bucket and i other messages waiting in the queue. Mes-
sages are served in order of arrival, and all messages wait in
the queue till a token is obtained. Let X1 be the elapsed time
from t = 0 until the message at the head of the queue obtains a
token; and let Xj (j = 2, 3, . . . , i + 1) be the length of time that
the jth message spends at the head of the queue (Xi+1 is the time
that arrival message spends at the head of the queue). Clearly,
the arrival message’s waiting time is the sum X1 + X2 +� � �+ Xi+1.
Because the token generating time interval is exponential distrib-
uted with mean u�1 as shown in Section 3.2, X1, X2, . . . , Xi+1 are
all independent, identical and exponential variables with mean
u�1. Thus, we conclude that the waiting time Tw of arrival mes-
sage, given that the number of messages it finds waiting ahead
of it in the queue is i, has the (i + 1)-phase Erlangian distribution
[25]:

PfTw > tjQ ¼ ig ¼ PfX1 þ X2 þ � � � þ Xiþ1 > tg ¼
Xi

j¼0

ðutÞj

j!
e�ut

ðB:1Þ
Appendix C

In this appendix, we give the deduction of the Laplace transform
of probability density function of waiting time as shown in (27).
The waiting time Tw has probability density function f(t) with its
corresponding Laplace transform f⁄(s0), and cumulative distribution
function F(t) with Laplace transform F⁄(s0). Let l(t) denote unit step
function and L[] denote the operation of Laplace transform, that is
L[f(t)] = f⁄(s0). From (26), we can write:

FðtÞ ¼ 1�
Xs�1

i¼0

p½s�cþi

Xi

j¼0

ðutÞj

j!
e�ut

 !
ðC:1Þ

Considering t > 0, the Laplace transform of cumulative distribu-
tion function is:

F�ðs0Þ ¼ L½FðtÞ� ¼ L½lðtÞ� �
Xs�1

i¼0

p½s�cþi

Xi

j¼0

uj

j!
L½tje�ut�

 !

¼ 1
s0
�
Xs�1

i¼0

p½s�cþi

Xi

j¼0

uj

j!
j!

ðs0 þ uÞjþ1

 !

¼ 1
s0 �

Xs�1

i¼0

p½s�cþi

Xi

j¼0

uj

ðs0 þ uÞjþ1

 !
ðC:2Þ

By the theorem of Laplace transform as shown:

L½f ðtÞ� ¼ L
dFðtÞ

dt

� �
¼ s0F�ðs0Þ � Fð0Þ ðC:3Þ

Substitute (C.2) into (C.3) and consider F(0) = 1 from (C.1), we
can get the conclusion:

f �ðs0Þ ¼ L½f ðtÞ� ¼ �s0
Xs�1

i¼0

p½s�cþi

Xi

j¼0

uj

ðs0 þ uÞjþ1

 !
ðC:4Þ

J. Liao et al. / Computer Communications 34 (2011) 1243–1257 1257
References

[1] C. Urrutia-Valds, A. Mukhopadhyay, M. El-Sayed, Presence and availability
with IMS: applications architecture, traffic analysis, and capacity impacts, Bell
Labs Technical Journal 10 (4) (2006) 101–107.

[2] Y. Zhang, J. Liao, X. Zhu, W. Wu, J. Ma, Inter-working between SIMPLE and
IMPS, Computer Standards & Interfaces 29 (5) (2007) 584–600.

[3] 3GPP TS 22.141, Presence service; Stage 1; release 7, December 2005.
[4] 3GPP TS 23.141, Presence service; Architecture and functional description;

Stage 2; Release 8, June 2008.
[5] M. Day, J. Rosenberg, H. Sugano, A model for presence and instant messaging,

IETF RFC 2778, February 2000.
[6] 3GPP TR 24.841, Presence service based on Session Initiation Protocol (SIP);

Functional models, information flows and protocol details; Release 6, June
2004.

[7] M. Day, S. Aggarwal, G. Mohr, J. Vincent, Instant Messaging/Presence Protocol
Requirements, IETF RFC 2779, February 2000.

[8] F. Wegscheider, Minimizing Unnecessary Notification Traffic in the IMS
Presence System, in: Proceedings of ISWPC2006, Phuket, Thailand, January
2006.

[9] Muhanmmad T. Alam, Z. Wu, Cost analysis of the IMS presence service, in: 1st
Australian Conference on Wireless Broadband and Ultra Wideband
Communication, AusWireless 2006, Sydney, March 2006.

[10] M. Pous, D. Pesch, G. Foster, A. Sesmun, Performance evaluation of a SIP based
presence and instant messaging service for UMTS, in: 4th International
Conference on 3G Mobile Communication Technologies, London, UK, June
2003, pp. 254–258.

[11] Muhanmmad T. Alam, Z. Wu, Admission control approaches in the IMS
presence service, International Journal of Computer Science 1 (4) (2006) 299–
314.

[12] Z. Cao, C. Chi, R. Hao, Y. Xiao, User behavior modeling and traffic analysis of
IMS presence service, in: Proceedings of GLOBECOM2008, New Orleans, LA,
USA, November 2008, pp. 1–5.

[13] C. Chi, R. Hao, D. Wang, Z. Cao, IMS presence server: traffic analysis &
performance modeling, in: Proceedings of ICNP2008, Orlando, Florida, USA,
October 2008, pp. 63–72.
[14] J. Rosenberg, A presence event package for the Session Initiation Protocol (SIP),
IETF RFC 3856, August 2004.

[15] W.-E. Chen, Y.-B. Lin, R.-H. Liou, A weakly consistent scheme for IMS presence
service, IEEE Transactions on Wireless Communications 8 (7) (2009) 3815–
3821.

[16] A.B. Roach, A Session Initiation Protocol (SIP) event notification extension for
resource lists, IETF RFC 4662, August 2006.

[17] M. Lonnfors, J. Costa-Requena, E. Leppanen, H. Khartabil, Session Initiation
Protocol (SIP) extension for partial notification of presence information, IETF
RFC 5263, September 2008.

[18] H. Hannu, Signaling compression (SigComp) requirements & assumptions, IETF
RFC 3322, January 2003.

[19] D. Pesch, M.I. Pous, G. Foster, Performance evaluation of SIP-based multimedia
services in UMTS, Computer Networks 49 (3) (2005) 385–403.

[20] V.K. Singh et al., Presence traffic optimization techniques, Technical Report,
Columbia University, October 2006.

[21] S. Loreto, G.A. Eriksson, Presence network agent: a simple way to improve the
presence service, IEEE Communications Magazine 46 (8) (2008) 75–79.

[22] P. Bellavista, A. Corradi, L. Foschini, IMS-based presence service with enhanced
scalability and guaranteed QoS for interdomain enterprise mobility, IEEE
Wireless Communications 16 (3) (2009) 16–23.

[23] A. Niemi, K. Kiss, S. Loreto, Session Initiation Protocol (SIP) event notification
extension for notification rate control, internet draft-ietf-sipcore-event-rate-
control-07, April 2011.

[24] Andrew S. Tanenbaum, Computer Networks, fourth ed., Prentice-Hall, 2003.
pp. 397–417.

[25] Robert B. Cooper, Introduction to Queueing Theory, Elsevier North Holland,
Inc., 1981. pp. 42–98.

[26] L. Kleinrock, Queueing Systems, Theory, vol. I, John Wiley & Sons, New York,
1975. pp. 10–94.

[27] W.R. LePage, Complex Variables and the Laplace Transform for Engineers,
Dover, New York, 1980. pp. 285–328.

[28] SIMPROCESS simulator. <http://simprocess.com/>.

http://simprocess.com/

	A token-bucket based notification traffic control mechanism for IMS presence service
	Introduction
	Related work
	TNTC design and analytical modeling
	TNTC design
	The parameters of TNTC
	Analytical modeling
	Equilibrium distribution of S(t)
	Arriving customer’s equilibrium distribution of S(t)
	The number of waiting PUBLISH messages
	The waiting time of arrival PUBLISH message

	Performance evaluation
	Mathematic analysis
	Effects on average waiting time
	Effects of waiting queue length

	Simulation results
	Analytical model validation
	Compare with other methods

	Conclusion and future work
	Acknowledgements
	Appendix A
	Appendix B
	Appendix C
	References

