
Fault-Tolerant Business Processes ?

Sanka Samaranayake, Ricardo Jiménez-Peris, Marta Patiño-Mart́ınez

Facultad de Informática
Universidad Politécnica de Madrid, Spain

{ssamaranayake,rjimenez,mpatino}@fi.upm.es

Abstract. Service-oriented computing (SOC) paradigm promotes the
idea of assembling application components into a network of loosely cou-
pled services. Web services are the most promising SOC-based technol-
ogy. A BPEL process definition represents a composite service that en-
capsulates some complex business logic including the invocation to other
(external) web services. The complexity of a BPEL process together with
the invocation of external services subject to network and computer fail-
ures requires countermeasures to tolerate this kind of failures. In this
paper we present an overview of FT-BPEL, a fault-tolerant implementa-
tion of BPEL that copes both with failures of the machine running the
BPEL process and network failures in a transparent way, that is, after a
failure the system is able to resume the BPEL process consistently.

1 Introduction

Service-oriented computing paradigm promotes the idea of assembling appli-
cation components into a network of loosely coupled services. Services are au-
tonomous, independent entities that can be described, published, discovered and
loosely coupled. Application developers can compose rapid, low cost and evolv-
able applications by discovering and invoking the network-available services to
accomplish some task ranging from a simple query to execution of sophisticated
business logic [11].
Composite services, services that invoke other services, often are long running ac-
tivities, loosely coupled and span across multiple layers of service consumer and
providers [12]. Web services are the most promising SOC-based technology. They
use Internet as the communication medium and open Internet-based standards,
including Simple Object Access Protocol (SOAP) [6] for packaging/routing data,
Web Services Definition Language (WSDL) [7] for defining services, Business
Process Execution Language for Web Services (BPEL-WS) [3] for orchestrating
services. A BPEL process definition represents a composite service that encap-
sulates some complex business logic. Web services consists of complementary
standards set, atop the core to provide various Quality-of-services including WS-
Addressing [5] to encapsulate message routing information, WS-Reliable Mes-
saging [4] for ensuring reliable message delivery etc. Due to the complexity and
? This work has been partially funded by the Spanish Research Council (MiCCIN)

under TIN2010-19077, by the Madrid Research Foundation, S2009/TIC-1692 (co-
funded by FEDER & FSE), and CCG10-UPM/TIC-5855.



long running nature of composite services they are susceptible to a wide variety
of failures, for instance, lost messages due to unreliable communication links,
crash of the services, crash of the composite service.
Inconsistencies may arise if the solution to tolerate computer failures (crash fail-
ures) is simply restarting a composite service. The process may invoke third
party stateful services, for instance booking a hotel room or buying an airplane
ticket. Repeating the process execution from the very beginning leads in such
scenarios to undesirable situations where invocations are repeated. That is, there
is no guarantee that a service invocation is performed exactly once. This paper
presents the architecture and design of FT-BPEL, a framework for reliable web
services orchestration built in BPEL. The framework implements passive repli-
cation, that is, the process state is persisted and in case of a crash, the process
is restarted on a different machine from the point where the failure happened
avoiding repeating the execution of the actions the process successfully executed
before the failure. The framework tolerates communication failures.

The rest of the paper is organized as follows. Section 2 presents some concepts
of fault-tolerance and design goals. Section 3 presents the proposed architecture.
Section 4 describes how we deal with failures. Finally, Sections 5 and 6 present
related work and conclusions.

2 Fault Tolerance

FT-BPEL deals with two kinds of failures: crash of the machine running BPEL
and communication failures. The goal is to provide failure transparency, that
is, after a failure the system recovers and resumes execution from the point
where the failure happened avoiding duplicate requests. This is important for
any stateful service. In order to tolerate crash failures, FT-BPEL implements
the so called passive replication model. That is, the state of running processes is
persisted during normal execution (checkpoint). If there is a failure, the process
is started on a different computer and its execution resumes from the last check-
point. The main challenge here is to avoid repeating the execution of the process
from this point till the point where the failure happened, especially those actions
that may change the state of the process or invoke another service. For instance,
let us assume that a checkpoint of a BPEL process is made and then, it invokes
an external service to buy a theatre ticket. The BPEL process fails before the
response is received. When the process is resumed from the last checkpoint, the
service invocation is repeated and the result is that two tickets are bought. These
duplicate invocations are avoided by FT-BELP.

A similar situation arises in the presence of network failures. If the external
service is executing on a different organization, network disconnections may hap-
pen and invocations may not reach its destination. So, the client of this service
upon a failure notification, it may retry the invocation. It may happen that the
invocation reached the service but the response did not reach the client because
a disconnection happened in between. In this case, the client invocation will be
executed twice.



The goal of FT-BPEL is to deal with these situations where a failure may lead
to duplicate executions. This is an important issue in the context of web services
where service autonomy must be preserved. We have designed our framework to
meet the following goals:
Failure Transparency. FT-BPEL is able to recover from crash failures of the
machine running BPEL processes in such a way that is completely transparent
to the users and external services of the system.
Interoperability. FT-BPEL framework relies only on open Internet-based stan-
dards for web services including WS- Addressing for message correlation, WS-
Reliable Messaging for reliable message delivery and duplicate filtering.
Ease of Use. FT-BPEL uses Apache ODE [1] as the orchestration engine and
WSO2 Mercury [2] as the WS-Reliable Messaging provider. Any standard BPEL
process definition can be deployed in FT-BPEL without any modification.

3 FT-BPEL Architecture

Figure 1 provides an architectural overview of FT-BPEL framework. Its ex-
ecution environment consists of an ODE runtime as the BPEL orchestration
engine, Mercury runtime as the WS-Reliable Messaging provider and FT-BPEL
integration layer that mediates the communication between the orchestration
engine and reliable messaging service provider.

WS-ReliableMessaging allows reliably sending SOAP messages between two
web services over an unreliable infrastructure. It provides the following guaran-
tees:AtLeastOnce, AtMostOnce, ExactlyOnce and InOrder. AtLeastOnce means
that messages may be delivered more than once (duplicates). If a message can-
not be delivered, an error is raised. AtMostOnce means that there will be no
duplicates but a message may not be delivered. ExactlyOnce guarantees that a
message is delivered exactly once (no duplicates). If a message cannot be de-
livered, an error is raised. InOrder guarantees FIFO delivery of messages. This
property can be combined with the previous ones.

Fig. 1. FT-BPEL Architectural Overview



Our architecture uses WS-ReliableMessaging with ExactlyOnce delivery for
the communication among web services. Both clients invoking a BPEL process
and invocations from a BPEL process use WS-ReliableMessaging with Exactly-
Once delivery guarantees.

WS-Reliable Messaging is transparent to the existing applications. In WS-
Reliable messaging systems, there are handlers or agents which reside in the
client’s or server’s SOAP processing engines that transfer messages, handle re-
tries and deliver to the application. These agents are not visible at application
level and they ensure that messages get retransmitted if lost or undelivered.

FT-BPEL mediates the communication between the orchestration engine and
the reliable messaging service. FT-BPEL assumes that all clients and external
services use a WS-Reliable Messaging protocol for reliable communication. Each
message exchanged is passed through a logical reliable messaging channel called
sequence. Each sequence carries a unique sequence identifier. We are using Mer-
cury as the WS-Reliable Messaging provider. Mercury uses a database to store
the state of the communication and guarantee the delivery of messages in case
of failures. Mercury is able of retransmitting any messages that are outstanding
in the outgoing buffer and the ones that are sent but not acknowledged after
predefined (configurable) amount of time. It discards any duplicates. Therefore,
any message losses due to network failures are dealt accordingly.

ODE also uses its own database to persist the state of each process instance
after an activity is executed. So, if there is a failure, the instances running at
the time the failure happened are restored and execution resumes from the last
activity executed.

In order to provide high availability, the databases may be replicated in dif-
ferent nodes. We are currently using MySQL replication as replicated database.
However, our implementation is independent of the database management sys-
tem. High available LAN configuration can be used to detect a failure of FT-
BPEL runtime and redirect any incoming traffic to FT-BPEL slave runtime.

4 System Failures and Recovery

In this section we present how we deal with failures during the execution of a
request from a BPEL client to the BPEL server. Request from the BPEL server
to other services are implemented in a similar way.

Upon the successful reception of an invocation request from a BPEL client
via Mercury, FT-BPEL mediator will inject it to ODE runtime. If a failure
occurs during communication between BPEL Client and FT-BPEL Server, Mer-
cury will resume any incomplete reliable messaging sequences upon recovery.
Mercury delivers any messages it receives to FT-BPEL mediator by executing
a single callback function. After the completion of this callback, Mercury marks
the sequence as a successful delivery by writing the appropriate changes to its
database. FT-BPEL injects any invocation request to ODE runtime in the con-
text of a transaction. If a failure occurs during this transaction, ODE runtime
would be restored to state before the injection. Since this failure happens during



the callback from Mercury to FT-BPEL and while awaiting its completion, Mer-
cury will re-attempt the delivery. Hence FT-BPEL recovers from these failures.

However, if the failure occurs just after the completion of the ODE transac-
tion, but before Mercury marks the sequence as a successful delivery, duplicate
invocations can be produced. Upon recovery, Mercury will re-attempt the de-
livery and the invocation request will get injected again to ODE. This leads to
duplicate invocations of the BPEL process. FT-BPEL utilizes ODE’s capability
to associate an identifier (i.e. client key) with the request to be injected. ODE
guarantees that the response will contain the same identifier. FT-BPEL media-
tor uses the reliable messaging sequence identifier through which it receives the
request as the client key. Before FT-BPEL mediator injects the request to ODE
runtime, it first checks for the existing of the client key in the ODE database. If
it exists, the request is discarded as a duplicate.

When the response is ready, ODE runtime notifies FT-BPEL mediator by
executing a callback function. FT-BPEL mediator extracts the client-key from
the ODE response which is the sequence identifier from which it received the
request. It writes the response message to the correct reliable messaging se-
quence in the Mercury database. This triggers Mercury to deliver the response
to the BPEL client. This happens within a Mercury transaction. Upon comple-
tion, ODE runtime is notified explicitly. If a failure occurs during the Mercury
transaction, Mercury runtime will be restored to the state before the response
was written to its database. ODE runtime will re-execute the callback since it
was not explicitly notified about the completion. Hence, the response will be
delivered at the client.

However, if the failure occurs just after the completion of the transaction
but before ODE is notified, the failure causes the ODE runtime to re-execute
the callback which in turn will write the same response message to the reliable
messaging sequence in Mercury database causing it to deliver the same response
message to the client again. To prevent this, FT-BPEL mediator always checks
whether the response exists in Mercury database before writing it. If exits, FT-
BPEL mediator discards the response and notifies ODE runtime explicitly.

5 Related Work

Several techniques have been proposed for reliable service orchestrations in un-
reliable environments. [9] suggested the use of atomic execution of services and
exception handling. [13] proposed the use of declarative, reusable fault handling
logic (exception handling policies) and use of system infrastructure to generate
an exception-aware process schema. [10] presented an approach where a BPEL
process is annotated with recovery actions and then converting the annotated
WS-BPEL into a standard BPEL. [8] presented a set of extensible recovery poli-
cies to specify how to handle and recover from typical faults in web services
composition. Their approach delegated the enforcement of recovery policies to
the underlying messaging middleware. In general, they adopt two fault-tolerant
mechanisms, transactions for backward recovery and exception handling for for-



ward recovery. Fault recovery logic is embedded into process description and
converted into standard BPEL process with various degrees of automation.
Our work is different as we focus on providing a fault-tolerant mechanism against
system failures (crash failures) and not against faults that are thrown by services.

6 Conclusions

In this paper we have presented a fault tolerant framework for web services or-
chestration. We argue that state persistence combined with web services reliable
messaging can be used for consistent crash recovery and guarantee ‘exactly once’
external service invocations. The framework is constructed using state of the art
technologies. Currently, we are running a thorough evaluation of the system.

References

1. Apache ODE. http://ode.apache.org/.
2. WSO2 Mercury. http://wso2.org/projects/commons/mercury.
3. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,

D. Roller, D. Smith, S. Thatte, et al. Business process execution language for web
services, version 1.1. Standards proposal by BEA Systems, International Business
Machines Corporation, and Microsoft Corporation, 2003.

4. R. Bilorusets, D. Box, L.F. Cabrera, D. Davis, D. Ferguson, C. Ferris, T. Freund,
M.A. Hondo, J. Ibbotson, L. Jin, et al. Web services reliable messaging proto-
col (WS-ReliableMessaging). Specification, BEA, IBM, Microsoft and TIBCO,
http://www-128. ibm. com/developerworks/library/specification/ws-rm, 2005.

5. D. Box, F. Curbera, et al. Web services addressing (WS-Addressing), 2004.
6. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.F. Nielsen,

S. Thatte, and D. Winer. Simple object access protocol (SOAP) 1.1, 2000.
7. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services

description language (WSDL) 1.1, 2001.
8. A. Erradi, P. Maheshwari, and V. Tosic. Recovery policies for enhancing web

services reliability. 2006.
9. A. Liu, L. Huang, Q. Li, and M. Xiao. Fault-tolerant orchestration of transactional

Web services. Web Information Systems–WISE 2006, pages 90–101, 2006.
10. S. Modafferi and E. Conforti. Methods for enabling recovery actions in WS-BPEL.

On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and
ODBASE, pages 219–236, 2006.

11. M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented com-
puting: State of the art and research challenges. Computer, 40(11):38–45, 2007.

12. C. Peltz. Web services orchestration and choreography. Computer, 36(10):46–52,
October 2003.

13. Liangzhao Zeng, Hui Lei, Jun jang Jeng, Jen-Yao Chung, and B. Benatallah.
Policy-driven exception-management for composite web services. E-Commerce
Technology, 2005. CEC 2005. Seventh IEEE International Conference on, pages
355–363, July 2005.


