
Solving Revocation with Efficient Update of Anonymous
Credentials

Jan Camenisch1, Markulf Kohlweiss2, and Claudio Soriente3

1 IBM Research – Zurich, Switzerland
jca@zurich.ibm.com

2 KU Leuven, Belgium
markulf.kohlweiss@esat.kuleuven.be

3 Universidad Politécnica de Madrid, Spain
csoriente@fi.upm.es

Abstract. Anonymous credential system promise efficient, ubiquitous access to
digital services while preserving user privacy. However, their diffusion is impaired
by the lack of efficient revocation techniques. Traditional credential revocation
measures based on certificate revocation lists or online certification authorities
do not provide privacy and cannot be used in privacy-sensitive contexts. Existing
revocation techniques specifically geared towards anonymous credential systems
are more involved – for the credential issuer, users, as wells as credential con-
sumers – as users have to prove that their credential is still valid, e.g., not included
in a revocation list.

We introduce a novel, non-interactive technique to update issuer-controlled
attributes of anonymous credentials. Revocation is implemented by encoding the
validity time of a credential into one of these attributes. With the proposed proto-
col, credential issuers can periodically update valid credentials off-line and pub-
lish a small per-credential update value on a public bulletin-board. Users can later
download their values and re-validate their credentials to prove possession of a
valid credential for the current time period. Our solution outperforms all prior
solutions for credential revocation in terms of communication and computational
costs for the users and credentials consumers and the issuer’s effort is comparable
to the best prior proposals.

1 Introduction

The increasing number of ubiquitous digital services calls for efficient and pervasive
means of authentication. User-centric identity management solutions like for instance
Cardspace [1] do not only provide such an authentication mechanism, but also allow for
the exchange of user attributes. To promote a global deployment of such systems and
in order to maximize their benefit for democratic societies, authentication and autho-
rization systems must offer a good balance between security, privacy, and performance.
Anonymous credential systems as introduced by Chaum [24] offer strong authentica-
tion and the best possible privacy protection. The recent efficient realizations such as
idemix [15] and U-Prove [10] are well suited to be used in practice even when using
smart cards as authentication tokens [6].

J.A. Garay and R. De Prisco (Eds.): SCN 2010, LNCS 6280, pp. 454–471, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Solving Revocation with Efficient Update of Anonymous Credentials 455

In an anonymous credential system, the credential issuer provides a user with cre-
dentials that certify her attributes and permissions. The issued credentials allow the
users in turn to perform transactions in which they disclose only the minimum amount
of information required to obtain a service. Moreover, credential issuers do not learn
which certified information are shown to which credential consumers, and issuers and
consumers cannot link any transactions.

When using credentials to access a service it is of course crucial to ensure their valid-
ity and the information they carry. In particular, the support for revocation is essential
for any credential or certification system, independent of what privacy protecting fea-
tures it offers. There are many reasons why a credential needs to be revoked. The user
might have lost her right to carry the credential, the secret key underlying the creden-
tial might have been compromised, or just because the attributes stated in the credential
became outdated. Also, sometimes the application scenario might require a rich revoca-
tion semantic where a credential might only need to be “partially revoked”: for instance,
an expired European passport can still be used to travel within Europe but not to travel
to the USA, or a driver’s license revoked because of speeding could still be valid to
prove the owner’s age or address. Thus the validity checks that need to be done and
therefore the means to use for revocation depend on the particular application scenario.

A possible solution to revocation in the case of non-anonymous credentials is to
“blacklist” all serial numbers of revoked credentials in a so-called certificate revocation
list [26] that can be queried on- or off-line. This solution does not work as such for
anonymous credentials, as revealing a unique serial number of a credential would vi-
olate the unlinkability requirement. However, the general principle of publishing a list
of all valid (or invalid) serial numbers can still work if, rather than revealing the serial
number of their credential, users leverage the minimum disclosure feature of anony-
mous credentials to prove that it is among the list of valid serial numbers, i.e., that this
number is not among the invalid ones. A number of protocols that work along these
lines have been proposed [8,12,13,30,33] where the solution by Nakanishi, Fujii, Hira
and Funabiki [30] seems to be the most elegant one.

A solution inspired by revocation lists is the use of so-called dynamic accumula-
tors [18,16]. Here, all valid serial numbers are accumulated (i.e., compressed) into a
single value that is then published. In addition, dynamic accumulators provide a mech-
anism that allows the user to prove that the serial number of her credential is con-
tained in the accumulated value. Whenever a credential is revoked, a new accumulator
value is published that no longer contains the revoked serial number. Accumulator based
schemes require, however, that users keep track of the changes to the accumulator to be
able to execute their validity proofs. Camenisch, Kohlweiss and Soriente [16] proposed
another accumulator where updates only require multiplications; moreover, computing
the credential update information for the users can be performed by any party as it
requires no secrets. They achieve this at the cost of a very large state, linear in the over-
all number of issued credentials. Moreover, accumulator-based solutions allow only to
invalidate a credential as a whole and do not enable a rich revocation semantic for sce-
narios where partial revocation is required.

A common drawback of the solutions described so far is that they all make proving
and verifying ownership of credentials less efficient (typically about a factor of 2 or

456 J. Camenisch, M. Kohlweiss, and C. Soriente

worse), as not only possession of the credential has to be proven but also that it is still
valid w.r.t. the revocation list/accumulator.

Another solution to revocation of credentials is to limit their lifetime by means of an
expiration date and periodically re-issue non-revoked credentials. Here credentials are
made valid only for a specific period of time (epoch), such as, only for a week, a couple
of days, or hours, depending on the revocation requirements. This requires of course
that the credentials are re-issued periodically. As for anonymous credentials, issuing
is an interactive protocol between the user and the issuer, this puts quite a burden on
the infrastructure, not only in terms of bandwidth and computational power, but also in
terms of availability. Indeed, an issuing of credentials such as electronic ID cards does
typically not happen via the Internet but only in secured environments (as to protect the
signing key) and often involves physical interactions with the user such as visiting a
postal office.

In this paper we study to what extent existing credential systems allow for a non-
interactive update of credentials. The issuing protocol of an anonymous credential sys-
tems typically consists of a protocol between the user and the issuer at the end of which
the user gets a signature on a number of attributes, some of them chosen by and secret
to the user and some of them chosen by the issuer. The idea we follow here is that
the users and the issuer need to run an initialization protocol only once and thereafter
the issuer can just update some values and publish them. Users can then retrieve these
values and then recompute their credentials to make them valid again for the new time
period. In fact, the period for which a credential is valid is only one of the attributes
that a credential can hold; the issuer might want to update other attributes as well and
enable richer revocation semantic. Our solution has the advantage that the verifier does
not need to check any revocation lists and furthermore that the showing and verification
of credentials are as efficient as possible, i.e., there are no extra work or space incurred
by enabling revocation. Moreover the costs for updating credentials are minimal for
users and are comparable to other solutions for the issuer. In fact, the issuer can (pre-)
compute the update off-line and then periodically published the update values.

Performance and tradeoffs. Different applications have very diverse revocation require-
ments. The number of total users, the ratio of revoked users to unrevoked ones, the fre-
quency of credential use, and the speed with which revocation has to take effect are just
some of the parameters that influence the design of a revocation system for anonymous
credentials. In order for the system to scale, the issuer must be able to handle a large
number of users. At the same time, computational resources of user devices may be
limited.

Our solution does not support immediate revocation or very short epochs (e.g., one
hour) as it requires the issuer to provide credential updates for all non-revoked user.
Accumulator-based revocation solutions are better suited for short revocation epochs as
the issuer is not required to provide per-user updates, i.e., each non-revoked user can
update her own witness. However, in application scenarios with infrequent credential
usage such as the Belgian electronic identity card (eID) system with large number of
issued (2,25 million per year) and revoked users (375.000 per year)1 witness updates

1 See http://godot.be/eidgraphs

http://godot.be/eidgraphs

Solving Revocation with Efficient Update of Anonymous Credentials 457

become exorbitantly expensive, e.g., 10 minutes for the CL accumulator [18], according
to Lapon et al. [29].

While lacking the feature of immediate revocation, our solution only requires the
user to download a short public credential update value and allows for rich revocation
semantic at no additional cost for the show protocol. Hence, it is currently the most
suitable system for the large scale deployment of anonymous credential systems.

As validity period based revocation mechanisms cannot revoke credentials immedi-
ately, they can be combined with accumulator-based solutions for time-critical applica-
tions such as for instance passport control. In the example for the Belgian eID scenario,
one could set the validity period to a day and use accumulators for immediate revoca-
tion. Thus, users would have to process about 1000 revocation updates per day while
the computational load of the issuer to compute credential updates is still feasible. In
addition, for some less critical uses of the eID, the verifier might not have to check for
immediate revocation and hence relieve the user of the accumulator-proof in the show
protocol.

Organization. Instead of considering a whole credential system, we first isolate the
problem by looking at the core building block of many anonymous credential schemes,
i.e., a signature scheme with efficient protocols [19]. We recall this and other crypto-
graphic building blocks in Section 2. In particular we look at the issuing protocol of
these signatures. In Section 3 we propose a new mechanism for the issuing of such sig-
natures: it consists of an interactive part run once and a non-interactive part that can
be repeated arbitrarily many times and that allows the issuer to change the messages
(attributes) of the resulting signature to their current values. We give a definition of
these protocols and procedures and their security requirements in Section 3.1. We then
provide a sample construction of these protocols for a signature scheme based on bi-
linear maps in Section 3.2. In Section 4 we discuss how our new protocols can be used
to construct an anonymous credential system with efficient revocation and attribute up-
dates. Finally, in Section 5 we discuss for which other signature and credential schemes
similar constructions can be developed. We conclude in Section 6.

2 Preliminaries

In this section we recall the cryptographic tools used by our scheme. After discussing
efficient zero-knowledge proofs for prime order groups, we look at signature and com-
mitment schemes that operate in the same setting. In particular, aforementioned zero-
knowledge proofs will allow us to prove possession of a signature and to prove that a
blindly issued signature signs a committed messages.

2.1 Discrete-Logarithm-Based Zero-Knowledge Proofs for Prime Order Groups

In the common parameters model, we use several previously known results for prov-
ing statements about discrete logarithms, such as (1) proof of knowledge of a discrete
logarithm modulo a prime [32], (2) proof of knowledge of equality of some element
of representations different elements [25], (3) proof that a commitment opens to the

458 J. Camenisch, M. Kohlweiss, and C. Soriente

product of two other committed values [21,23,9], and also (4) proof of the disjunction
or conjunction of any two of the previous [28].

When referring to the proofs above, we will follow the notation introduced by Ca-
menisch and Stadler [22] for various proofs of knowledge of discrete logarithms and
proofs of the validity of statements about discrete logarithms. For instance,

PK{(α, β, δ) : y = gαhβ ∧ ỹ = g̃αh̃δ}
denotes a “zero-knowledge Proof of Knowledge of integers α, β, and δ such that y =
gαhβ and ỹ = g̃αh̃δ holds” where y, g, h, ỹ, g̃, and h̃ are elements of some groups
G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉 that have the same order. (Note that the some
elements in the representation of y and ỹ are equal.) The convention is that variables in
parenthesis, such as “(α, β, δ)”, denote quantities of which knowledge is being proven,
while all other values are known to the verifier. For prime-order groups which include
all groups we consider in this paper, it is well known that there exists a knowledge
extractor which acts as a verifier and can extract these quantities from a successful
prover, if the latter can be rewinded. Also, these proofs can all be done efficiently (in
four rounds and O(k) communication, where k is a security parameter) by using the
transformation by Cramer, Damgård and MacKenzie [27].

2.2 CL-Signature Schemes

A CL-signature scheme CLS [19] extends a conventional signature scheme and consists
of five procedures (KGen, CLSig, CLSVer, CLSProof, CLSPrVer). The procedure KGen
generates the public and secret key of the signer, CLSig produces a signature σ on a
block of messages m1, . . . , mn on input the secret key, and CLSVer outputs 1 iff σ is
a valid signature on m1, . . . , mn w.r.t. the signer’s public key. Finally, (CLSProof ↔
CLSPrVer) is an interactive protocol where a user can prove to a verifier knowledge of
a valid signature on some message m1, . . . , mn such that the verifiers does not learn
any information about the signatures and messages apart from the set {mj}j∈R, where
R ⊂ {1 . . . n} is arbitrarily chosen by the user. The security requirements are that the
signature scheme be unforgeable and that the (CLSProof ↔ CLSPrVer) be a zero-
knowledge proof of knowledge.

Camenisch and Lysyanskaya have presented a scheme secure under the Strong RSA
assumption [19], one under the LRSW assumption [20], and one that is based on the
Boneh, Boyen and Shacham [7] group signature scheme under the Strong Diffie-Hellman
assumption [20]. In the following we described a variant of the latter that was proposed
and proved secure by Au, Susilo and Mu [2].

A CL-signature scheme based on the Au et al. signature scheme. The signature scheme
assumes a non-degenerate bilinear map ê : G×G→ GT of prime order q with genera-
tors h, h0, h1, . . . , hn, where n is a system parameter. The signer’s secret key is x ∈ Zq

while the public key is y = hx .
A signature on messages m1, . . . , mn ∈ Zq is a tuple (A, r, r̂, s) where r, s

$← Zq

are values chosen at random by the signer. The value r̂ ∈ Zq is a value that can be
chosen at random by the user in an interactive issuing protocol. For non-interactive
signature generation, i.e., the CLSig procedure, we assume that r̂ = 0. The original

Solving Revocation with Efficient Update of Anonymous Credentials 459

signature scheme aggregates r and r̂ into one value. We keep the two values separate
to ease exposition in the following protocols. The value A is computed by the signer as
A = (hhr+r̂

0 hm1
1 · · ·hmn

n)1/(x+s). A signature is verified by checking if ê(A, hsy) =
ê(hhr+r̂

0 hm1
1 · · ·hmn

n , h) holds.
We now show how to implement the (CLSProof ↔ CLSPrVer) protocol. In this

protocol the user proves knowledge of a signature on messages m1 . . . mn but only
reveals an arbitrary subset {mj}j∈R, R ⊂ {1 . . . n} to the verifier. Given a signature
(A, r, r̂, s) on messages m1 . . . , mn ∈ Zq , we want to prove that we indeed possess
such a signature. To this end, we need to augment the public key of the signature with
values u, v ∈ G such that logh u and logh v are unknown. Proving knowledge of a
signature can be done by choosing random values w, w′ $← Zq , computing Ã = Auw,
B = vwuw′

and executing the following proof of knowledge:

PK{(α, β, s, w, w′, {mj}j∈{1...n}\R, r′) : B = vwuw′ ∧ 1 = B−svαuβ ∧
ê(Ã, y)

ê(h
∏

j∈R h
mj

j , h)
= ê(Ã−suαhr′

0

∏

j∈{1...n}\R

h
mj

j , h)ê(u, y)w} ,

where r′ = r + r̂, α = sw, and β = sw′.
Let us explain this proof protocol. The first statement proves the prover’s knowledge

of values w and w′ such that B = vwuw′
. The next statement asserts the prover’s

knowledge of values α, β, and s such that α = sw and β = sw′. Let us consider the
last line. It asserts the prover’s knowledge of further values {mj}j∈{1...n}\R such that

ê(Ã, y) =ê(h
∏

j∈R

h
mj

j , h)ê(Ã−suαhr′
0

∏

j∈{1...n}\R

h
mj

j , h)ê(u, y)w

=ê((
uw

Ã
)shhr′

0

n∏

j=1

h
mj

j , h)ê(u, y)w

holds, where we have made use of the relation α = sw. We can further reformulate this
equation into the following one

ê(
Ã

uw
, y)ê((

Ã

uw
)s , h) = ê((

Ã

uw
)s+x , h) = ê(hhr′

0

n∏

j=1

h
mj

j , h) ,

where x is the secret key of the signer. Thus we must have

(
Ã

uw
)s+x = hhr′

0

n∏

j=1

h
mj

j ,

i.e., that the prover knows a signature (Ãu−w, r′, s) on the messages m1, . . . , mn.
It was proved by Au et al. [2] that the above signature is unforgeable under adaptively

chosen message attack if the Q-SDH assumption [7] holds, where Q is the number of
signature queries. The authors also showed that the associated proof of knowledge is
perfect honest-verifier zero-knowledge.

460 J. Camenisch, M. Kohlweiss, and C. Soriente

2.3 Commitment Scheme

A commitment scheme is a two-phase scheme that allows a user to commit to a hidden
value, while preserving the ability of the user to reveal the committed value at a later
stage. The standard definition of a non-interactive commitment scheme consists of a
setup algorithm ComSetup, and an algorithm Com that is used both in the commit and
reveal stage. ComSetup(1k) outputs public parameters paramsCom for the commitment
scheme. Com(paramsCom, x, open) is a deterministic algorithm that computes C , a
commitment to x, using randomness open . One opens a commitment C by revealing x
and open and verifying that Com(paramsCom, x, open) = C .

A secure commitment scheme is hiding: the value committed to must remain undis-
closed until the reveal stage, and binding: the only value that may a commitment can be
opened to is the one that was chosen in the commit stage. In our protocols we make use
of a commitment scheme that is computationally binding and perfectly hiding:

Definition 1 (Computational Binding). For all probabilistic polynomial time (p.p.t.)
algorithms that on input paramsCom ← ComSetup(1k) output x, x′, open, open′, x
=
x′, the probability that Com(paramsCom, x, open) = Com(paramsCom, x′, open′) is a
negligible function ν in k.

Definition 2 (Perfectly Hiding). Let Uk be the uniform distribution over the opening
values under public parameters paramsCom ← ComSetup(1k). A commitment scheme
is perfectly hiding if for all x
= x′ the probability ensembles {Com(ComSetup(1k), x,
Uk)}k∈N and {Com(ComSetup(1k), x′, Uk)}k∈N are equal.

Pedersen commitments. We use the perfectly hiding commitment scheme proposed
by Pedersen [31], that is binding under the discrete logarithm (DL) assumption. For the
parameters paramsCom we will reuse generators u, v of a group G of prime order q from
the CL-signature scheme’s public key. These values fulfill the property that logu(v) is
unknown. A commitment C to x ∈ Zq is generated by choosing at random open $←
Zq and computing C = Com(paramsCom, x, open) = uxvopen . The commitment is
opened by revealing x and open .

In the issuing protocol we also use a generalized of Pedersen commitments computed
as C = hopen

0 hx1
1 · · ·hxn

n that allows to commit to multiple values.

3 Issue Protocol for CL-Signatures with Updates

We formalize the security properties required from a CL-signature scheme with updates,
and give an exemplary construction based on the Au et al. signature scheme.

3.1 Definitions

Let CLS = (KGen, CLSig, CLSVer, CLSProof, CLSPrVer) be a secure CL-signature
scheme and let C = (ComSetup, Com) be a secure commitment scheme. A blind issu-
ing and update scheme for CLS and C consists of five additional procedures SKeygen,
SObtSig, SIssSig, SIssUpd, and SObtUpd that are defined as follows.

Solving Revocation with Efficient Update of Anonymous Credentials 461

Let � be the number of blindly signed messages. We write m1..n as a shorthand for
m1, . . . , mn, similarly for m1..�,m�+1..n, open1..� and C1..�.

SKeygen(1k). This procedure combines the functions of KGen and ComSetup. On in-
put the security parameter k, the algorithm generates the secret and public keys
for the signature scheme and the parameters for the commitment scheme. It then
augments these keys with all the parameters needed for the issue, and update pro-
cedures. It outputs the augmented secret skI and public key pkI of the issuer. The
latter also includes the commitment parameters paramsCom.

SObtSig(pkI , m1..n, open1..�)↔ SIssSig(skI ,C1..�, m�+1..n) is a protocol between
the user and the issuer. Before running the protocol, the user commits to the mes-
sages m1, . . . , m� that are to be signed blindly. The opening information open1..�

is part of the user’s input, while the commitments C1..� are part of the issuer’s in-
put. The user’s part SObtSig outputs the signature σ on messages m1, . . . , mn, and
the issuer’s part SIssSig outputs the signature state stateσ that will be later used to
update signatures.

SIssUpd(skI , stateσ, m′
�+1..n) on input the state value stateσ for blinded messages

m1, . . . , m�, this procedure outputs a value updateσ that allows to obtain an up-
dated signature on messages m1, . . . , m�, m

′
�+1, . . . , m

′
n.

SObtUpd(pkI , m1..n, m′
�+1..n, σ, updateσ) combines the signature σ on messages

m1, . . . , mn (those for which the user ran the issuing protocol initially) and the
value updateσ to obtain the signature σ′ on messages m1, . . . , m�, m′

�+1, . . . , m
′
n.

We require that the additional procedures do not damage the security of the original
signatures scheme. We formulate this as the following two security requirements: signer
privacy and user privacy. Informally, signer privacy requires that the user does not learn
anything from interacting with the issuer via SIssSig and the updates from the issuer via
SIssUpd other than signatures on the list of messages on which these protocols and
procedures are run. In particular, this includes that the user shall not be able to forge
signatures on other lists of messages.

The user privacy requirement states that the issuer does not learn anything about the
messages m1, . . . , m� when interacting with via SObtSig with the user.

Signer privacy. The idea here is that no p.p.t. adversary A can tell if it is obtaining
signatures from an honest issuer I running SIssSig and receiving signature updates via
SIssUpd or whether it interacts with a simulator S with algorithms SSimIssSig and
SSimUpd for issuing and updating signatures that does not know the issuer’s secret key
but only has access to a signing oracle. We formalize this using two experiments:

Experiment RealSP
A (k) proceeds as follows:

1. Run SKeygen(1k) and hand the secret and public keys to A. Receive messages
m1, . . . , mn and openings open1, . . . , open� fromA. Compute commitments C1←
Com(paramsCom, m1, open1); . . . ;C� ← Com(paramsCom, m�, open�). Run al-
gorithm SIssSig(skI ,C1..�, m�+1..n) withA. The experiment stores the value stateσ

output by SIssSig.
2. Repeat until A stops with output b. Receive messages m′

�+1, . . . , m
′
n from A. Re-

trieve stateσ . Otherwise run SIssUpd(sk, stateσ, m′
�+1..n

), hand updateσ to A.

462 J. Camenisch, M. Kohlweiss, and C. Soriente

Experiment SimulatedSP
A (k) proceeds as follows:

1. Run SKeygen(1k) and hand the secret and public keys to A. Receive messages
m1, . . . , mn and openings open1, . . . , open� fromA. Compute commitments C1←
Com(paramsCom, m1, open1); . . . ;C� ← Com(paramsCom, m�, open�). Compute
σ ← CLSig(skI , (m1..n)) and run SSimIssSig(σ, comm1..�, m�+1..n) with A. The
experiment stores the output stateS of SIssSig and messages m1, . . . , m�.

2. Repeat untilA stops with output b. Receive messages m′
�+1, . . . , m

′
n fromA. Com-

pute σ′ ← CLSig(skI , m1..�, m
′
�+1..n) and run SSimUpd(σ′, stateS , m′

�+1..n),
hand updateσ to A.

The simulator is allowed to rewind the adversary. Let the adversary’s advantage in dis-
tinguishing between the two experiments be AdvSP

A (k) = |Pr[RealSP
A,I(k) = 1] −

Pr[SimulatedSP
A,S(k) = 1]|. Signer privacy requires that AdvSP

A (k) is a negligible
function in k.

We have defined signer privacy in terms of the issue and update sequence of a single
signature, but our definition is strengthened by the fact that the adversary is given the
issuers secret key skI . A simple hybrid argument can be used to show that this defini-
tion implies privacy for many credentials as long as the signature issue protocols are
executed sequentially.

User privacy. No p.p.t. adversaryA can tell if it is issuing signatures to an honest user
U running SObtSig or to a simulator S running SSimObtSig that does not know the
users secret inputs. We formalize this using two experiments:

Experiment RealSP
A (k) proceeds as follows:

1. Receive a signature public key pkI , messages m1, . . . , m�, and openings open1,
. . . , open� fromA.

2. Run SObtSig(pkI , m1..�, open1..�) withA. The experiment outputs the adversary’s
output b.

Experiment SimulatedSP
A (k) proceeds as follows:

1. Receive a signature public key pkI , messages m1, . . . , m�, and openings open1,
. . . , open� from A. Compute C1 ← Com(paramsCom, m1, open1); . . . ;C� ←
Com(paramsCom, m�, open�).

2. Run SSimObtSig(pkI , comm1..�) with A. The experiment outputs the adversary’s
output b.

Again, the simulator is allowed to rewind the adversary. Let the adversary’s advantage
in distinguishing the two experiments be AdvUP

A (k) = |Pr[RealUP
A,U (k) = 1] − Pr

[SimulatedUP
A,S(k) = 1]|. User privacy requires that AdvUP

A (k) is a negligible function
in k.

Note that we require that only the user’s input m1, . . . , m� be hidden from the issuer,
but not necessarily the user’s output σ. The reason that this is sufficient is that in actual
applications (for example, in anonymous credentials), a user would never show σ in the
clear; instead, she would just prove that she knows σ.

Definition 3. We say that UCLS = SKeygen, CLSig, CLSVer, CLSProof, CLSPrVer,
Com, SKeygen, SObtSig, SIssSig, SIssUpd, SObtUpd) is a secure CL-signature scheme

Solving Revocation with Efficient Update of Anonymous Credentials 463

with updates if the algorithms (SKeygen, CLSig, CLSVer, CLSProof, CLSPrVer) con-
stitute a secure CL-signature scheme, the algorithms (SKeygen, Com) constitute a se-
cure commitment scheme, and SKeygen, SObtSig, SIssSig, SIssUpd, SObtUpd fulfill the
signer privacy and user privacy properties.

3.2 Construction

The main insight that leads to our construction is that issuing credential based on CL-
signatures typically consists of two stages: 1) the user sends to the issuer some form
of commitment to the messages that she wants to be included in the credential and 2)
the issuer extends that commitment into one that covers all the message to be signed
and then computes the signature of all these messages. As the second stage essentially
consists only of computations by the issuer followed by sending the user the signature,
this stage can be repeated any number of times with new messages chosen by the issuer
and instead of sending the result on-line to the user, it can be provided as an update by
any form of communication (e.g., provided for download at a website).

This approach of two stages is possible because for all the CL-signature schemes
that we consider [17,19,20] and in particular for the signature scheme by Au, Susilo
and Mu [2] on which we base our explicit construction, signing consists of computing
a group element from a number of bases where the message to be signed are used as
exponents. Hence, this group element can also be considered as a Pedersen commitment
to all the message. This holds even for the group element computed by the user for the
messages that are hidden from the issuer provided that the user proves to the issuer that
she did do these computations correctly.

We describe a construction for CL-signatures with updates and prove the security of
the issuing protocol and the update algorithms.

SKeygen(1k). On input 1k, pick a non-degenerate efficiently computable bilinear map
ê : G×G→ GT of prime order q with G = 〈h〉. Pick additional bases h0, h1, . . . ,

h�, h�+1, . . . , hn
$← G. The signer’s secret key is x $← Zq while the public key is

y = hx . Publish pkI = (q, G, GT , e, h, h0, h1, . . . , h�, h�+1, . . . , hn, y, u, v). The
secret key skI includes the public key material and x . To speed up computation the
issuer can choose values x1, . . . , xn ← Zq and compute hi = hxi for i = 1..n.
This allows to compute a product

∏n
i=1 hmi

i as h
∑n

i=1 ximi .
SObtSig(pkI , m1..n, open1..�)↔ SIssSig(skI , comm1..�, m�+1..n).

1. U picks r̂
$← Zq , computes P = hr̂

0

∏
i=1..� hmi

i and sends it to I.
2. U engages with I in the following proof of knowledge to convince I that P is

correctly formed.

PK{(r̂, m1..�, open1..�)
�∧

i=1

C =Com(paramsCom, mi, open i)∧P =hr̂
0

∏

i=1..�

hmi

i } .

3. I picks s, r
$← Z

∗
q , computes A = (hPhr

0

∏n
i=�+1 hmi

i)1/(x+s) and sends
(A, r, s) to U .

4. I outputs stateσ = P .
5. U outputs σ = (A, r, r̂, s).

464 J. Camenisch, M. Kohlweiss, and C. Soriente

SIssUpd(skI , stateσ, m′
�+1..n). This algorithm is periodically run by I to update a sig-

nature with state stateσ . I proceeds with the following steps.

1. I picks s′, r′ $← Z
∗
q , computes A′ = (hPhri

0

∏n
i=�+1 h

m′
i

i)1/(x+s).
2. I outputs updateσ = (A′, r′, s′).

If the issuer chooses hi = hxi the computation of A only requires two exponentia-
tion (or rather one two-base multi-exponentiation).

SObtUpd(pkI , m1..n, m′
�+1..n, σ, updateσ). Given a signature σ = (A, r̂, r, s) and

updateσ = (A′, r′, s′) output σ′ = (A′, r′, r̂, s′), if CLSVer(pkI , σ′, m1..�,
m′

�+1..n) = 1 and ⊥ otherwise.

Theorem 1. Under the Strong Diffie-Hellman assumption (that implies the Discrete
Logarithm assumption), the algorithm above together with the Au et al. CL-signature
scheme and the Pedersen constitute a secure CL-signature scheme with updates.

Lemma 1. The SIssSig and SIssUpd algorithms above together with the Au et al. CL
signature scheme and the Pedersen commitment scheme fulfill the signer privacy prop-
erty assuming the security of the zero-knowledge proof of knowledge and commitment
scheme.

Proof. Given a list of commitments C1..� messages m1, . . . , mn and a signature σ =
(A, r̃, 0, s) as input SSimIssSig simulates the adversaries view. Upon receiving the value
P , it interacts with the adversary in a proof of knowledge. The adversary proves that
she knows messages m1, . . . , m� corresponding to C1..� and the randomness r̂ used
to create P . The simulator uses the knowledge extractor of the proof of knowledge to
obtain r̂, and returns (A, r̃ − r̂, s) to the adversary. The state stateS of the simulator
corresponds to r̂.

For each request to generate a signature update, SSimUpd receives messages m′
�+1,

. . . , m′
n and a signature σ′ = (A′, r̃′, 0, s′) as input. The simulator uses r̂ to returns

updateσ = (A′, r̃′ − r̂, s′).
We proof using a sequence of games that RealA(k) and SimulatedA(k) are in-

distinguishable.

Game 1 corresponds to the RealA,I(k) experiment.
Game 2 is the same as Game 1, but the knowledge extractor of the proof of knowledge

is used to extract r̂, m̃1..�, open1..�. If extraction succeeds proceed as in Game 1,
otherwise abort. The probability ν1(k) to distinguish between Game 1 and Game 2
is bounded by the knowledge extraction error of the proof of knowledge protocol.

Game 3 is the same as Game 3, except that the game aborts, if the values m̃1..� ex-
tracted from the proof of knowledge differ from the values m1..� output by the
adversary. The probability ν2(k) to distinguish between Game 2 and Game 3 is
bounded based on the security of the commitment scheme.

Game 4 computes the response of the issuing protocol and all update protocols, by first
computing a signature σ = (A, r̃, 0, s) for messages m1, . . . , mn and m1..�,m′

�+1,n

respectively, and then replying with (A, r̃ − r̂, s). Game 4 is identically distributed
to Game 3 and corresponds to experiment SimulatedA,S(k).

Solving Revocation with Efficient Update of Anonymous Credentials 465

The adversaries advantage in distinguishing the games is bounded by AdvA(k) <
ν1(k) + ν2(k).

Lemma 2. The SObtSig algorithm above together with the Au et al. CL-signature
scheme and the Pedersen commitment scheme fulfill the user privacy property.

Proof. Given the issuers public key pkI and commitments comm1..� as input, the sim-
ulator SSimObtSig picks a random value P . Then it uses the zero-knowledge simulator
to interact with the adversary in the following proof protocol:

PK{(r̂, m1..�, open1..�) :
�∧

i=1

C =Commit(paramsCom, mi, openi)∧P =hr̂
0

∏

i=1..�

hmi

i } .

As both the commitments C1..� and P are perfectly hiding Pedersen commitments, this
is a proof of a true statement, and the simulation is perfect.

4 Anonymous Credential Systems with Efficient Revocation and
Attribute Update

In this section we will show how to use CL-signatures with updates to design an anony-
mous credential system where credential revocation is accomplished through an effi-
cient, non-interactive protocol for updating credentials. The considered scenario con-
sists of three types of players:

A credential issuer (I) that issues and manages anonymous credentials. One or more
credential verifiers that provide services to users upon show of valid credentials. A
set of users that anonymously obtain credentials from I and show them in a privacy
preserving way to verifiers in order to access their services.

Several research papers describe how to construct anonymous credential schemes
from CL-signatures. The efficient anonymous credential scheme of Camenisch and
Lysyanskaya [17] made use of CL-signatures as an implicit building block that the
same authors later formalized in [19]. Their basic system, however, does not support
attributes. A non-interactive variant of such a credential system was also proposed by
Belenkiy, Chase, Kohlweiss and Lysyanskaya in [5]. Bangerter, Camenisch and Lysyan-
skaya [3] describe a flexible anonymous certification framework that allows for blind
issuing and selective show of credentials that certify multiple user and issuer chosen
attributes. CL-signatures also form the basis for direct anonymous attestation (DAA)
[14]. The DAA protocol makes use of a blindly certified user secret skU . This value
never leaves the trusted platform module and protects the credential against theft and
abuse.

We describe a credential system that combines the features in the above schemes.
In addition, we allow for efficient revocation through the inclusion of time period in-
formation. The anonymous credential system uses the SObtSig ↔ SIssSig protocol to
issue a credential with the following information to the user: the users secret skU , the
credential serial number id, the time period for which the credential is valid t, and d
attributes a1, . . . , ad chosen by the issuer. The key skU is only known to the user and
is certified blindly. The update feature of our CL-signature scheme allows the issuer to

466 J. Camenisch, M. Kohlweiss, and C. Soriente

publish update information for new time periods. As an added benefit, the issuer can
update the users attribute. The latter allows rich revocation semantic as credential can
be partially (i.e., only some of the credential attributes) revoked and/or updated.

More formally, our anonymous Credential System with efficient revocation and up-
dates consists of the following algorithms:

IssuerKeygen(1k) This algorithm is run once by I to setup system parameters. It runs
SKeygen(1k) to create skI and pkI of a CL-signature with Updates scheme. It also
outputs an empty set state where to store issued credentials.

UserKeygen(1k) This algorithm is run only once for each U before she interacts with
the I to obtain any credential. U obtains her secret key skU and the corresponding
public key pkU that might be advertised as the user identity.

ObtainCert(U(pkU , skU), I(pkI , skI , a1..d, state, t) In this protocol, U obtains a cer-
tified credential with unique serial number id. The latter is arbitrarily chosen by I.
For example, given state as the set of all issued credentials, I might set id to the
next available serial number.
1. The user commits to her secret key as C = Com(paramsCom, skU , open) and

user sends her public key and the commitment to the issuer. The user does a
proof of knowledge that the public key corresponds to the commitment. This
provides the issuer with the guarantee that the credential will be issued to the
correct user.

2. Now the issuer sends the attributes id, t, a1, . . . , ad to the user.
3. The user and the issuer run SObtSig(pkI , skU , id, t, a1..d, open) ↔ SIssSig(

skI ,C , id, t, a1..d), respectively. Note that skU is the only blindly signed mes-
sage, and n = d + 3. The user obtains the signature σ and the issuer obtains
stateσ .

4. The issuer adds record (1, id, stateσ, a1, . . . , ad) to state; the first element of
the record flags the credential as currently valid.

5. The users output is the certificate cert = (σ, id, t, a1, . . . , ad).
InvalidateCerts(state, id) This algorithm is periodically run by I to revise validity sta-

tus of issued credentials. For each credential to be revoked, let id be its serial num-
ber, I replaces record (1, id, stateσ, a1, . . . , ad) in state with record (0, id, stateσ,
a1, . . . , ad); the first element of the record flags the credential as revoked.

UpdateAttributes(state, id, a′
1..d) This algorithm is run by I before producing the up-

dates of each valid credential. It is used to update credential attributes for valid cre-
dentials. The issuer replaces (1, id, stateσ, a1, . . . , ad) in state with (1, id, stateσ,
a′
1, . . . , a

′
d) to reflect the changes to the credential attributes for the current time

period.
CertUpdate(pkI , skI , state, t) This algorithm is periodically run by I to update cre-

dentials that are still valid. For each record (1, id, stateσ, a1, . . . , ad) in state,
the issuer runs SIssUpd(skI , stateσ, id, t, a1..d) and publishes the resulting update
value together with the new attribute values as updateid,t = (updateσ, a1, ...ad).
Note that revoked credentials in state do not get updated.

ProveCert(U(skU , cert , updateid,t, R),V(pkI , t, R) This algorithm is run at time t by
an user U and a verifier V before the latter grants any service to the former. At the
end of the protocol, V only learns that U has a credential issued by I with attributes

Solving Revocation with Efficient Update of Anonymous Credentials 467

{ai}i∈R that is valid at time t. First, U parses updateid,t as (updateσ, a1, ...ad)
and updates her credential running SObtUpd(pkI , a1..d, σ, updateσ). The updated
certificate is cert = (σ′, id, t, a1, . . . , ad). Where t, a1, . . . , ad correspond to the
current time period and the updated attribute values. Later, she can show her cre-
dential an arbitrary number of time to any verifier. At each show, the user sends
messages {ai}i∈R to the issuer, and performs the following zero-knowledge proof
of knowledge:

PK{(σ, skU , {ai}i∈{1,...,d}\R) : 1 = CLSVer(pkI , σ, skU , id, t, a1..d) ∧ . . . } .

Note that in the above example, credentials are revoked as a whole. Partial revocation
can be achieved using multiple flags per credential. To use the driving licence example
of Section 1, each credential would have a flag to define credential validity for driving
permissions and an additional flag to define its validity for owner identification pur-
poses. Flags could be encoded in the credential and updated independently as required.

Security discussion. In [17] a secure anonymous credentials scheme is defined using an
ideal functionality. The authors show that the extraction and zero-knowledge properties
of the proof system and the unforgeability of the signature scheme guarantee that an ad-
versary attacking the real world anonymous credential system cannot do more damage
than an adversary interacting with the ideal functionality. The signer privacy and user
privacy properties introduced by Belenkiy et al. [5] formalize the needed properties for
the issuing protocol. In addition to what is shown in [5] we show that the non-interactive
signature updates do not leak additional information about the issuers secret key. The
credential show protocol is unchanged and relies on the security of the zero-knowledge
proof of knowledge of signature possession.

5 Efficient Updates for Other Signatures and Anonymous
Credential Schemes

The construction we give in this paper employs a signature scheme based on bilinear
maps. There are however a number of other constructions for signature schemes with
efficient protocols and constructions for group signatures and credential systems. In
this section we discuss whether the approach of introducing validity time periods and
publishing credential/signature update information also applies to other schemes.

CL-signatures. Camenisch and Lysyanskaya have proposed a number of different sig-
nature schemes that allows efficient proofs of knowledge of a signature. Apart from
the one we have already used in our construction, they have proposed a scheme based
on the strong RSA assumption [19] and one based on the LRSW assumption [20]. As
all of these schemes follows the same principles, they can all be extended in the same
way as what we did in our construction. We quickly sketch this for the widely used
CL-signature scheme based on the strong RSA assumption:

The signature σ consists of a tuple (A, r, e) with A = (hhr
0h

m1
1 . . . hmn

n)−emod m,
where m is an RSA modulus. Similarly to our construction based on bilinear maps,
the issue protocol starts with the user sending a value P = hr̂

0h
m1
1 . . . hm�

� that is then

468 J. Camenisch, M. Kohlweiss, and C. Soriente

extended by the issuer to compute a signature on blinded values m1, . . . , m� and issuer
chosen messages m�+1, . . . , mn. This last step can be repeated for different messages
m′

�+1, . . . , m
′
n to implement the update.

Blind-signatures based schemes. The credential schemes by Brands [10,11] employ a
blind Schnorr signature scheme to achieve anonymity. This signature scheme uses hash
functions in a crucial way to achieve unforgeability.

Conceptually, a Schnorr blind signature protocol consists of three steps. The com-
mitment step, the challenge step, and the response step. The first and the last step are
computed by the signer. To achieve blindness, the user (signature receiver) needs to
compute the challenge as a hash value on the values of the commitment step and the
user’s public key h′ = gα

0

∏n
i=1 gmi

i , that encodes his attributes (see Chapter 4 of [11]).
The user then blinds (randomizes) the challenge before the signer can compute signa-
ture values in the final response step using its signing secret key. It thus seems inherent
that the user needs to do this hash function computation for every signature and thus,
signature updates cannot be done non-interactively. A solution that works partially is as
follows. The user could prepare many blind signatures and then send them all at once to
the signer. The signer could then finish the individual protocols as needed (e.g., one in
each epoch). This, however, works only if all the messages (e.g., attributes of a creden-
tial) are fixed at the time the user prepares all these blind signatures. Thus, the signer
would not be able to update any of the messages in the update phase which seems to
be a severe limitation. Furthermore, the user would have to store all the blinding values
of all the prepared blind signatures (or to regenerate them from a seed using a suitable
pseudo-random function).

Other schemes. Belenkiy el al. [5,4] have proposed so-called P-signatures that are based
on bilinear maps and allow one to use Groth-Sahai non-interactive proofs for proving
knowledge of a signature. However, issuing signatures in their schemes is highly in-
teractive and it seems not possible to apply our approach to these schemes as they are
now.

An approach that works for all interactive and non-interactive CL and P-signature
schemes is to combine an interactively issued signature that contains the attribute values
that should be blindly signed and the credential identifier id, with a plain signature that
contains the same identifier, the time period t, and all issuer attributes. The disadvantage
of this approach is that the prove protocol becomes twice as expensive, as the user now
has to prove possession of two signatures.

When considering related schemes such as group signatures and identity escrow, we
see that our approach can in general not be used as they do not have a means to include
a validity time period identifier. However, many of them are constructed along the lines
of using a CL-signature to sign a group member’s secret key and then defining a group-
signature to be a non-interactive proof of knowledge of a CL-signature by the group
manager on a secret key. For these schemes, it is of course not hard to extend them such
that the group manager signs also a second message being an epoch identifier and hence
our approach can be used.

Solving Revocation with Efficient Update of Anonymous Credentials 469

6 Conclusion

Despite a growing concern for user privacy in a cyber-world, the diffusion of Anony-
mous Credential Systems is impaired by the lack of efficient protocols. Use of non-
interactive protocols, rich revocation semantic and minimal overhead at show time
are key features to enable the adoption of Anonymous Credential Systems in privacy-
preserving scenario with large number of users.

In this paper we have introduced a signature scheme with updates that can be used
in anonymous credential systems to enable efficient, semantically rich revocation. Our
scheme allows for non-interactive credential update as well as partial revocation/update.
Moreover, it enjoys no overhead in the show protocol to prove that a credential is non-
revoked. Updates can be performed off-line and later published on a public bulletin
board for users to download them. Also, users can miss an arbitrary number of updates,
that is, the latest update to their original credential suffices to prove its possession.
Compared to previous solutions for revocation, our approach is much more efficient
for showing and verifying credentials (there is no additional cost), more flexible (it ad-
dresses even updates of attributes), and has a similar overhead for managing revocation
status as previous solutions.

Acknowledgements. Markulf Kohlweiss was supported in part by IBBT, the Concerted
Research Action (GOA) Ambiorics 2005/11 of the Flemish Government, and by the
IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy). This
work was further supported in part by the European Commission through the ICT and
IST programmes under the following contracts: ICT-216483 PRIMELIFE and ICT-
216676 ECRYPT II. Claudio Soriente has been partially funded by the Spanish National
Science Foundation (MICINN) under grant TIN2007-67353-C02 and by the Madrid
Regional Research Council (CAM) under grant S2009/TIC-1692 and and by the Euro-
pean Commission under project NEXOF-RA (FP7-216446).

References

1. Windows cardspace (2010),
http://www.microsoft.com/windows/products/winfamily/
cardspace/ (accessed April 2010)

2. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R., Yung, M.
(eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006)

3. Bangerter, E., Camenisch, J., Lysyanskaya, A.: A cryptographic framework for the controlled
release of certified data. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Se-
curity Protocols 2004. LNCS, vol. 3957, pp. 20–42. Springer, Heidelberg (2006)

4. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.:
Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

5. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive
anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374.
Springer, Heidelberg (2008)

6. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a standard Java
Card. In: ACM Conference on Computer and Communications Security (2009) (to appear)

http://www.microsoft.com/windows/products/winfamily/cardspace/
http://www.microsoft.com/windows/products/winfamily/cardspace/

470 J. Camenisch, M. Kohlweiss, and C. Soriente

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. K. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

8. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Atluri, V., Pfitz-
mann, B., McDaniel, P. (eds.) ACM CCS 2004, pp. 168–177. ACM, New York (2004)

9. Brands, S.: Rapid demonstration of linear relations connected by boolean operators. In:
Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 318–333. Springer, Heidelberg
(1997)

10. Brands, S.: Rethinking Public Key Infrastructure and Digital Certificates — Building in Pri-
vacy. PhD thesis, Eindhoven Institute of Technology, Eindhoven, The Netherlands (1999)

11. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates. MIT Press, Cam-
bridge (2000)

12. Brands, S., Demuynck, L., De Decker, B.: A practical system for globally revoking the un-
linkable pseudonyms of unknown users. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.)
ACISP 2007. LNCS, vol. 4586, pp. 400–415. Springer, Heidelberg (2007)

13. Brands, S., Demuynck, L., De Decker, B.: A practical system for globally revoking the un-
linkable pseudonyms of unknown users. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.)
ACISP 2007. LNCS, vol. 4586, pp. 400–415. Springer, Heidelberg (2007)

14. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proc. 11th ACM
Conference on Computer and Communications Security, pp. 225–234. ACM Press, New
York (2004)

15. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix anonymous
credential system. In: Proc. 9th ACM Conference on Computer and Communications Secu-
rity, ACM Press, New York (2002)

16. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

17. Camenisch, J., Lysyanskaya, A.: Efficient non-transferable anonymous multi-show creden-
tial system with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

18. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revo-
cation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
61–76. Springer, Heidelberg (2002)

19. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S.,
Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidel-
berg (2003)

20. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilin-
ear maps. In: Franklin, M.K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer,
Heidelberg (2004)

21. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number n is the product of two
safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer,
Heidelberg (1999)

22. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

23. Camenisch, J.L.: Group Signature Schemes and Payment Systems Based on the Discrete
Logarithm Problem. PhD thesis, ETH Zürich, Diss. ETH No. 12520. Hartung Gorre Verlag,
Konstanz (1998)

24. Chaum, D.: Security without identification: Transaction systems to make big brother obso-
lete. Communications of the ACM 28(10), 1030–1044 (1985)

25. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

Solving Revocation with Efficient Update of Anonymous Credentials 471

26. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC
5280 (Proposed Standard) (May 2008)

27. Cramer, R., Damgård, I., MacKenzie, P.D.: Efficient zero-knowledge proofs of knowl-
edge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS,
vol. 1751, pp. 354–372. Springer, Heidelberg (2000)

28. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified de-
sign of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839,
pp. 174–187. Springer, Heidelberg (1994)

29. Lapon, J., Kohlweiss, M., De Decker, B., Naessens, V.: Performance analysis of accumulator-
based revocation mechanisms. In: Proceedings of the 25th International Conference on Infor-
mation Security (SEC 2010), Brisbane, AU. IFIP Conference Proceedings, p. 12. Springer,
Heidelberg (2010)

30. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes with
constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 463–480. Springer, Heidelberg (2009)

31. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg
(1992)

32. Schnorr, C.P.: Efficient signature generation for smart cards. Journal of Cryptology 4(3),
239–252 (1991)

33. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: Blacklistable anonymous credentials:
blocking misbehaving users without ttps. In: CCS 2007: Proceedings of the 14th ACM con-
ference on Computer and communications security, pp. 72–81 (2007)

	Solving Revocation with Efficient Update of Anonymous Credentials
	Introduction
	Preliminaries
	Discrete-Logarithm-Based Zero-Knowledge Proofs for Prime Order Groups
	CL-Signature Schemes
	Commitment Scheme

	Issue Protocol for CL-Signatures with Updates
	Definitions
	Construction

	Anonymous Credential Systems with Efficient Revocation and Attribute Update
	Efficient Updates for Other Signatures and Anonymous Credential Schemes
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

