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Abstract: In this paper we analyze connectivity 
of one-dimensional Vehicular Ad Hoc Networks 
where vehicle gap distribution can be approximat-
ed by an exponential distribution. The probabili-
ties of Vehicular Ad Hoc Network connectivity 
for difference cases are derived.  Furthermore we 
proof that the nodes in a sub-interval 1 1[ , ]z z z+ Δ  
of interval  [0, ], 0z z >  where all the nodes are 
independently uniform distributed is a Poisson 
process and the relationship of Vehicle Ad hoc 
Networks and one-dimensional Ad Hoc networks 
where nodes independently uniform distributed in 

1 1[ , ]z z z+ Δ  is explained. The analysis is validated 
by computing the probability of network connec-
tivity and comparing it with the Mont Carlo simu-
lation results. 
Key words: Intelligent Transportation Systems (ITS); 
connectivity; Vehicular Ad Hoc Networks; one-
dimensional Ad Hoc Networks

I. INTRODUCTION 

Mobile Ad Hoc NETworks (MANETs) are com-
prised of self-organizing mobile nodes that lack a 
network infrastructure, such as base stations. This 
technology has been proposed as a complementary 
to the fourth-generation wireless networks[1]. And 
in recent years, there is a growing interest on the 
research and deployment of MANETs technology 
for vehicular communication, e.g. the PReVENT 
project in Europe, InternetITS in Japan, and Net-
work on Wheels in Germany. In particular, these 
networks have important applications in intelligent 
transportation systems (ITS). The prospective ap-
plications of VANETs are categorized into two 
groups as comfort and safety applications. The fi rst 
group is expected to improve the passengers’ com-
fort and optimize traffic efficiency, whereas the 
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second one improves driving safety.
For a one-dimensional Mobile Ad Hoc Net-

works (MANETs), assuming all the nodes are 
independently uniform distributed, a few ap-
proaches have been proposed in the literatures for 
computing the probability of connectivity[2-6]. 
Desai and Manjunath[2] derived a formula for the 
probability that the network G1 (all the nodes are 
independently uniform distributed in a closed in-
terval  [0, ], 0z z > ) is connected. Gore[3, 4] gave 
some comments on[2] and derived another formula 
for the probability that G1 is connected with a fi xed 
node at point zero. The probability that the one 
dimensional Ad Hoc Networks is composed of at 
most C clusters is derived by Ghasemi and Nader-
Esfahani in [5]. Reference [6] studies the connec-
tivity of a 1-D ad hoc network with a user mobility 
model and derives a formula for the connectivity 
of a source destination pair.

For a special ad hoc networks, Vehicular Ad 
Hoc Networks(VANETs)[7], it is shown by Ru-
dack et al.[8] that the vehicle gap distribution can 
be approximated by an exponential distribution 
with vehicle density  

[ ]E V
λ

µ = , where µ  represents 
the number of vehicles per unit of distance, λ 
represents the mean arrival rate of vehicles, E[V] 
represents the mean vehicular speed. The same 
conclusion is derived by S. Yousefi  et al. in [9]. 

In this paper, we try to derive some connectivity 
properties of VANETs in highway scenarios. First-
ly in Section II, we proof that the nodes number lo-
cated in a sub-interval of [0, ], 0z z >  approximate-
ly is a Poisson process and that under the condition 
that k vehicles locate in the interval (0, L], the 
position of these vehicles, which are considered as 
unordered random variables, are independently and 
uniformly distributed in the interval (0, L]. These 
conclusions relate the previous works[2-6] to ours 
in this paper. Secondly in Section III, we get the 
following connectivity probability for VANETs in 
highway scenarios: 

 The probability of connectivity of the ith vehi-
cle and the jth vehicle ( j>i).

 The probability of connectivity of the vehicles 
in the interval [0, L](L> 0).

 The probability of connectivity of a fi xed node 
at point zero and the geographical point L(L>0): 
An example for this scenario is Geocasting which 
means delivering a message from a source node 
to nodes in a given geographical region. In other 
words, the probability is the geographical point 
L(L>0) is in multi hop transmission range of the 
fi xed node at zero.

Nodes and vehicles are alternately used in this 
paper.

II. PRELIMINARIES 

For a one-dimensional ad-hoc networks G1, assum-
ing n nodes are independently uniform distributed 
in a closed interval [0, z](z > 0). The probability 
that there are k nodes in the interval 1 1[ , ]z z z+ Δ
( 1  and 1 1,z z z z+ Δ < ) is given by the fol-
lowing theorem.

Theorem 1 The probability that there are k 
nodes in the interval 1 1[ , ]z z z+ Δ  ( 1  and 

1 1,z z z z+ Δ < ) approximately is a Poisson point 
process when  z zΔ  and n → ∞.

( )
!

k

P X k e
k

µ µ−= ≈                                         (1)

where 
zp

z
Δ

= , npµ = .
Proof The probability that a node locates in 

the interval  ( 1  and 1 1,z z z z+ Δ < )  is 

1 1 1( ) zz x z z
z

Δ
= < < + Δ = . So the probability 

that there are k nodes in the interval 1 1[ , ]z z z+ Δ  
( 1 ) is: 

( ) (1 )k k n k
nP X k C p p −= = −  

Let np µ= , we get:

nC p p
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- - +

For n large and p small
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Hence, for n large and p small,
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µ µ−= ≈  .
For Vehicular Ad Hoc Networks, we denote the 

Probability Density Function (PDF) and Cumula-
tive Distribution Function (CDF) of the gap distri-
bution as fg(x) and Fg(x) respectively. Based on the 
conclusion from [8, 9], we have 

( ) x
gf x e µµ −=                                                   (2)

( ) 1 x
gF x e µ−= −                                                (3)

Obviously the number of nodes which locate in the 
interval 1 1[ , ]z z z+ Δ  is a Poisson point process:        

( )( )
!

k
zz

k
µµ − ΔΔ

= =                                
(4)

Theorem 2 Under the condition that k vehicles 
locate in the interval (0, z], the position of these 
vehicles, which are considered as unordered ran-
dom variables, are independently and uniformly 
distributed in the interval (0, z]. 

Proof The conclusion is derived directly from 
Theorem 5[10].

Based on the discussion above, we get the con-
clusion: for one-dimensional Vehicular Ad Hoc 
Networks and one-dimensional Ad Hoc Networks 
where nodes uniformly distributed, the node 
number in an interval is a Poisson process and the 
nodes' position in an interval is uniformly distrib-
uted. Although our analysis scenario in the next 
section is Vehicular Ad Hoc Networks, our con-
clusions can also be applied in a one-dimensional 
Mobile Ad Hoc Networks where nodes uniform 
distributed.

III. PROBABILITY OF CONNECTIVITY 

In this section, we try to calculate the probability 
of connectivity for one-dimensional Vehicular Ad 

Hoc Networks where vehicle gap distribution is an 
exponential distribution.
3.1 Connectivity probability of case 1
Theorem 3 The probability of connectivity of the 
ith node and the jth node(j > i) is

 1 ( )cs j i
con gP F R −=                                                (5)

where R denotes the transmission range of radio.
Proof There are j — i gaps between the ith node 

and the jth node. The probability of the distance of 
any two adjacent nodes less than R is Fg(R). The 
conclusion is apparently derived.
3.2 Connectivity probability of case 2
Theorem 4 The probability of connectivity of the 
vehicles in the interval [0, L](L > 0) is:

1

2

1 ( )kk

con

k

k L jR
j L         

(6)

where u(x) is the unit step function.
Proof The probability of connectivity of the ve-

hicles in the interval [0, L](L > 0) is 
2

0
( )* ( )cs

con c
k

P P X k p k
∞

=

= =∑                              
(7)

where pc(k) is the probability of connectivity of k 
nodes located in the interval [0, L]. The position of 
these vehicles are uniformly distributed in the in-
terval (0, L] (see Theorem 2). This leads to pc(k)= 
pc(k, L, R) where pc(k, L, R) can be derived by sub-
stituting k, L, R into the formula (8) in paper [2]. 
So we get: 
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2cs

conP  is derived by substituting formula (8) into  
(7) and the proof is complete.
3.3 Connectivity probability of case 3
Theorem 5 The probability of connectivity of a 
fi xed node at point zero and the geographical point  
L(L > 0) is:

( ) ( ) ( ( 1) ) ( ( 1) )k k

k

L jR u L jR L j R u L j R
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where  x⎡ ⎤⎢ ⎥ is the least integer that is larger than x. 
Proof Defi ne 1i i iy x x+= −  as the distance of two 

adjacent nodes. Following the notation of [2-4] and 
using the subscript G for this case, let ( , , )GU n L R  
UG(n, L, R) and Un(L) be the volumes of the poly-
topes SG(n, L, R) and S(n, L).

                                                         (10)
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SG(n, L, R) describes all feasible sequences of 
inter-node distances for which Networks in case 3 
is connected. The probability that fixed node and 
the geographical point L are connected when there 
are n nodes in the networks is: 

( , , ) ( , , )( , , )
( )

!

G n
n

U n L R U n L RP n L R
LU L
n                  

(12)

Using the formula (20) in paper [3], we get:

                                                                       
(13)

0

( ) ( ) ( ( 1) ) ( ( 1) )n n

n

j

G

n

j

n

L jR u L jR L j R u L j R

U n L R
j

L

=

⎛ ⎞

− − − − + − +

⎜ ⎟
⎝ ⎠

∑

By substituting formula (13) into (12), pc(n, L, R) 
is derived. To ensure the connectivity of the fi xed 
nodes and the point L, there are at least 1L

R
⎡ ⎤ −⎢ ⎥⎢ ⎥

 nodes 
in the interval [0, L].

 3

1

( ) ( , , )cs
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∞
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= =∑
              

(14)

3cs
conP  is derived by substituting formula (12) into  

(14) and the proof is complete.

IV. DISCUSSION

In Figure 1 and Figure 2, 2cs
conP  and 3cs

conP  are plotted 

as a function of R/L for different values of 1/μ re-
spectively. Because the probability of connectivity 
of case 1 is simple and the analysis results tallies 
with the simulation perfectly, the results of case 1 
are not showed.

Note that 1/μ is the mean vehicle gap distance. 
In Figure 1, Figure 2, little 1/μ leads to large con-
nectivity probability. But in Figure 1 when R/
L<0.35 which means L is larger than R/0.35, little  
1/μ leads to more nodes gap and any gap distance 
larger than R leads to disconnectivity. Also in Fig-
ure 1, as R/L increase, the connectivity probability 
increase until reaching their peak value then drop. 
The reason for the probability connectivity in-
crease when R/L increase and before it reach their 
peak value is straightforward that large R/L means 
little L. The reason the curves decline after their 
peak value is little L means little node locate prob-
ability. In Figure 2, as R/L increase, L decrease. So 
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connectivity probability is increase. When R=L, 
the connectivity probability is 1 because node at 0 
can surely cover interval [0, R].

Since both the simulation and the analytical 
curves in Figure 1 and Figure 2 are close to each 
other in all the scenarios, we conclude that the 
analysis is fairly accurate. Although our simula-
tion and analysis scenario is Vehicular Ad Hoc 
Networks, our conclusions can also be applied in a 
one-dimensional Mobile Ad Hoc Networks where 
nodes uniform distributed based Theorems in Sec-
tion I. Our work can be used to networks planning 
to ensure the connectivity of the vehicle ad hoc 
networks. For 1/μ=200, 1/μ=300, 1/μ=400 respec-
tively, when R/L is 0.64, 0.55, 0.47, the connectiv-
ity probability reach their peak value 0.801, 0.699, 
0.629.

V. CONCLUSIONS

In this paper we analyze connectivity of one-
dimensional Vehicular Ad Hoc Networks where 
vehicle gap distribution can be approximated by an 
exponential distribution and our conclusions can 
also be applied in a one-dimensional Mobile Ad 
Hoc Networks where nodes uniform distributed. 
We will use the probability derived in this paper in 
routing strategy for our future works. 
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