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Abstract—Today web servers are ubiquitous having become
critical infrastructures of many organizations. However, they
are still one of the most vulnerable parts of organizations
infrastructure. Exploits are many times used by worms to
fast propagate across the full Internet being web servers one
of their main targets. New exploit techniques have arouse
in the last few years that have rendered useless traditional
IDS techniques based on signature identification. Exploits use
polymorphism (code encryption) and metamorphism (code
obfuscation) to evade detection from signature-based IDSs. In
this paper, we address precisely the topic of how to protect web
servers against zero-day (new), polymorphic, and metamorphic
malware embedded in data streams (requests) that target
web servers. We rely on a novel technique to detect harmful
binary code injection (i.e., exploits) in HTTP requests that
is more efficient than current techniques based on binary
code emulation or instrumentation of virtual engines. The
detection of exploits is done through sandbox processes. The
technique is complemented by another set of techniques such
as caching, and pooling, to reduce its cost to neglectable levels.
Our technique has little assumptions regarding the exploit
unlike previous approaches that assume the existence of sled
or getPC code, loops, read of the payload, writes to different
addresses, etc. The evaluation shows that caching is highly
effective and that the average latency introduced by our system
is neglectable.

I. INTRODUCTION

Today web servers are ubiquitous having become critical

infrastructures of many organizations. However, they are still

one of the most vulnerable parts of organization infrastruc-

ture mainly due to two reasons. First, they are open to any

Internet user. Second, web servers must accept sophisticated

requests with high degrees of variability due to implementa-

tions not fully compliant to RFCs regulating HTTP requests

that results in complex and vulnerable code. Web-based

vulnerabilities account for over 25% of all vulnerabilities

exploited in the period 1999-2005 [1]. Snort [2] a widely

used intrusion detection system (IDS), has more than one

third of the identified signatures devoted to detect web server

attacks [1]. These facts make the problem of securing web
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servers especially challenging even more taking into account

that web server attacks result in substantial financial losses.

Traditional techniques for intrusion detection systems

(IDS) are based on signature identification. Signature-based

detection relies on some organization (typically, an anti-

malware company) to detect the exploits (they are many

times used by worms to fast propagate within organizations

and across the full Internet) and characterizing them via sig-

natures. These signatures are then propagated periodically to

the IDSs that can then block the characterized attacks. Some

approaches aim at classifying network packets and limiting

their rate or discarding them when an anomalous situation

is detected. Both techniques are useless against zero-day

attacks that exploit unknown vulnerabilities. Due to this fact

no signature has been generated to detect them, neither any

security patch for the server is available. Therefore, web

servers using signature-based IDSs are vulnerable against

zero-day attacks.

In the scaling arms race of computer security, new exploits

have rendered useless traditional IDS techniques. These new

exploits are polymorphic and metamorphic evading detection

from IDSs. Polymorphic attacks encrypt their payload with

different keys to propagate each time as a different instance

complicating their signature based identification. However,

polymorphic attacks can still be captured with signatures

by focusing on the decoder and any other invariant parts

like sled vectors as done by Polygraph [3]. Metamorphic

attacks go beyond by using metamorphisms to obfuscate

code resulting in variants with no common subsequence of

bytes that can be characterized by a signature.

Polymorphism and metamorphism are techniques that are

complex but thanks to the availability of toolkits even hacker

apprentices are able to generate polymorphic attacks. Code

polymorphism has been used extensively by virus program-

mers to write polymorphic viruses. TPE and Mistfall [4] are

some known polymorphic engines used by virus program-

mers. Worm writers have also started using metamorphic

and polymorphic engines like ADMmutate [5], PHATBOT

[6], CLET [7], and JempiScodes [8]. Garbage and NOP

insertions, register shuffling, equivalent code substitution,

and encryption/decryption are some of the techniques used

to generate polymorphic and metamorphic malware.



Some recent techniques for network payload anomaly

detection have focused on discriminating regular network

traffic from malicious one by looking at the byte distri-

bution [1], [9]–[12]. However, new techniques are able

to encode polymorphic attacks to reflect the same byte

distribution as regular network traffic [13] therefore, they

become undetectable by such techniques that rely solely on

payload statistics. New techniques have been proposed to

deal with polymorphic and metamorphic attacks that rely

on static analysis [14]–[18]. Static analysis techniques can

be evaded by resorting to code obfuscation techniques (e.g.

self-modifying, overlapping code, obfuscated initializations,

etc.) Dynamic analysis based on binary code emulation [19]–

[24] avoids the evasion techniques for static analysis. Two

classes of approaches have been proposed: Emulation of

network packets as binary code and full server emulation.

In the first class, there are strong assumptions on the shape

of the exploit such as the existence of sled or getPC code,

loops, read of the payload, writes to different addresses, etc.

Additionally, binary code emulation is expensive and has to

be performed from all possible offsets. In the second class

of approaches, the emulation of the full server execution

although very accurate is very costly to be used by online

systems amenable of processing high loads.

In this paper, we address the issue of how to protect web

servers automatically against both zero-day, polymorphic

and metamorphic exploits embedded in the input data stream

(requests to the web server) that inject binary code to hijack

the web server control flow. The technique consists in using

sandbox processes that execute HTTP requests as if they

were binary code. Executing code by the CPU directly is or-

ders or magnitude more efficient than binary code emulation

whilst almost as effective. However, executing from every

offset is still expensive in computational terms. For this

reason, we complement the technique with another suite of

techniques that enable us to minimize the fraction of requests

that need to be analyzed, reducing the overall cost of the

analysis to neglectable levels making the technique quite

affordable. Another important contribution is the relaxation

of typical assumptions on the shape of exploits. Our main

assumption is the execution of a system call what is required

for most purposes for which attacks are performed such

as worm propagation, sending spam, destroying the system,

disclosing information in files, participating in a distributed

denial of service attack, executing a shell, etc. Our perfor-

mance evaluation shows that the average latency of requests

and the web server performance is barely affected.

The paper is structured as follows. Section II presents re-

lated work. Section III presents our proposed techniques and

PolyVaccine, the system implementing them. The accuracy

and performance of the proposed techniques are evaluated

in Section IV. We discuss the limitations of our approach in

Section V and present our conclusions in Section VI.

II. RELATED WORK

There are four main kinds of approaches to detect poly-

morphic exploits: signature based systems, anomaly detec-

tion, static analysis and dynamic analysis.

Signature-based systems generate “signatures” that char-

acterize common components in exploits. Snort [2] is a

popular IDS based on signatures. Unfortunately, it is hard

to keep updated the signature base. Signature-based systems

cannot deal with polymorphic and metamorphic exploits

since they cannot be characterized by signatures. Fnord [25]

is able to detect mutated sleds by searching for long se-

quences of one-byte NOP-equivalent instructions. However,

it is unable to detect advanced sleds such as trampoline

sleds [15]. Shield [26] uses transport layer filters to block

the traffic that exploits a known vulnerability. Therefore,

it is vulnerable to zero-day, polymorphic and metamorphic

exploits. Polygraph [3] generates signatures for polymorphic

and metamorphic exploits however, it is only able to deal

with early poor obfuscation techniques.

Anomaly-detection systems characterize legitimate traf-

fic in order to detect anomalies in the traffic that might lead

to potential attacks. Some systems monitor the payload of

network packets [9]. Others record the average frequency of

occurrences of each byte in the payload of a normal packet

[10]. In [1] the normal behavior of server-side components is

characterized and deviations from the established profile are

detected. Different models for detection of HTTP attacks

are proposed in [16]. Anomaly detection systems can be

evaded by transforming an attack instance into another one

so that the IDS is not able to recognize, for instance using

mutation techniques at the network [11] or application level

[12]. Several mutation toolkits are available (e.g., Whisker

[27], AGENT [28], and Fragroute [29]). Mimicry attacks

also evade anomaly IDSs [16], [30].

Static analysis of binary code in the network flow is also

used for the detection of unknown and polymorphic code. In

[14] a control flow graph is built and analyzed for potential

malicious activity (e.g., identifying loops, calls and jumps to

absolute addresses, interrupts and RETs combined with other

stack modifying instructions). STRIDE [15] detects poly-

morphic sleds used by buffer overflow attacks. Structural

analysis of binary code to find similarities between different

worm instances is performed in [16]. In [17] it is proposed

a semantic technique that aims at recognizing variants of

the same malware with the same signature. Static analysis

techniques can be evaded by code obfuscation techniques to

avoid accurate disassembly such as the use of register values,

self-modifying and overlapping code, use of context outside

the network message (e.g. bytes from the server code).

STILL [18] uses static analysis to detect polymorphic and

metamorphic exploits. It disassembles the input data stream

and generates a control flow graph. The main assumption is

that self-modifying (obfuscation) and indirect jump exploit



codes first acquire the absolute address of the payload. It also

assumes that registers are initialized by means of absolute

values (therefore, being vulnerable to register initialization

obfuscation). Our system does not disassemble neither is

based on these assumptions.

Dynamic analysis (aka emulation) either emulates bi-

nary code to detect potential exploits encoded in network

data or emulates server execution to detect actual exploits.

In [20] static analysis is used to locate the decryption routine

and a decryption loop. Then, emulation is used to avoid false

positives. Binary code emulation through all the potential

offsets of the received packet is done in [21].

Vigilante [19] uses binary rewriting to emulate the server

process execution. It performs dynamic data flow analysis.

If any data from the network either reaches the instruction

pointer, is executed or passed as parameter to a critical func-

tion, then Vigilante detects an exploit. Vigilante is highly

accurate, however emulating the full server is costly. DA-

CODA [22] emulates the full system. In [23] each network

packet is emulated from all possible offsets. They detect

polymorphic exploits by looking at the execution of some

form of getPC code followed by a number of payload reads

performed during emulation. The detection of polymorphic

code in [24] is based on the fact that the decryptor uses

individual arithmetic instructions with absolute values to

compute the decrypted shell code and push instructions to

write on the heap the decrypted shellcode. A polymorphic

exploit is detected if there are writes to different memory

addresses and a transfer of control to one of such modified

addresses.

PolyVaccine is able to detect efficiently zero-day, poly-

morphic and metamorphic exploits. The main differences

among the aforementioned techniques and PolyVaccine are

the following. With respect binary code emulation, firstly,

our approach is more efficient thanks to binary code exe-

cution versus emulation and the use of caching that avoids

most executions. Secondly, we have a single assumption on

the shape of the exploit: exploits perform a system call. With

respect full server emulation [19], [22], our approach mainly

differs in that is inexpensive and provides a similar accuracy

whilst full server emulation is too costly for an online system

that might have high loads.

III. POLYVACCINE

PolyVaccine is concerned with threats related to binary

code injection through HTTP requests and addresses zero-

day, polymorphic and metamorphic exploits. PolyVaccine

makes little assumptions on the shape/behavior of the exploit

unlike previous work that assumes the existence of sled or

getPC code, loops, read of the payload, writes to different

addresses, self-contained exploits, etc. PolyVaccine only

assumes that the exploit will inject and activate bynary code

that performs a system call. PolyVaccine does not address

non-binary code injection exploits (using script languages

or SQL statements) or exploits that do not perform system

calls. This is a requirement for the purpose of most exploits

such as worm propagation, disclosing private information,

participating in denial of service attacks, and sending spam

require invoking system calls to send messages, destroy the

attacked system requires invoking system calls to delete files,

executing a shell requires invoking the exec system call,

and so on. The only kind of attack that is not considered

is the one that modifies the behavior of the web server

either stopping it or modifying its operation. Stopping its

operation can be dealt with as a crash (e.g. rebooting) since

without invoking system operations the attack cannot persist.

Modifying web server operation it is extremely complex

and typically will not work on different web servers with

different contents. In general modifying the system operation

is done modifying files what requires invoking system calls.

A. Detecting Binary Code Injection

Our solution aims at having a high accuracy level with low

computational cost. It is based on the use of sandbox pro-

cesses where HTTP requests are executed to identify harmful

binary code. A pool of processes (sandbox processes) is

created with an image of the web server. The technique

for detecting potentially harmful binary code injection is

achieved by using one of the sandbox processes in which

the HTTP request is copied into its memory. Then, control

is transferred to the first byte of the HTTP request. We

transfer the control by means of Process Trace (ptrace)

that intercepts system calls. If the execution has resulted

in a system call, the HTTP request is potentially harmful,

since it corresponds to executable binary code that ends

up invoking an operating system call. In order to provide

the HTTP request with the context it would find in a real

setting, the image of the sandbox processes includes the web

server code, register values after request reception, and the

HTTP request is injected into the corresponding buffer of

the web server. The monitored execution via ptrace [31]

has an overhead of 50% in processes that make syscalls.

However, in our case syscalls are the exception, so the main

overhead is due to process switching between the tracing and

traced processes. In [32] it is proposed a more performant

alternative to ptrace that reduces the overhead by tracing

process on the kernel thus reducing the tracing overhead.

We are currently evaluating it.

Since we do not assume that the injected code uses some

form of GetPC code, we treat the HTTP request as a piece

of code that can start execution at any point of the request.

That is, there is no knowledge at which point the potentially

malicious exploit will hijack the control, and therefore,

control to the sandbox process is transferred iteratively to the

different offsets from 0 to the length of the HTTP request.

In this way, we check all the possible starting points for

the injected code. Iterating the execution along all offsets

is expensive. In the following section we present a caching



technique that enables us to drastically reduce the number

of times a request is executed.

In PolyVaccine regular exploits (non-polymorphic ones)

are detected like in Snort and other IDS. It looks for 80cd

bytes that match the interruption 80 used by system calls.

In our evaluation we have only found 38 segments with that

byte. These occurrences correspond to POST operations.

B. Reducing Detection Cost: Caching and Pooling

In order to reduce the cost of the detection we take

advantage of the observation that most HTTP requests (typi-

cally all, when no attack is being performed) are legitimate.

Additionally, HTTP requests over a particular web server

have many redundancies among them when observed as

a whole. The basic idea is that an HTTP request that

has already been analyzed does not need to be analyzed

again. Therefore, a cache has been implemented in which

previously analyzed HTTP requests are cached to avoid

analyzing (executing) them again. In this way it becomes

possible to drastically reduce the detection cost.

One issue with HTTP requests is that sometimes they

are similar (they have many fields that are the same) but

not exactly the same what could hinder the effectiveness of

caching. For this reason, HTTP requests are parsed and split

into fields, and instead of caching whole requests, individual

fields are cached.

Although caching can be very effective, creating a sand-

box process for executing each iteration of the detection can

be too expensive. For this reason caching is complemented

by means of sandbox process pooling and reuse. Basically,

our detection system creates a pool of sandbox processes

with the corresponding web server image. For each iteration,

a sandbox process is used 1. After injecting an HTTP request

and setting the register values the control is transferred to a

particular offset of the HTTP request. The sandbox process

memory image is regenerated with the web server image to

enable its reuse. Since in many executions illegal instructions

are executed or memory access violations are produced, in

order to avoid the death of the sandbox process, a signal

handler is associated to it that handles all signals. This

enables to catch the signal and resume the execution from

a different offset. In order to deal with infinite or very-

long loops the execution is limited by a timeout (currently 2

seconds). The sandbox process can be killed if the timeout

expires, in which case, a new one is created to maintain the

pool with the target number of processes and avoid potential

delays waiting for the sandbox process creation.

C. Dealing with Non-Cacheable Fields

Some HTTP request fields have singular values or values

that are different for each client. This renders caching

ineffective to deal with these fields. If the fields are rare,

1The pool enables parallel execution of the detection iterations what
enables to exploit the power of current multi-cores.

then there is no important overhead associated to them.

Unfortunately, some of these fields are heavily used, such

as Cookie. Therefore, it is necessary to deal efficiently with

these fields. Cookies consist of a list of subfields. Therefore,

they are like small HTTP requests that can be split into

subfields. Many of these subfields are widely used and they

have a particular format such as hash keys of fixed length.

Other subfields have values that are repeated over requests

and are therefore cacheable.

For those subfields with singular or per-client unique

values with particular format (e.g. PHPIDSESS is a 32-

character hexadecimal string) PolyVaccine checks their cor-

rectness in terms of length and format. If so, it is known that

the subfield cannot exploit any vulnerability and therefore,

there is no need to analyze it. PolyVaccine implements a

simple and very robust parser (not vulnerable to overflows

or other kind of binary code injection) for checking the

correctness of fields and/or subfields. If a subfield passes

the check, then it is harmless and simply disregarded for

the detection analysis. Otherwise, it is considered potentially

harmful and is analyzed to check whether it carries binary

code. With this specific technique, PolyVaccine is able to

deal with cookies and other uncacheable fields in an efficient

way.

One could consider that cookie fields could be simply

disregarded for the detection analysis since they cannot

carry an exploit without the use of other fields. However,

as we show in Fig. 1, a cookie can be designed to exploit

a vulnerability without the need of any other field. This

particular cookie, that we term poisoned cookie, has been

designed by us and has been morphed with ADMmutate

toolkit. The cookie field phpbb2mysql_data contains

the sled vector and a jump to the decryptor stored in the

field PHPSESSID. The decryptor code is split between

PHPSESSID and _utma fields. So, there is a jump from the

last position in PHPSESSID to the beginning of the _utma

field. The shellcode itself is encoded and stored at the

_utmc. The decryptor, once it has decoded the shellcode,

transfers the control to it.

Therefore, cookies and any other fields with singular

values should be analyzed as any other field to detect

potential attacks. PolyVaccine records the offsets that need to

be tried for those subfields that are potentially harmful, that

is, those that they are unknown or do not fulfill the length

and/or format requirements. Then, the sandbox process is

provided with the full contents of the HTTP request and

the control is transferred iteratively to execute from all the

offsets corresponding to the identified subfields.

D. Dealing with Non-Compliant Requests

There are a number of requests that do not fully fulfill

the HTTP standard requirements [33]. In some cases, the

reason is that firewalls hide information sent by clients from

some organizations, such as the address and name of proxies.



GET /realpath/index.php?page HTTP/1.1

Host: www.somehost.com

User-Agent: Mozila/5.0

Accept: text/html, application/xhtml+xml

Accept-Languaje; en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8

Keep-Alive:300

Cookie: phpbb2mysql_data=                                                ;PHPSESSID=          

__utma=                                                             ;__utmc=

Polymorphic Code Jmp offset

Encrypted Shellcode

Nop Sled    Jmp offset

Polymorphic Code Jmp offset

Figure 1. Cookie exploit

In some other cases, there are customizations from some

browsers that do not fully comply with the RFC for HTTP

requests. PolyVaccine has been enhanced to deal with these

kinds of requests not conformant to the standard but widely

accepted by web servers.

E. Cache Poisoning

Caching is very effective in reducing the cost of exploit

detection. However, it also introduces problems that need to

be addressed. Caching on a per field basis is susceptible

to be poisoned by an attack customized to our system.

A polymorphic attack might first send an HTTP request

with a field containing the decryptor and the sled vector

of the attack, while the rest of the HTTP request is fine.

Then, in a second HTTP request, the whole attack would

be sent containing the decryptor, the sled vector, and the

encrypted shellcode with the exploit (e.g. a buffer overflow).

With the first request, the decryptor would simply not work

since the shellcode is not present and no system call would

be produced. Therefore, the field containing it would be

considered harmless and cached. The same happens with

the sled vector. The HTTP request would be forwarded

to the web server causing no harm. Upon receiving the

second request, PolyVaccine would analyze the request by

trying to execute it from the offsets of the fields containing

new data, including the one containing the shellcode. The

execution of the shellcode would not yield anything sensible,

since it is encrypted, and no system call would be detected.

When the request is forwarded to the web server, the exploit

would take effect and now the execution of the sled vector

and decryptor will result in decrypting the shellcode and

executing it successfully.

This means that the cache should be protected from being

poisoned. Otherwise the proposed method would expose the

aforementioned vulnerability. There are different approaches

in which cache poisoning can be avoided. The first one

consists in having trusted clients (e.g. web spiders that peri-

odically traverse the web contents or well-known clients). In

order to keep caching effective, all requests are considered

for request frequency, but only the fields corresponding to

web requests that have also been sent from trusted clients

are cached.
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Figure 2. PolyVaccine distributed architecture

The second approach to deal with cache poisoning builds

upon the analysis of which cached fields with binary code

can be later be composed with new fields in order to produce

an exploit. The issue is that a field containing binary code

that can be composed later with another binary code in other

fields necessarily needs to use either indirections or obtain

the program counter. This is because it will either need

to jump to the binary code contained in other field or to

self-modify the bytes following its field. In both cases, an

indirection is needed (access to a memory position contained

in a register or memory address). It turns out that the

bytes corresponding to the x86 instructions with indirect

addressing seldom appear in HTTP requests. A cached field

can only be harmful if it contains bytes corresponding to

instructions with indirections, so we can simply not cache

them. Since their occurrence its low it does not have a big

impact in the performance of caching.

F. Distributed Architecture

The distributed architecture of PolyVaccine is depicted in

Fig. 2. The system has the following major components: the

protection engine, the HTTP cache, and the detection engine.

Each component can be deployed on a different node. In

particular, multiple nodes with instances of the detection

engine can be used to parallelize the detection activity.

The protection engine includes the network frontend and

backend. The network frontend and backend of our system

implement a push firewall authorization subsystem based

on netfilter Linux architecture [34]. The network frontend

stores all incoming TCP packets. All TCP packets related

to one message but the last one are allowed to pass to the

web server. Since it is the reception of the last packet what

triggers the delivery of the message from the network layer



to the web server, the attack, if detected, can be avoided

by simply dropping the last TCP packet of the message.

The network frontend consists of a simple network queue

in which every incoming TCP packet is queued awaiting

to be defragmented an analyzed by the detection engine.

Depending on the detection engine verdict, the packet is

forwarded to the web server or dropped. The frontend is in

charge of performing network packet assembly before it is

processed by the cache and protection engine.

The HTTP cache is where fields from HTTP requests are

stored. Every incoming request is parsed and split into fields.

Each field is searched in the cache. If it is in the cache,

the field is considered harmless by itself, so, the offsets

corresponding to it will not be executed by the sandbox

process (in the detection engine). If a field is not in the

cache, then its offsets will be recorded to be executed by the

detection engine. The whole HTTP request is then passed

to the detection engine indicating the set of offsets that are

safe (corresponding to cached fields) and the set of offsets

that are not safe (corresponding to non-cached fields).

The detection engine maintains a pool of sandbox pro-

cesses and receives HTTP requests together with a set of

unsafe offsets that should be analyzed. For each offset to

be tried, the detection engine copies the request to one of

the sandbox processes (they already contain an image of the

web server process) in the memory position corresponding

to a web server buffer. The processes are run under the

control of Process Trace (ptrace) utility from Linux. Ptrace

enables a parent process to observe and control the execution

of a child process. In particular, it enables to intercept

all the operating system calls. We use this functionality

to detect potentially harmful actions. In Linux, sending

network messages, accessing the disk, etc. requires invoking

operating system calls and this is how we detect potentially

harmful activity. Then, control is transferred through ptrace

to the process to start execution from the given offset.

When the control is returned to the protection engine, it

checks whether it was finalized due to an intercepted system

call or by a different reason (i.e. illegal instruction). If a

system call was performed, an exploit has been detected

and the HTTP request is dropped (the corresponding TCP

packets). Otherwise, the HTTP request is marked as safe.

The detection engine informs about the verdict to the cache

and network backend. The network backend extracts the

request from the queue and forwards it to the web server

for being processed.

If the HTTP request is safe, to avoid poisoning the cache,

those HTTP fields in the request that were not already in the

cache are checked for bytes corresponding to instructions

with indirections. If they contain any, then the field is not

cached, otherwise is registered in the cache.

G. Pseudocode of the Detection Engine

As aforementioned the detection engine is in charge of

taking each request and executing it from those offsets

considered unsafe (those that have not been cached). There

might be multiple instances of the detection engine in

different nodes to enable parallel detection processing. Each

instance of the detection engine is materialized as a process

with a pool of children sandbox processes. The detection

process orchestrates the execution. Each sandbox process has

a memory image of the web server code. When a request is

received to be analyzed it has associated a set of offsets from

which it should be executed. The detection engine proceeds

as follows for each offset:

1) A segment is created via mmap with the following

information: The codes for register initialization, the

code of a jump to the corresponding offset, the mem-

ory image of the request, the code to raise a Unix

signal to avoid termination of the sandbox process and

enable its reuse.

2) Sets a timer for limiting the maximum execution time

of the sandbox process to avoid infinite or long loops.

3) A signal handler for all Unix signals is associated to

the sandbox process. Then, control is transferred to

the sandbox process by means of ptrace.

4) The execution of the sandbox process is stopped either

by a system call (intercepted by ptrace), by a Unix sig-

nal (due to illegal instructions, illegal memory access,

etc.; to guarantee this even for successful executions,

a Unix signal is raised after the request is executed),

or it is killed if the timer goes off.

5) If the sandbox process execution is stopped by ptrace

due to a system call, the request is considered harmful

and reported to the protection engine and no more

executions are made.

6) If the sandbox process execution is stopped by a

signal, the signal handler catches it avoiding the death

of the sandbox process, and resumes its execution from

the next offset to be tried. If all offsets have been tried

without a system call then the request is reported as

safe to the protection engine. The web server memory

image is restored in the sandbox process.

7) If the sandbox process is terminated by the watchdog,

a new sandbox process is created with the correspond-

ing web server memory image.

IV. EVALUATION

A. Evaluation Setup

The goal of the evaluation is to measure the overhead

and the accuracy of PolyVaccine. For this purpose a series

of experiments were run including the evaluation of Poly-

Vaccine accuracy with real traffic and PolyVaccine overhead

with web server industrial benchmark (an Internet book

seller). The web server was run on one node and the three
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Figure 3. Execution time for unoptimized and optimized sandboxes

components of PolyVaccine were run on another node. Both

nodes were an Intel core duo 3.1 GHz, 2 GB RAM running

Ubuntu 8.

B. Detection Cost

The first experiment aims at quantifying the computational

cost of PolyVaccine depending on the size of the HTTP re-

quest to be evaluated. Firstly, we show the detection analysis

cost without optimizations. The cost incurred corresponds to

the fork of the sandbox process, copy of the server code and

HTTP request, and executing it with ptrace till it completes

execution, a system call is intercepted, a Unix signal is

raised, or the timeout goes off. The experiment has used

requests extracted from the traces of real traffic with the

closest size (in excess) to the one to be evaluated and then

truncated to the actual size of the experiment.

As it can be seen in Fig. 3 (top line), the cost for executing

a request from all offsets is reasonable ranging between 3

and 7 seconds for HTTP requests between 500 and 1000

bytes long. However, this time is still high for an online

detection system. For this reason the detection process was

optimized via pooling in which the sandbox processes are

reused and only the memory image is transferred (avoiding

in this way process forking). Fig. 3 (bottom line) shows

the detection times for the optimized sandbox processes. As

it can be seen the optimization results in huge savings of

computational cost. The range of 3-7 seconds is reduced

to a range of 40-70 milliseconds, that is, a reduction of

two orders of magnitude. This makes the detection process

amenable of being used in an online detection system.

C. Detection Effectiveness

In order to evaluate the detection effectiveness we have

used three kinds of exploits: non-polymorphic, polymorphic,

and custom. The custom exploit is an exploit we have created

that is encoded in single field, the cookie field. This exploit

is specifically targeted for our system and therefore more

harmful for it than any other polymorphic exploits. Table

I summarizes the different kinds of exploits that we have

used to evaluate the accuracy of PolyVaccine. In the case of

Toolkit # instances

ADMmutate 26.733

CLET 3000

Metasploit 12 encoders*5 instances

Table I
TOOLKITS AND NUMBER OF INSTANCES USED

Trace # tcp #tcp observed
size segments connections period

hours:min

948Mb 47.536 12.654 1:22

4,8 Gb 105.405 25.888 6:00

4,9 Gb 16.879 5.722 7:30

6,6 Gb 133.750 41.217 7:00

1,2 Gb 49.807 16.575 7:40

1,4 Gb 61.013 19.848 7:00

5,3 Gb 271.080 91.255 48:00

Table II
ANALYZED TRAFFIC

polymorphic exploits we used some of the most well-known

toolkits for mutating exploits such as ADMmutate [5], Clet

[7] and Metasploit [35] for generating a high number of

different instances of some known exploits. In the case

of Metasploit we used the 12 different encoders provided

with it and codify the “peercast url” exploit. We also used

more than 25,000 worms generated by ADMmutate and

3,000 worms generated by Clet. The custom exploit is the

“poisoned cookie” we designed and explained earlier in

the paper (Section III-C). All exploits without exception

were successfully detected (100% of true positives) by

our detection engine. This means that our detection engine

exhibits a high accuracy as dynamic analysis approaches do.

In order to evaluate the false positive rate we evaluated

real traffic from a set of commercial web servers hosted

at a large Internet provider2. Four traces were analyzed

corresponding to different days and time intervals. Table

II summarizes the size and time span of the traces. As it

can be seen a total of 25.1 GB of traffic were analyzed

corresponding to 84 hours of real traffic. The number of

false positives was null in all the traces. This means that

the technique is highly effective in avoiding false positives

what is crucial for its applicability, since they lead to the

rejection of legitimate HTTP requests.

D. Profiling of Detection Finalization Causes

In this experiment we profile the different termination

causes of the execution of a sandbox process. The profiling

is done for the largest trace of real traffic. Fig. 4 depicts the

results of the profiling. In most cases, 78%, the execution

of the detection process terminates due to the execution

of an invalid CPU instruction. Still, there is significant

2For anonymity reasons we cannot provide the name of the web servers.
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Figure 5. Cache failure ratio for increasing cache sizes

number of correct executions, 19%, despite they correspond

to legitimate HTTP requests. This result is quite surprising

and contradicts the existing assumption that legitimate HTTP

requests would rarely yield to executable code. Finally,

there is a small percentage of executions that end due to

other causes such as floating exceptions, erroneous access

to buses, the rest of Unix signals captured by ptrace, and

timeouts (e.g. due to infinite or very long loops). The

percentage of timeouts is extremely low, below 0.003%

out of all the executions. This is important since timeouts

have a high cost in our system (they involve killing a

sandbox process and then creating a new one).

E. Cache Effectiveness

This experiment aims at measuring the effectiveness of the

cache and quantifying the required size for real web traffic.

We used the traces from the real web servers to perform this

evaluation. Real traffic, unlike simulated traffic, can show

what is the expected performance of our caching mechanism

in a real deployment. In Fig. 5 we show the results for the

largest traffic trace. The results for the other traces were

similar so they are not shown. As it can be seen the cache

failure ratio is quite low, lying between 8.5% and 10.75%.

With a small cache of 50 MB, the hit ratio of the cache is

already 91% (i.e. 100-9). This means that the caching is very

effective and avoids the execution of a large percentage of

the requests. We examined the cases where fields were not

cached. It turned out that most of them could result in cache

hits by doing a more intelligent string matching resulting in

a cache hit rate over 98%.
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Figure 6. TPC-W Benchmark. Latency introduced by PolyVaccine.

F. Performance Overhead in a Real Deployment

This experiment targets to measure the overhead that our

detection system would introduce in a real setting. For this

purpose, we have deployed a web server running TPC-W

[36]. TPC-W is a transactional web benchmark based on

an Internet bookstore. We use the shopping mix workload

(default workload) that consists of 20% of buy transactions

and 80% of browse transactions. Emulated browsers (EBs)

emulate users with separate connections and simulate the

same HTTP network traffic as would be seen by a real

customer using a browser.

In this experiment PolyVaccine runs on one site, config-

ured as in the previous experiments, and we have used two

additional sites: one for running the clients that inject the

load and another one for running the web server. The latter

is an Intel core duo 3GHz, 1 GB RAM, running Ubuntu

8, Apache 2.0, MySQL 5.0, and a PHP implementation

of TPC-W (http://pgfoundry.org/projects/tpc-w-php). Clients

run on a Pentium 1.2 GHz, 256 Mb RAM.

Figure 6 shows the results for increasing loads (i.e.

as number of concurrent emulated browsers). The results

measure the average introduced latency by our detection

system. This average latency measures the time since a tcp

message is defragmented (the last tcp segment has been

received) till the verdict is given by the detection engine

(at that point, if it is positive the tcp segment is forwarded

to the web server). The curve “all requests” shows the

average latency introduced for all requests. The overhead

introduced by our system is neglectable, around 22 ms, since

the average response time for a TPC-W web request in our

experimental setup is 6.8 seconds. We also show the results

split among the requests for which all fields are cached, and

the requests for which at least one field is not cached and the

detection engine has to analyze the http request. The curve

“cached requests” shows the average time for the former

case and the curve “uncached requests” shows the time for

the latter case. Cached requests are processed extremely fast,

in 12 microseconds. Non-cached requests, since they involve

running the detection analysis, are most costly, 30 ms (note

that in most cases many fields of the request are cached, so



not all the offsets need to be analyzed), but still neglectable

when compared to the end-to-end latency of web requests.

V. LIMITATIONS

In the presented approach we have only considered the

HTTP protocol in PolyVaccine. Since web-based vulnera-

bilities are a large fraction of all vulnerabilities exploited

(25% during 1999-2005 and over 1/3 of snort filters [1]) this

means that we have focused in a relevant problem. In any

case the proposed system can be extended to other protocols

amenable to caching, such as SOAP. PolyVaccine targets

unix/linux systems based on x86 processors. Addressing

the unix/linux platform for web servers is important since

around 70% of the market share (according to the Nov.

2008 Netcraft web server survey, http://news.netcraft.com)

corresponds to this platform. Polyvaccine can be easily

extended to other CPU architectures. The only dependency

on the CPU lies in the identification of CPU instructions

corresponding to indirections that can be easily done for

any CPU instruction set.

There is a particular kind of attacks that is not considered,

namely those attacks that do not result in invoking system

calls. This kind of attacks, as explained in detail in Section

III, is not as harmful as those performing system calls. Most

harmful actions such as destroying part of the system, prop-

agating to other servers, participating in a distributed denial

of service attack, disclosing private information, executing

a shell, propagating spam, etc. require performing system

calls. An attack could just change the web pages replied

to clients or stop the server operation. The former attack

would be highly complex and possibly only work for a

particular web server. The latter could be dealt with as a

server crash since the effect of the attack will not persist

after a reboot (otherwise, it would have to modify files and

therefore invoking system calls).

VI. CONCLUSIONS

In this paper we have described PolyVaccine, a system for

protecting web servers against day-zero, polymorphic and

metamorphic exploits. PolyVaccine executes HTTP requests

as if they were binary code and finds out whether the execu-

tion results in invoking system calls. PolyVaccine does not

pose any other assumptions on the exploit, like the existence

of GetPC code, heavy reads of the payload, etc. Its overhead,

as demonstrated in the evaluation, is neglectable thanks to

the effectiveness of caching and sandbox process pooling.

The proposed approach is an alternative to code emulation

that is computationally significantly more expensive whilst

offering a similar degree of accuracy.
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