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and Francesc D. Muñoz-Escóı1
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Abstract. This paper proposes new protocols for the interconnection of
FIFO- and causal-ordered broadcast systems, thus increasing their scal-
ability. They use several interconnection links between systems, which
avoids bottleneck problems due to the network traffic, since messages
are not forced to go throughout a single link but instead through the
several links we establish. General architectures to interconnect FIFO-
and causal-ordered systems are proposed. Failure management is also
discussed and a performance analysis is given, detailing the benefits in-
troduced by these interconnection approaches that are able to easily
increase the resulting interconnection bandwidth.

1 Introduction

There have been multiple papers [1,2,3,4,5,6] that had devoted their attention
to the interconnection of message broadcast systems. Some of them [1,2,3,4,5]
were focused on causal-ordered systems, thus reducing both the size of the vector
clocks [7] being used in the broadcast protocols and the amount of needed mes-
sages (since smaller groups were used). Most of them have relied on either FIFO
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interconnection links [1,3,5] or on causal broadcast among the interconnection
servers [2].

The aim of such solutions is to enhance the scalability of the resulting broad-
cast mechanisms. Such scalability might be needed in different current dis-
tributed applications, like P2P applications or the data centres being used to
implement cloud computing systems.

Other scalability efforts have been focused on other aspects of causal commu-
nication, introducing some principles that have guided the design of the intercon-
nection solutions. One example is the usage of causal separators [8] that divide
the global system into causal zones (i.e., subgroups) and reduce the size of the
vector clocks needed for guaranteeing causal delivery. Another example is the
solution described in [9], that also interconnects previously existing systems and
ensures causal delivery, but without requiring that all messages were broadcast;
i.e., point-to-point communication among different systems is also considered.
To this end, such global system also relies on a set of causal servers, each one
from a different local system, and using vector clocks to ensure causal delivery in
such set of servers, whilst system-local communication does only rely on linear
logical clocks or on physical synchronisation.

Similar efforts can be found in order to interconnect FIFO-ordered systems
[3,6], although in such case the interconnection is almost trivial, since it only
depends on local information from the sender node.

However none of such papers has proposed any technique for increasing the
usable bandwidth of such interconnecting protocols, implementing some tech-
nique for using simultaneously several interconnecting channels able to transmit
multiple messages in parallel. Note that in most cases, each broadcast system is
deployed over a very fast LAN, whilst the interconnecting links are far slower. In
the common case, we might assume that such solution could be provided by the
network layer, using multiple paths between each pair of interconnected servers,
and selecting an appropriate path per message in order to avoid congestion. But
this cannot be assumed in all scenarios. For instance, the set of data centres in
a cloud computing environment might use dedicated inter-centre channels; i.e.,
there will be a single path between each pair of centres. Thus, we do not obtain
any bandwidth improvement trying to set up multiple paths in such scenario.
So, in some cases, a transport or application-level parallelisation of these inter-
connections might enhance the overall system performance. This paper scans
this alternative, providing interesting results.

The rest of the paper is organised as follows. In Section 2, we introduce our
framework for the interconnection of message-passing systems. In Section 3, we
show how to interconnect FIFO-ordered systems by using several interconnection
links between systems. In Section 4, we introduce the architecture with which
interconnect FIFO-ordered systems. Sections 5 and 6 repeat the same for causal-
ordered systems, whilst Section 7 describes how process failures can be managed.
Finally, Section 8 provides a performance analysis and in Section 9, we present
some concluding remarks.
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2 Model

In this paper, we use a model similar to the one in [6]. From a physical point of
view, we consider asynchronous distributed systems made up of a set of nodes
connected by a communication network. The logical system we consider consists
of processes (executed in the nodes of the system) which interact by exchanging
messages with one another (using the communication network). The interface
between the processes and the network has two types of events [10]: by using
bc-send i(m), process i broadcasts the message m to all processes of the system.
Similarly, by using bc-recv i(m), process i receives the message m.

Network

application
process

application
process

application
process

application
process

application
process process

application

Interconnection System

Network Network

Broadcast
Service

process
IS IS

process

Broadcast
Service

BroadcastLocal

Service

Local Local Local
Broadcast Broadcast Broadcast

Service Service Service

Fig. 1. Interconnection System

Failures may arise in these systems. Thus, processes may fail by crashing
[11], but communication channels are assumed reliable; i.e., although temporary
communication failures may arise, messages are eventually delivered to their
destinations, except when such nodes fail. Additionally, all broadcast primitives
described in this paper are assumed uniform in the sense described in [11];
i.e., the delivery orders are the uniform FIFO order and uniform causal order
defined in [11, page 109]. This allows a simple failure management, as described
in Section 7.

The basic broadcast service specification for n processes consists of sequences
of bc-send i and bc-recv i events, 0 ≤ i ≤ n − 1. In these sequences, each
bc-recv i(m) event is mapped to an earlier bc-send j(m) event, every message
received was previously sent, and every message that is sent is received once and
only once in each process. For the sake of simplicity, we also assume that any
given message is sent once, at the most. This assumption does not introduce any
new restriction, since it can be forced by associating a (bounded) timestamp
with every send operation [12].

Following, we define FIFO-ordered systems, according to the ordering require-
ments of the broadcast services they implement.

Definition 1. We say that a system is FIFO-ordered if, for all messages m1

and m2 and all processes pi and pj, if pi sends m1 before it sends m2, then m2

is not received at pj before m1.

The definition of causally ordered systems requires us to firstly introduce the
happens-before (denoted with →) relation [13] between messages. The important
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property of the happens-before relation is that it completely characterises the
causality relations between messages.

Given a sequence of bc-send i and bc-recv i events, 0 ≤ i ≤ n − 1, message m1

is said to happen-before message m2 if either:

1. The bc-recv i event for m1 happens before the bc-send i event for m2.
2. m1 and m2 are sent by the same process and m1 is sent before m2.

Now, we define a causally ordered system as follows.

Definition 2. We say that a system is causally ordered if for all messages m1

and m2 and every process pi, if m1 happens-before m2, then m2 is not received
at pi before m1 is.

We consider systems in which each message sent must eventually be received in
every process of the system. This is a very natural property (usually known as
Liveness) which is preserved by every system that we have found in the literature.
In our terminology it means that for each bc-send i(m) event, a bc-recv j(m) event
will eventually occur for every process j in the system.

Now, we define what we understand by properly interconnecting several
equally ordered systems. Roughly speaking, this consists in interconnecting these
systems (without modifying any of them) by using an interconnection system
(denoted IS ), so that the resulting system behaves as a single one and pre-
serves the same ordering. Such an interconnection system is made up of a set of
interconnecting system processes (denoted IS processes) that execute some dis-
tributed algorithm or protocol. Each of these processes receives all the messages
broadcast in its system and can itself broadcast new messages received from
the interconnection link, but it cannot generate and broadcast new messages on
its own. More specifically, a value broadcast by an application process in some
system can only be received by an application process in another system if the
interconnecting process of the latter system broadcasts it. The interconnecting
processes can communicate among themselves via message passing. However,
they cannot interfere with the protocol in their original local message-passing
system in any way. Figure 1 presents an example of an IS interconnecting two
systems with the above-mentioned architecture and two IS processes.

3 Interconnection of FIFO-Ordered Systems

By using the model introduced in the previous section, [6] provided a simple
protocol to properly interconnect FIFO-ordered systems. However, the aim of
such a protocol was not focused on having a very efficient protocol, but on
proving that it is in fact possible to interconnect FIFO systems. Therefore, to
interconnect any pair of systems, the protocol used two IS processes. Clearly, this
could generate bottleneck problems, since all messages must pass throughout the
single link formed by this pair of IS processes. Thus, this raised the question as
to whether it is possible or not to use several IS processes per interconnected
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system. In this section, we provide an interconnecting protocol for FIFO-ordered
systems that uses several IS processes in each system.

First, we consider the case when there are only two systems. Later, we will
consider the case of several systems. Let us denote each of the FIFO ordered
systems as Sk (with k ∈ {0, 1}). The interconnecting protocol consists of several
processes, denoted ispk

v (with k ∈ {0, 1} and v denoting the IS process within
system Sk), that are part of each of the two systems. Each such ispk

v process is
responsible for propagating to S1−k all messages being broadcast by any process
in setw(ispk

v). Such transfer set setw(ispk
v) includes the set of processes in Sk

whose messages should be propagated to a different IS process in S1−k, where
subindex w denotes the set number within ispk

v. For instance, in Fig. 3, isp1
2

has two associated transfer sets. Thus, set1(isp1
2) is connected to isp0

2, whilst
set2(isp1

2) is connected to isp0
3. Note that the number of IS processes may be

different in S0 and in S1.
These interconnecting processes are only in charge of the interconnecting pro-

tocol. It is worthwhile remarking that each ispk
v is part of the system Sk and,

for that reason, can use the communication system implemented in Sk. Note
also that the introduction of those processes does not require any modification
of the original systems. We consider that the set of processes in the resulting
system ST includes all the processes in S0 and S1, with the exception of the IS
processes, which are only used to interconnect S0 and S1.

Each ispk
v process executes two concurrent atomic tasks, namely Propagate

out(ispk
v , m) and Propagate in(ispk

v , m) (atomicity is needed in order to avoid
race conditions).

– Propagate out(ispk
v, m) transfers the message m issued by a process in

setw(ispk
v) to Sk (we use k to denote 1 − k). Each process in system Sk

(except for the IS processes) must be included in one transfer set (associ-
ated with only one IS process). Furthermore, the transfer of messages from
processes in setw(ispk

v) is performed to a single IS process in Sk, denoted
linkw(ispk

v). However, an IS process may transfer messages to many IS pro-
cesses and receive transfers from many of them, but they are not necessarily
the same.
Both setw(ispk

v) and linkw(ispk
v) are set up prior to running the protocol.

– Propagate in(ispk
v , m) forwards the messages received from Sk to within

Sk. Note that when ispk
v receives a transfer, it performs the broadcast to

the whole set of processes in system Sk, regardless of the transfer sets these
processes belong to.

Fig. 2 shows the implementation of the Propagate out(ispk
v, m) and Propagate

in(ispk
v , m) tasks.

It must be noted that the link between pairs of IS processes, one in each
system, needs to be FIFO-ordered. Figure 3 shows an illustrative example of
how transfer links are established between two interconnected FIFO systems.
Each IS process ispk

v is in charge of transferring the messages issued by processes
in setw(ispk

v) to system Sk. There are three IS processes in system S0 and two
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Propagate out(ispk
v , m) :: task which is Propagate in(ispk

v , m) :: task which is
activated once bc-recv ispk

v
(m) is executed activated immediately after message

begin m is received from Sk

if m was sent by a process in setw(ispk
v) begin

then transfer m to linkw(ispk
v) bc-send ispk

v
(m)

end end

Fig. 2. The interconnecting protocol in ispk
v
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Fig. 3. Example of the interconnecting protocol for two systems

IS processes in system S1. Both isp0
1 and isp0

2 transfer messages to isp1
1, and

isp0
3 transfers messages to isp1

2. In turn, isp1
1 transfers messages to isp0

1 and isp1
2

transfers messages both to isp0
2 and isp0

3.
The following theorem shows that the system ST , obtained by connecting any

two FIFO-ordered systems S0 and S1 by using the above-mentioned intercon-
necting protocol, is also FIFO ordered.

Theorem 1. Any two FIFO-ordered systems can be properly interconnected by
using the protocol in Fig. 2.

Proof. By contradiction. Assume there are two messages, m1 and m2, sent in
that order by, say, process pi in system S0. Now, assume they are received by,
say, process pj in system S1 in the reverse order.

Since S1 is a FIFO-ordered system, m2 must have been sent by some IS process
in S1 before m1. Therefore, since the two systems are connected by a FIFO-
ordered communication channel, we have that m2 must have been transferred
by some IS process in S0 before m1. This implies that, since S0 is a FIFO-
ordered system system, m2 must have been sent (by pi) before m1. Thus, we
reach a contradiction.

Note that the same interconnecting protocol can be used to properly intercon-
nect any number of FIFO-ordered systems. This can be easily shown by induction
on the number of systems. Let ST denote the resulting system. For n = 1 the
claim is clearly true, since ST = S0. For n = 2 it is immediate from Theorem 1.
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Now, assume that we can obtain a FIFO-ordered system S′ by properly inter-
connecting the systems S0, S1, ..., Sn−2. Then, from Theorem 1, we can properly
interconnect S′ and Sn−1 to obtain a FIFO-ordered system ST .

Similarly to what happened with the interconnection protocol proposed in [6],
our interconnecting protocol should not affect the response time a process ob-
serves when issuing a broadcast operation, since its broadcast protocol is not
affected by the interconnection. The latency (i.e., the time until a broadcast
value is visible in any other process) is also the same.

However and contrary to the interconnection protocol proposed in [6], we can
now avoid bottleneck problems due to the network traffic, since messages are not
forced to go through a single link but through the several links we establish.

4 An Architecture to Interconnect FIFO-Ordered
Systems

In this section, we describe a general architecture to interconnect FIFO-ordered
systems. Such an architecture can be built following these steps:

Step 1: For each process p in system Sk, choose an IS process in system Sk.
Call such a process isp(p).

Step 2: For each isp(p), set up a series of paths to some IS processes, denoted
paths(p). A path is formed by a series of subsequent FIFO-ordered links that
connect a pair of IS processes. Such paths should have only one IS process
per system they interconnect. Note that different paths (either from the same
IS process or not) may share some of their links.

Step 3: Transfer the messages issued by process p (to other systems) by using
isp(p) through paths(p).

Step 4: When an IS process receives a transfer, it broadcasts that message to
every process within its own system.

The correctness proof of the above-mentioned architecture is very similar to the
proof of Theorem 1 (only S0 and S1 must be changed by two arbitrary pairs of
systems, say Sk and Sk′

), and we omit it here.
Note that the protocol proposed in the previous section fits into the proposed

architecture. However, other interconnection protocols that adhere to the pro-
posed architecture could be implemented. Fig. 4 shows an illustrative example
with four systems and three different ways of interconnecting them. In the ex-
ample, we show the case where three IS processes in system S0 (denoted isp0

1,
isp0

2 and isp0
3) are respectively used to transfer the messages issued by processes

p, q and r in S0 (i.e., isp(p) = isp0
1, isp(q) = isp0

2 and isp(r) = isp0
3). As can be

seen, isp0
1 sets up three links directly to isp1

1, isp2
1 and isp3

2 (in red). Moreover,
isp0

2 establishes a link to isp2
1; then, this one establishes another link to isp1

2,
and this one to isp3

2 (in black). Finally, isp0
3 establishes a link to isp3

1; then, this
one establishes two links, one to isp2

1 and another one to isp1
2 (in blue).



456 R. de Juan-Maŕın et al.
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Fig. 4. Example of the architecture to interconnect FIFO-ordered systems

5 Interconnection of Causal-Ordered Systems

Contrary to what happens with totally ordered systems, that can not be in-
terconnected in any way [6]1, and similar to what happens with FIFO ordered
systems, causally ordered systems can always be properly interconnected. As in
the case of FIFO ordered systems, in order to avoid bottleneck problems it would
be interesting to design an interconnecting protocol that uses several IS processes
at each system. Unfortunately, the next theorem shows than in causally ordered
systems this is not possible.

Theorem 2. Any two causally ordered systems cannot be properly intercon-
nected if there is more than one IS process at each system, and such IS processes
are not coordinated.

Proof. By contradiction. Let us now assume the existence of a protocol that
properly interconnects two causally ordered systems S0 and S1 such that there
1 This result does not contradict the FIFO forwarding theorem of [3] that states that

total order systems can be interconnected with a FIFO total order interconnecting
protocol, since such a protocol needs to be intrusive; i.e., it needs to modify the
regular behaviour of the local total order protocol in each system, and such degree
of intrusiveness is not allowed in our system model assumptions.
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are two IS processes isp0
1 and isp0

2 in S0 (not coordinated in any form) and two
IS process isp1

1 and isp1
2 in S1 (not coordinated in any form).

Assume that a process i in S0 issues message m. Let isp0
1 the IS process that

will transfer such message to isp1
1. Now, consider a process j in S0 that receives

message m and after it, issues message m′ that will be transferred, by means of
isp0

2, to isp1
2.

It could happen that isp0
2 transfers message m′ to isp1

2 before isp0
1 transfers

message m to isp1
1. If isp1

2 sends message m′ before isp1
1 sends message m, it could

happen that some process in S1 receives m′ before m. This breaks causality and
we reach a contradiction.

As a consequence of this theorem, if we want to interconnect causally ordered
systems we are forced to use only one IS process per system (there are multiple
samples of such protocols [3,2,4,9,6]), or to coordinate in some way such IS
processes. Let us explore this second alternative.

As shown in the proof of Theorem 2, when multiple interconnection links
are used, we need to guarantee that causally related messages are delivered
in the destination system in the appropriate order. Concurrent messages do
not introduce any problem, they can be delivered without any constraint. At a
glance, the resulting interconnecting protocol should take care of ensuring an
appropriate delivery order for causally related messages.

Most causally ordered interconnection protocols based on a single IS process
per system simply relied on a single FIFO link in order to implement the inter-
connection [3,2,6] of two causal systems. If multiple IS processes are used, with
multiple interconnection links, we might ensure that all such links deliver all
forwarded messages in a global FIFO order (i.e., the messages are delivered in
the receiver system in the same order they were sent from the sender system).
This trivially ensures that the semantics of Theorem 2 are maintained, and also
complies with the FIFO forwarding theorem of [3].

In order to comply with this requirement, the interconnection protocol pre-
sented in Section 3 is taken as a basis and is extended in the following way:

1. In each system Sk, one of its IS processes is selected as a sequencer with a
deterministic criterion; e.g., that with the lowest node identifier. Let us name
ispk

seq such IS process. It maintains the number of broadcast messages, in a
local variable seq num, and it will assign a sequence number to each message
broadcast by such system. This follows the same principle described in [14]
in order to implement the Isis ABCAST protocol (with causal total order
guarantees) on top of its CBCAST one (with reliable causal delivery). But
there is a big difference in our approach. We do not want to extend the
underlying causal broadcast protocol being used in the local system. Instead
of this, we will tag with such sequence numbers the messages being forwarded
by the IS processes ; i.e., such sequence numbers are internally maintained in
the interconnecting protocol, and they are completely unknown in the causal
broadcast protocols being used in each interconnected system.

2. When a message m sent by any process pk
i of the local system is delivered in

its associated IS process (i.e., isp(pk
i )), such isp(pk

i ) waits until ispk
seq sends
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to isp(pk
i ) the appropriate sequence number for m; i.e., sn(m). Once sn(m)

is known, isp(pk
i ) sends 〈m, sn(m)〉 through its interconnection link to Sk.

3. In the system Sk that plays the receiver role for m, all IS processes also
need to maintain a local variable received that accumulates the amount of
received messages from Sk. To this end, received was initialised to zero, and
it is increased each time a message being sent by any ispk

x is delivered.
4. Once 〈m, sn(m)〉 is received by its associated ispk

j , such process will causally
broadcast m in Sk as soon as sn(m) = received+1 holds in ispk

j . This ensures
FIFO global delivery of all messages forwarded through all interconnection
links between Sk and Sk, but they can be propagated in a parallel way, so
the bandwidth of such system interconnection can be greatly enhanced.

The resulting interconnecting protocol is summarised in Figure 5, as a set of four
atomic concurrent tasks.

Sequence out(ispk
seq , m) :: task which is Receive(ispk

v , m) :: task activated

activated once bc-recv ispk
seq

(m) is executed once m is received from any ispk
j

begin begin
sn(m) =++seq num received++
send 〈id(m), sn(m)〉 to isp(sender(m)) end

end

Propagate out(ispk
v , m) :: task which is Propagate in(ispk

v , 〈m, sn(m)〉) :: task
activated once bc-recv ispk

v
(m) is executed activated once message 〈m,sn(m)〉

begin is received from Sk

if m was sent by a process in setw(ispk
v) begin

then wait for receiving 〈id(m), sn(m)〉 wait until sn(m) =received+1

transfer 〈m,sn(m)〉 to linkw(ispk
v) bc-send ispk

v
(m)

end end

Fig. 5. The interconnecting protocol in Sk

The following theorem shows that the system ST , obtained by connecting any
two causal-ordered systems S0 and S1 by using this interconnecting protocol is
also causal-ordered.

Theorem 3. Any two causal-ordered systems can be properly interconnected by
using the protocol in Fig. 5.

Proof. By contradiction. Assume there are two messages m1 and m2 sent in
system S0 and verifying that m1 → m2. Now, assume they are received by, say,
process pj in system S1 in the order m2 < m1.

Due to task Sequence out in S0, it is guaranteed by the interconnecting pro-
tocol that if m1 → m2 then sn(m1) < sn(m2). Due to tasks Receive and
Propagate in in S1, no process in S1 will be able to deliver m2 before m1

since Propagate in compels that the isp1
v process that receives m2 does not

broadcast such message in S1 until it has delivered m1 (due to their sequence
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numbers order, and the management of variable received in both tasks). If so
happens, m1 → m2 also holds in S1 and no process can break such causal order,
since it is assumed that S1 is a causal broadcast system. As a result, all S1

processes deliver m1 before delivering m2 and this raises a contradiction with
the assumption given in the previous paragraph, proving thus the theorem.

6 An Architecture to Interconnect Causal-Ordered
Systems

The interconnecting protocol presented in Sect. 5 is able to interconnect two
causal systems. Such interconnection mechanism could be easily extended to mul-
tiple causal systems. Thus, if there is a set of causal systems {So, S1, ..., Sn−1}
that have been interconnected in order to achieve a global causal-order system
ST , then we can interconnect another system Sn by setting one or several inter-
connecting links between itself and one of the systems that belong to ST . Note
that in case of setting multiple links, such links can not be set with different
Si, Sj systems of ST since this will define cycles in the resulting global system.
When a cycle exists, there will be at least two different paths for connecting two
different nodes (i.e., causal-ordered subsystems) in such global system. If two
paths are available in order to interconnect two different systems Sn and Sj ,
Theorem 2 arises again, and the implicit coordination between the IS processes
chosen in the sending system (e.g., Sn) disappears, since each message travels
along a different path and the sequence numbers of two causally related messages
in Sn is not maintained in the receiver system Sj . Note that in order to preserve
such dependencies in the sequence numbers all messages should be forwarded
along the same path.

These constraints can be formalised in the following Lemma and Theorem.

Lemma 1. Given a set of N causal systems ST = {So, S1, S2, ..., Sn−1} in-
terconnected in pairs with the interconnecting protocol shown in Fig. 5, ST is
properly interconnected if it does not contain any link cycle.

Proof. By contradiction. Let us assume that ST is a causal-ordered global system
and that there exists a cycle in ST , and that at least two of its systems Si and
Sj belong to such cycle. If so happens, there are at least two different FIFO
paths path1 and path2 for interconnecting Si and Sj . At least one of such paths
has a length greater than one link. Note that otherwise both paths would have
been the same (a single link connecting directly Si and Sj).

Let us assume that processes in Si have sent two different messages m1 and m2

causally related in the following way m1 → m2. So, m1 is forwarded to Sj be-
fore m2, but using a different path. For instance, m1 was forwarded along path1

whilst m2 was along path2. Since both paths are FIFO ordered, but they are not
coordinated in order to ensure a global causal order (recall that such coordina-
tion was ensured for a single link, but not for different paths of multiple links that
have traversed through different systems), it is possible that m2 be delivered in
Sj before m1 is delivered. This breaks the causal order, and contradicts the initial
assumption of ST being a causal global system. Thus, this proves the lemma.
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Theorem 4. n causal-ordered systems S0, S1, ..., Sn−1, can be pair-wise intercon-
nected with our causal IS protocol to obtain a system ST that is also causal-ordered.

Proof. We use induction on n to show the result. For n = 1 the claim is trivially
true. Then, if we have a causal-ordered system S′ by interconnecting systems
S0, S1, ..., Sn−2, then we can interconnect S′ and Sn−1 in a pair-wise manner
following both Theorem 3 and Lemma 1, and the resulting system ST is causal-
ordered, proving this theorem.

7 Fault Tolerance

The interconnecting protocols previously outlined can easily tolerate failures.
Note that most recoverable applications (e.g., replicated databases [15]) demand
uniform [11] delivery for broadcast messages. This means that a message is not
delivered until the group communication system can ensure that it has been
received by all message target processes2. Moreover, such message can not be
“garbage recycled” in the sender process until such stable delivery is ensured. In
[2], such uniform delivery is also taken as the key principle in order to achieve
fault tolerance.

The rules to follow are these:

– An IS process ispi
v does not report the uniform delivery of a message m

broadcast in its system Si until it gets a uniform confirmation from all other
IS processes ispj

w to which it previously forwarded m.
– A message m that has been forwarded to a system Sj is reported as uniformly

delivered in such system Sj following the regular protocol being used in Sj .
This means that the receiving IS process ispj

w knows about such message
delivery at that time, and needs to report such issue to its sender ispi

v once
this step is completed.

– If such receiving ispj
w fails, it will be replaced by another process in Sj that

will play such isp role. Two different scenarios arise:
• The old ispj

w was able to broadcast all messages received from ispi
v. If so

happens, the new ispj
w will be able to report such messages as uniform,

using the regular protocols of Sj . No problem arises in this case.
• The old ispj

w failed before being able to broadcast all messages received
from ispi

v. If so happens, system Sj does not know anything about such
messages and the new ispj

w will be unable to report any of such mes-
sages as uniformly delivered. If so happens, ispi

v will forward again such
unreported messages to (the new) ispj

w process, once a given time-out
is exhausted. Moreover, in case of interconnecting causal systems, the
other IS processes in Sj will be blocked waiting for the delivery of those
missed messages, and they will be able to tell such new ispj

w which were
2 In modern group communication systems [16], this constraint is relaxed: the message

can be delivered as soon as it is received and complies with the intended order
semantics. Later on a uniform/safe notification is delivered to the receiver process,
indicating that such message delivery is already uniform/safe.
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the sn(m) of such messages. So, ispj
w will be able to ask ispi

v for the
messages associated to those sn(m).

- If one of the forwarding ispi
v nodes crashes, a new ispi

v process will be
created. If there were some forwarded messages not yet reported as delivered,
such new ispi

v process knows which were such messages and it forwards
them again and resets their time-outs. So, such messages are appropriately
managed.

These rules avoid any message loss, and uniform delivery ensures that all broad-
cast messages are eventually delivered to all their destination processes. So, node
failures are easily overcome.

8 Performance Analysis for Causal-Ordered Systems

The usage of FIFO interconnecting links in order to implement interconnection
protocols for two causal and/or FIFO broadcast systems have been previously
proposed in several papers [3,4,6]. Note also that the daisy architecture described
in [2] also becomes a single FIFO link when only two causal systems need to be
interconnected.

However, none of such papers explored the alternative of using more than one
IS process per system. In most cases, the intra-system links will be far more
efficient than the inter-system ones. Imagine, for instance that each system is
deployed in a given laboratory or enterprise site, using a fast LAN (e.g., SCI
has a bandwidth of 20 Gbps, and there are also 10Gb Ethernet LANs nowadays,
with delays far below one ms in both cases), whilst inter-system links might have
the regular bandwidth and delays of a WAN (less than 100 Mbps of bandwidth
and more than 50 ms of delay, in most cases). As a result, the interconnecting
protocols and links could be easily overloaded using a negligible workload in
the systems being interconnected, since the latter are two orders of magnitude
faster than the former. So, the parallelisation of such interconnections is able
to multiply the resulting bandwidth without increasing the transmission delays.
Such benefit is directly applicable to the protocol described in Sect. 3. It does not
need any further analysis, since the interconnecting protocol does not demand
any synchronisation among the IS processes of the systems being interconnected.

Let us concentrate in the analysis of the causal interconnection protocol de-
scribed in Section 5, assuming that only two causal-ordered systems need to be
interconnected. To this end, the following parameters are needed:

– n isps : Number of IS processes in the sender system; i.e., number of intercon-
nection links being used. Since there is a single sequencer process needed for
synchronising all IS processes of such sender system, and such synchronisa-
tion requires a single additional message in some cases (when the IS process
that forwards the message is not the sequencer), we need this parameter in
order to set the probability of requiring such extra message.

– ibw : Intra-system bandwidth (in Mbps).
– id : Intra-system message transmission delay (in seconds).
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– sr : The average sending rate at one broadcast system; i.e., the number of
messages sent per time unit (in seconds).

– ms : Message size, in Mb (megabits). So, the product sr×ms is an expression
that provides the required bandwidth (in Mbps). So, the following should be
ensured:

sr <
ibw

ms
(1)

– ebw : Inter-system link bandwidth (in Mbps). This parameter sets an impor-
tant constraint in the global system, since the interconnection will usually
be the bottleneck of such system. Such constraint is:

sr <
ebw × n isps

ms
(2)

– ed : Inter-system message transmission delay (in seconds).

Using such parameters, sections 8.1 and 8.2 evaluate the optimal number of
interconnecting links and compare the performance of our parallelised intercon-
nection with the daisy architecture proposed in [2], respectively.

8.1 Optimal Number of Links

In order to find out which is the optimal number of interconnecting links, let us
explore the time needed for broadcasting a message in the whole system and how
such time depends on the number of links. Thus, the implementation of a global
causal-ordered broadcast only needs a system-local reliable broadcast protocol
complemented with tagging all messages with vector clocks and considering such
clocks in the delivery step. Such kind of protocol [14] can be implemented using
a single round of messages; i.e., if there are n nodes in a system, only n − 1
messages are needed.

Once each message is delivered in its associated IS process, such process needs
to wait for the sequence number that should tag such message. This sequence
number is sent by the sequencer process using a point-to-point message. Note,
however, that the sequencer is also an IS process. So, this additional message is
only needed with a probability of 1 − 1

n isps . Moreover, such message is smaller
than all other messages considered in the next expressions, requiring thus a
smaller transmission time. However, we have not considered such issue in those
expressions.

Later, the message is forwarded through the interconnection link and re-
broadcast in the receiving system. This implies, again, a single round of messages.
So, if no additional workload is considered, the minimal time needed for receiving
a message broadcast by system Si in a node of system Sj (trans time) is:

trans time =
(

3 − 1
n isps

)
×

(
id +

ms

ibw

)
+

(
ed +

ms

ebw

)
(3)

Note that the constant value 3 expresses that there is a minimal number of 2
intra-system hops (the regular single broadcast round in each of the two intercon-
nected systems) but it may reach 3 hops in the worst case (i.e., when all messages
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should be tagged using an explicit point-to-point message sent by the sequencer).
Thus, with a negligible workload, the optimal number of IS processes per system
is 1, since this eliminates the need of a synchronisation (intra-system) message
(i.e., that carrying the sequence number), as it can be seen in expression (3).

However, when workload is considered, we could use a queueing model [17] in
order to represent such system, but as it is already mentioned in [17, Chapter 5],
in a queueing network we only need to identify its bottleneck centre in order to
set upper bounds to the global system throughput. In our system, and with the
assumptions given above, such bottleneck centre is the interconnecting channel.
In the best case, the bandwidth of the interconnecting links could be the same as
the internal bandwidth of each interconnected system; i.e., constraints (1) and
(2) generate the same thresholds when n isps is 1. If so happens, the optimal
number of sender IS processes will be one, as seen above in (3). Otherwise, we
need to set as many interconnecting links as given by expression (4):

n isps =
⌈

ibw

ebw

⌉
(4)

Note that both id and ed are modeled as “delay centres” [17]; i.e., a link can
be shared by multiple messages being forwarded along it, and we do not need a
queue in order to model such delay. As a result, they do not appear in expression
(4), where only queueing servers need to be considered. Indeed, such queueing
centres are modelling the bandwidth of each kind of link. They have a service
demand of ms

ibw seconds in the intra-system communications and ms
ebw seconds in

the inter-system links. This explains how expression (4) is derived: its target is
to balance the serving time of both kinds of servers, and this can be achieved
increasing the number of interconnecting links.

8.2 Comparison with Other Solutions

To our knowledge, no other paper has proposed a parallelised interconnection of
causal-ordered broadcast systems. However, the technique described in [2] can
be considered as a close approach. Despite proposing a single interconnecting
server for each existing system, it recommends that systems were split into mul-
tiple subsystems when they have grown excessively. So, this is an indirect way of
introducing multiple interconnecting servers in each original system. Moreover,
this provides the advantage of reducing the size of the vector clocks being used
in each subsystem for their local broadcasts. In order to implement the global
interconnection, the daisy architecture builds an upper-layer causal-ordered sys-
tem composed by the interconnecting servers of all broadcast systems. Each
time a message is broadcast in one of the systems, its interconnecting server
re-broadcasts such message to all other interconnecting servers, who broadcast
again such message to all nodes in their respective systems. So, such global
broadcast consists of three different causal broadcast interactions.

Let us compare the daisy architecture with our solution described in Sect. 5.
To this end, let us assume a global system where there are initially two causal-
ordered broadcast systems S0 and S1, with 3n nodes each one. The intra-system



464 R. de Juan-Maŕın et al.

bandwidth and link delays are ibw and id, respectively, whilst the inter-system
bandwidth and link delays are ebw and ed, respectively. We also assume that
ibw > ebw and id < ed. Due to the size of such systems, each of them has
been divided into three sets of n nodes per set using our approach, or into
three separate new systems (S00, S01, S02, and S10, S11, S12) using the daisy
architecture, again with n nodes per system.

In such scenario, the broadcast of a message m sent in S0 with our solution
implies:

– 3n − 1 messages in order to broadcast such message into S0.
– One additional message (in the worst case) in order to assign a sequence

number to such message and notify it to the associated IS process.
– One inter-system message through the interconnecting link.
– 3n − 1 messages in order to broadcast m into S1.

Globally, this has required 6n−1 messages (that might be 6n−2 if the isp being
used in S0 is also the sequencer process) transmitted through intra-system links
and one single message traversing inter-system (and slower) links. Additionally,
it has required three hops in the best case, or four, in the worst one.

On the other hand, with the daisy architecture, such broadcast needs these
messages:

– Let us assume that the sender of message m belongs to S00. It requires n−1
messages in order to broadcast m into such system.

– As a result, m can be broadcast in the system composed by all interconnect-
ing servers of the six newly created broadcast systems. Five messages are
needed to this end. Two of such messages forward m to other systems that
initially belonged to S0. So, they are fast messages. On the other hand, the
other three need to use the assumed slow interconnecting links.

– Into each system, n−1 messages are needed to locally re-broadcast m. Since
there are five systems of this kind, 5n− 5 messages are needed in this step.

At the end, this architecture needs the same global amount of point-to-point
messages; i.e., 6n− 1 messages. But in our approach, only one of such messages
need to use the slow links, whilst in the daisy architecture, three messages have
been forwarded through such links. This implies that with additional workload,
such slow interconnecting links will be saturated sooner using the daisy approach.
If the difference between the original intra-system and inter-system bandwidths
is important, our solution guarantees better scalability than a daisy architecture.

On the other hand, the daisy architecture needs only three logical hops to
broadcast a message between different systems, whilst our approach might need
four logical hops in some cases. However, using our solution only one hop is
needed into each of the initial systems S0 and S1 in order to locally broadcast a
given message, whilst the daisy architecture introduces also three hops between
processes located in different parts of such original systems.
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9 Conclusions

In this paper, we have studied the interconnection of broadcast systems that are
either FIFO or causally ordered. We have provided interconnection protocols
that can use several interconnection links between systems, which avoid bot-
tleneck problems due to the network traffic, since messages are not forced to
go through a single link but throughout the several links we establish. Further-
more, we have proposed a general architecture with which to interconnect mul-
tiple broadcast systems. The usage of multiple interconnection links is specially
convenient when scalability is a must and such interconnection links provide a
limited bandwidth (compared to that of intra-system links).
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13. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

14. Birman, K.P., Schiper, A., Stephenson, P.: Lightweight causal and atomic group
multicast. ACM Trans. Comput. Syst. 9(3), 272–314 (1991)

15. Kemme, B., Bartoli, A., Babaoglu, Ö.: Online reconfiguration in replicated
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