
Decentralized Web Service Orchestration: A Reflective
Approach

R. Jiménez-Peris,
Facultad de Informática

Universidad Politécnica de
Madrid (UPM), Spain

rjimenez@fi.upm.es

M. Patiño-Martı́nez
Facultad de Informática

Universidad Politécnica de
Madrid (UPM), Spain

mpatino@fi.upm.es

E. Martel-Jordán
IUMA-Universidad de

Las Palmas de
Gran Canaria, Spain

emartel@iuma.ulpgc.es

ABSTRACT
Web service orchestration is widely spread for the creation
of composite web services using standard specifications such
as BPEL4WS. The myriad of specifications and aspects that
should be considered in orchestrated web services are re-
sulting in increasing complexity. This complexity leads to
software infrastructures difficult to maintain with interwo-
ven code involving different aspects such as security, fault
tolerance, distribution, etc. In this paper, we present Zen-
Flow a reflective BPEL engine that enables to separate the
implementation of different aspects among them and from
the implementation of the regular orchestration functiona-
lity of the BPEL engine. We illustrate its capabilities and
performance exercising the reflective interface through a de-
centralized orchestration use case.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Performance, Throughput

Keywords
Web Service Orchestration, BPEL4WS, Reflection, Compo-
site Web Services, Decentralized Orchestration

1. INTRODUCTION
Web services are the preferred technology for building Ser-

vice Oriented Architectures (SOA) and Enterprise Applica-
tion Integration (EAI). Web service orchestration is playing
an important role to enable the creation of complex com-
posite web services. Specifications such as BPEL4WS [19]
are widespread. The myriad of specifications and aspects

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

that should be considered in orchestrated web services result
in high complex programs and sophisticated infrastructures
difficult to maintain with interwoven code involving different
aspects such as security, fault tolerance, distribution, etc.

Reflection [24] and aspect oriented programming (AOP)
have been advocated as powerful approaches for separating
the different aspects of implementations and attaining an
effective separation of concerns. AOP focuses on providing
programming constructs to attain low level concern sepa-
ration at programming time. Reflection is an approach at
the architectonic level in which a system is architected so
its behavior can be observed and modified through an inter-
face called meta-interface. This meta-interface enables to
encapsulate the implementation of non-functional aspects
as separated components. This makes possible the exten-
sion of the reflective system without any modification to the
code. The use of reflection has been advocated for dynamic
web services [33].

In this paper, we present ZenFlow, a reflective BPEL web
service orchestration engine [25]. Its reflective capabilities
enable to implement all non-functional aspects in a sepa-
rated manner reducing the complexity and increasing the
maintainability and modularity of the BPEL engine. Re-
flection may be used to introduce transactional semantics,
decentralized orchestration, fault tolerance, debugging and
monitoring capabilities, etc. In this paper, we choose as case
study decentralized orchestration. Decentralized orchestra-
tion enables to cope with higher loads, increasing the scala-
bility with respect to centralized orchestration. An exhaus-
tive experimental evaluation has been performed to demons-
trate the superior scalability of the decentralized execution
implemented in a reflective manner. The evaluation shows
that the reflection overhead is very low and does not impact
the performance of the system.

The rest of the paper is organized as follows. Section 2 re-
views computational reflection. The implementation of the
reflective BPEL engine of ZenFlow is presented in Section
3. Section 4 presents a throughout evaluation of both the
performance benefits of the decentralized process execution
using reflection, and the cost of reflection itself. Related
work is summarized in Section 5. Finally, conclusions are
presented in Section 6.

2. COMPUTATIONAL REFLECTION
Reflection refers to the ability of a system to reason about

and act upon itself. More specifically, a reflective system
is one that provides a representation of its own behavior

which is amenable to inspection and adaptation, and is ca-
sually connected to the underlying behavior it describes.
Casually-connected means that changes made to the self-
representation are immediately mirrored in the underlying
system’s actual state and behavior, and vice-versa. It can
therefore be said that a reflective system is one that sup-
ports an associated casually connected self-representation
(CCSR). This definition was first used by Maes [24] in the
context of programming languages.

According to the reflection paradigm, a system is struc-
tured in two layers: the base-level and the meta-level. The
former executes the application components, whereas the
latter runs the components devoted to the implementation of
non-functional requirements (e.g. security, fault-tolerance,
tracing). The base-level provides an image of the structural
and behavioral features to the meta-level. This image, called
meta-model, is casually connected to the base-level. That is,
any change in one of the levels leads to the corresponding
change upon the other.

Base-level

application
objects

Meta-level

metaobjects

Introspection
(structural
observation)

Structural intercession
(structural
control)

Behavioral
reflection

Structural
reflection

MetaObject Protocol (MOP)
Reification
(behavioral
observation)

Behavioral intercession
(behavioral
control)

Figure 1: Architecture of a reflective system

Four methods may be used to observe and control at the
meta-level the features of the system’s base level (Figure 1).
Reification corresponds to the process of exhibiting to the
meta-level the occurrence of base-level events. Introspection
allows the meta-level to retrieve the base-level structural
information. Intercession enables the meta-level to act on
the base-level behavior.

3. A REFLECTIVE BPEL ENGINE
ZenFlow is a programming environment programmed in

Java for the development and deployment of BPEL proces-
ses. One of the components of ZenFlow is a BPEL inter-
preter or engine. The BPEL engine reflective architecture
exhibits a metalevel called meta-interpreter, which enables
the engine extension by means of metaobjects.

Metaobjects are objects that enable adding new features
to the BPEL engine. These methods allow specifying the
code to be executed before and after the interpretation of
every activity of a BPEL process: the pre method of a me-
taobject includes the actions to be executed before an acti-
vity is interpreted, whereas the post method of a metaobject
refers to the actions to be executed after the activity inter-
pretation. The pre method returns true if the activity of the
business process will be invoked or false otherwise. In this
way, the meta-level can cancel the execution of activities in
the base-level.

The metaobjects may have different scopes in ZenFlow:

BPEL engine

m
et

ao
bj

et
 1

m
et

ao
bj

et
 2

m
et

ao
bj

et
 3

m
et

ao
bj

et
 n

Meta-Interpreter

Figure 2: Reflective BPEL engine

(a) A metaobject is associated to all the activities of a bu-
siness process. The pre and post methods are invoked
for all the activities which are interpreted during the
business process execution. This scope is, for instance,
useful to implement monitoring facilities.

(b) A metaobject is associated to a certain type of activity
of a business process. In this case, the metaobject is
invoked when that type of activity is interpreted. For
example, a metaobject may be associated to invoke
activities to perform semantic mediation.

(c) A metaobject is associated to a single activity. The
metaobject is invoked when the selected activity is in-
terpreted. This might be used, for instance, for debug-
ging a business process.

Another important set of meta-interfaces are those pro-
viding introspection and intercession capabilities over the
business process structure and state. These meta-interfaces
allow retrieving the current catalog of published and running
business processes. They also allow navigating the structure
of a published business process and change it. This can be
done for the business process template and/or for running
instances. The latter enables workflow evolution. When
navigating the business process instance, the state of the
process is also accessible and modifiable. An additional set
of meta-interfaces deal with life-cycle activities such as the
creation of new business process instances, destruction, etc.
They enable associating meta-objects to this kind of activi-
ties that are not specific to concrete business processes.

Finally, there is a set of meta-interfaces that are accessi-
ble remotely (through RMI) to enable the distributed inte-
raction of meta-objects across BPEL servers. These meta-
interfaces enable intercession and introspection in a remote
fashion, like for instance, injecting a business process ins-
tance at another site running an instance of ZenFlow.

An important issue in ZenFlow is that the cost of reflec-
tion is only paid when metaobjects are associated to acti-
vities. For activities without metaobjects associated there
is no cost derived from reflection. The reflection provided
by ZenFlow therefore effectively provides partial behavioral
reflection [32].

3.1 Reflective Approach to Decentralized Exe-
cution

Building a reflective architecture for providing decentra-
lized execution of a BPEL process requires controlling and
adjusting at runtime the behavior of the system. Let us
consider a simple execution of a business process which has

object handling only
functional mechanisms

object handling only decentralization
 (non-functional mechanisms)

object handling both functional and non-functional mechanisms

metaobject

(b) Reflective approach(a) Non-reflective approach

 (1) execution
request

Site2

server

Site1

client

.

.

.

Site3

Site4

SiteN
delegated servers

server

server

server

 (2) (4)

(2) delegation
of the business

process
execution

 (1) execution
request

Site2

server

Site1

client

delegated servers

(3) delegation of the business
process execution

.

.

.

Site3

Site4

SiteN

server

server

server

Figure 3: Non-reflective approach vs. reflective ap-
proach

been configured for decentralized execution. The client re-
quests the execution of the BPEL process and this execu-
tion is delegated to the corresponding remote site. Using
a conventional non-reflective approach (see Fig.3-(a)), the
server code has to implement both the interpretation of the
business process and the decentralized execution. This re-
sults in a tightly coupled implementation mixing functional
(BPEL interpretation) and non-functional aspects (decen-
tralized execution) of the BPEL server lacking separation of
concerns and leading to a hardly maintainable implementa-
tion.

Using a reflective approach, metaobjects are responsible
for delegating the execution to a remote site. Figure 3-(b)
provides a high level view of the reflective approach. The
client first starts the execution of a business process. If
the process is configured to be executed at a different site,
this event is intercepted at the metalevel (step 2). Then,
the metaobject extracts the state of the business process,
and sends it to the remote server through the remote RMI
meta-interface (step 3). The remote server takes this state,
recreates the process locally through the intercession meta-
interface and resumes the execution of the recreated process.
When the execution finishes, that site extracts once again
the process state which is returned to the metaobject that
installs the new state in the server to reflect the result of
the remote execution (steps 4).

The above decentralized execution illustrates the use of
reflection made in the decentralized execution implementa-
tion:

• Reification. Whenever the meta-interpreter detects a
decentralized execution during the interpretation of
a business process, the meta-interpreter activates the
metaobject designed for decentralized execution. This
metaobject is responsible for delegating the execution
to the adequate remote site.

• Introspection. The metaobject needs the structure of
the business process, the state of the execution flow
and the current state of variables. This information
constitutes the state of the business process which is
retrieved from the base-level.

• Intercession. As a result of the execution delegation, a
process instance is created at the remote site and the
received state is injected into this instance.

ZenFlow checks whether the delegated activities can be
coherently executed in a decentralized fashion. Basically,

it is checked whether parallel flows to be executed in a de-
centralized manner do not share state. That is, if a branch
writes a variable no other branch reads or writes it. In that
way, during decentralized execution no inconsistencies arise,
and the resulting state from the different branches can be
merged consistently.

BPEL provides links to express synchronization depen-
dencies between activities that are nested directly or indi-
rectly within a flow activity. The meta-interpreter checks
the relation of the current activity with the links within the
flow activity. In a decentralized setting, the source and tar-
get activities of a link can be at different servers. The me-
taobjects for decentralized execution take care of notifying
link conditions across servers if necessary.

Since the decentralized execution is transparent to clients
of a BPEL process, a client can send a message to the pro-
cess but the process now is executing at a different site.
A metaobject checks whether the message corresponds to
a receive activity that is executed locally or remotely. In
the latter case, the message is forwarded to the correspon-
ding delegated remote ZenFlow instance. Reply activities
(synchronous invocation) are dealt with similarly.

Exceptions are also dealt with in decentralized execution.
If an exception is thrown and not handled by the piece of
code whose execution is delegated to a remote site, the ex-
ception is propagated to the server site. If there is no code
for handling the exception at the server side, that site will
throw it back to the client, as in a centralized execution of
the BPEL process.

4. EVALUATION
In this section we evaluate the cost of the reflective fea-

tures of ZenFlow. Decentralized execution is an adequate
way to demonstrate the effectiveness and power of our re-
flective approach due to: 1) It can show that the potential
scalability to be gained through decentralized execution is
not lost due to the use of reflection; 2) It shows that sophis-
ticated non-functional aspects can be implemented relying
exclusively on the meta-interface achieving a full separation
of concerns. For this purpose we have conducted a set of
experiments that measure the benefits of decentralized exe-
cution. The centralized execution of the equivalent experi-
ment is used for comparison purposes. In the centralized
execution, clients run on one site, a single ZenFlow server
runs the BPEL process (Fig.4-(a)), which runs on a dif-
ferent site. The BPEL process invokes one or more web
services that run on different sites. In the decentralized sce-
nario the whole process or part of it is delegated to another
ZenFlow instance (delegated servers), which runs on diffe-
rent sites (Fig.4-(b)). The BPEL processes have only one
synchronous client invocation. The web service invoked by
the BPEL process in most of the experiments is a dummy
service which receives a string and returns it back.

All experiments were run on a cluster of PCs equipped
with two AMD Athlon(tm) MP 2000+ processors, 1GB of
RAM, running Linux (Kernel version 2.6.9) and Sun’s JDK
version 1.5.0. Sites are connected by a 100Mb/s LAN. The
total number of requests submitted is 3,200. Only the 3,000
central requests, corresponding to the steady state, are con-
sidered for the measurements.

4.1 Reflection Overhead
In this experiment, the cost of the reflective BPEL engine

Site2Site1 Site3

...

client

client

ZenFlow
server

Web
service

ZenFlow
server

delegated servers

...

...
...

...

...

...

Web
service

Web
service

client

client

...

client

Remote ZenFlow
Instance

Remote ZenFlow
Instance

Remote ZenFlow
Instance

(a) Centralized (b) Decentralized

Figure 4: Scenarios for ZenFlow evaluation

is evaluated in terms of response time. For this purpose we
use a BPEL process with a while activity that contains an
assign activity. There is one meta-object that is executed
before and after the assign activity. The meta-object met-
hods are empty, so its invocation reflects exclusively the cost
due to reflection. The number of iterations enables to mea-
sure the reflection overhead. The same experiment is run
without any meta-object to quantify the incurred overhead.

Figure 5 shows that the reflection overhead is negligible.
For 200 iterations the overhead is 14.7 ms. For 10,000 ite-
rations, this overhead is just 652 ms. The overall response
time for the latter case without meta-objects is 50,100 ms.
So, relative overhead is just 1.3%.

0

10000

20000

30000

40000

50000

60000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of iterations

R
e
s
p

o
n

s
e

ti
m

e
(m

s
)

Non-Reflective

Reflective

Figure 5: Reflection cost

4.2 Scalability
The goal of this experiment is to measure the scalability

of ZenFlow with decentralized execution. The scalability is
measured by looking at the evolution of performance for an
increasing load (# of clients). For this purpose we use a
simple BPEL process that calls 10 times a web service. One
ZenFlow instance receives client requests (ZenFlow server),
creates an instance of the process and delegates the execu-
tion to one of the other ZenFlow instances using a round-
robin algorithm to select the site (Fig.6). As baseline we use
a centralized ZenFlow.

Three sites (client, BPEL server, invoked web service) are
used for the centralized execution (Fig.4-(a)). Three (resp.
six) more sites are used when the execution is delegated to
three (resp. six) ZenFlow instances (Fig.6).

Figure 7-(a) shows the response time for an increasing
load. For low loads (5 clients) the response time is lower for
the centralized execution than for the decentralized execu-
tion. Since decentralized execution involves some commu-

Site6

Web
service

Site2

ZenFlow
server

Site1

...

client

client

client

Site3 (delegated server1)
ZenFlow server

invokewhile
10

/while

Site4 (delegated server2)
ZenFlow server

invokewhile
10

/while

Site5 (delegated server3)
ZenFlow server

invokewhile
10

/while

Figure 6: 3 delegated servers with round-robin

0

500

1000

1500

2000

2500

0 50 100 150 200

Number of clients

R
e
s
p

o
n

s
e

ti
m

e
(m

s
)

Centralized

3 Machines

6 Machines

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

Number of clients

T
h

ro
u

g
h

p
u

t
(c

li
e
n

ts
/m

in
u

te
)

Centralized

3 Machines

6 Machines

(a) Response time (b) Throughput

Figure 7: Scalability

nication cost with the site where execution is delegated to,
the response time is slightly higher. When the load increa-
ses (till 15 clients) all configurations show a similar response
time what means that the latency overhead of decentraliza-
tion becomes negligible for medium-high loads. When the
load increases in the centralized configuration, the response
time also increases smoothly till 25 clients and then dete-
riorates very fast (200 ms for 25-30 clients and 400 ms for
45-50 clients). A single ZenFlow instance is not able to
process more than 50 concurrent clients, although response
time deteriorates with 25 clients. On the other hand, the res-
ponse time increases smoothly with three sites till 50 clients
(the maximum load a single ZenFlow server can cope with).
Then, the response time increases but at a lower pace than
in the centralized execution (100ms increase from 80 to 90
clients). The reason for this lower increase is that the load
is shared among three sites, so the system saturates more
slowly. The same situation happens when the load is shared
among six ZenFlow instances. The response time increases
smoothly till 80 clients, and then it increases at a lower pace
than with the other two configurations.

Figure 7-(b) shows the throughput as the number of client
requests served per minute. All configurations increase their
throughput with an increasing load. They do at the same
pace till they saturate, then the throughput increases more
slowly till no more load can be handled and the ZenFlow ser-
ver(s) collapses. The different configurations saturate with
25, 60 and 120 clients, respectively, which corresponds to
a high increase in the response time. The centralized con-
figuration is able to reach a maximum of 600 requests per
minute. 3 servers reach a throughput of 1,500 requests per
minute and 2,700 with 6 servers. This shows a reasonable
scalability for small cluster sizes.

4.3 Delegation Cost
In this section, we study the cost of delegating the execu-

tion of a process in order to get a deeper understanding on
the scalability of the system.

4.3.1 Communication and Instantiation Cost
In this experiment we evaluate the cost of sending the

state of a process to be executed at a different site. Once
the information is received (transmission time in Fig.9), an
instance of the process must be created and then, the exe-
cution of the process can start. We also evaluate the time
needed to recreate and start the execution for an increasing
process size (processing time in the graph). In this expe-
riment, there is a single client that sends one request to
ZenFlow, which delegates the process execution to a remote
ZenFlow instance. The state size ranges from 20 KBytes
till 2.2 MBytes, at the same time the size of the instantia-
ted process increases. The process has a sequence with 50
assign activities followed by an increasing number of flow
activities (0, 20, 40, 60, ...) with five branches each one
(Fig.8).

We can observe in Fig.9 that for the smallest size (20 KBy-
tes), the transmission time is almost negligible (4.8 ms) and
all the time is consumed in the instantiation of the process
(26.5 ms). The situation changes with a large state size,
2.2 MBytes, in this case the transmission time grows to 450
ms. Regarding the time needed to instantiate the process
and start execution (processing time) it takes 80 ms for a
process with 20 flow activities (size 400 KBytes) and 330 ms
for a process with 100 flow activities (2,150 Kbytes).

Site1

client

Site3 (delegated server)
ZenFlow server

...

...

...

...

...

...

...

...

...

...

...

...

Site2

ZenFlow
server

<flow> <flow> </flow></flow>

Figure 8: Decentralized setup for communication
and instantiation costs

0

100

200

300

400

500

600

700

800

900

20,35 372,98 728,85 1084,72 1440,59 2152,33

Message size (Kbytes)

A
v
e
ra

g
e

d
e
le

g
a
ti

o
n

ti
m

e
(m

s
)

Processing time

Transmission time

Figure 9: Communication and instantiation cost

4.3.2 Process Execution Cost
In this experiment we measure the trade-off between the

process execution time and the cost of delegating the process
to a another site. The BPEL process consists of a flow ac-
tivity with two identical branches that invoke a web service
(Fig.10). Each of the branches executes on a different site.
The number of times each branch (while activity) invokes

the web service ranges from 1 to 20 yielding an increasing
process execution time. The experiment runs either on four
sites, when the execution is delegated, or in three sites, when
there is a single ZenFlow instance. The test has been run
for an increasing load in order to study the effect on concu-
rrency.

Site2
ZenFlow server

Site1

...

client

client

client

Site3 (delegated server)
ZenFlow server

...
while invoke
while invoke

while invoke

while invoke
while invoke

while invoke
Site4

Web
service

/while

/while

/while

</flow>

/while

/while

/while

</flow>

<flow>

<flow>

<flow>

Figure 10: Decentralized scenario. Execution cost

Figure 11-(a) shows that with one client, the response time
for the centralized execution is better than the decentralized
one, when the web service invocation in the while activity
is executed once. If the number of iterations in the while
activity increases, even for a single client, the decentralized
version shows a better response time (e.g., the response time
for centralized is 1,200 ms and 660 ms for the decentralized
with 20 iterations). This difference starts earlier when the
number of clients increases (10 iterations for 5 clients and 5
iterations for 10 clients). This means that with a low load
and light processes a single centralized ZenFlow instance
executes faster than with delegation. As soon as the execu-
tion time of the process increases, delegation offers a better
response time. This situation happens earlier with higher
loads.

For one client the throughput of both executions is almost
the same, even with a high number of iterations (Fig.11-(b)).
Therefore, both configurations process the same number of
requests per minute although, the response time (what a
single client observes) is quite different. Therefore, we can
say that the decentralized ZenFlow performs better than the
centralized one. When the number of clients increases, the
difference in terms of throughput is noticeable even for light
processes (5 iterations), and increases for heavier delegated
processes.

4.4 Parallel Execution
In this experiment, we evaluate the performance benefits

of executing each branch of a flow activity at a different site.
The process used in the experiment has a flow activity with

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of iterations

R
e
s
p

o
n

s
e

ti
m

e
(m

s
)

1 Client – Centralized

1 Client – Decentralized

5 Clients – Centralized

5 Clients – Decentralized

10 Clients – Centralized

10 Clients – Decentralized

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 1011121314151617181920

Number of iterations

T
h

ro
u

g
h

p
u

t
(c

li
e
n

ts
/m

in
u

te
)

1 Client – Centralized

1 Client – Decentralized

5 Clients – Centralized

5 Clients – Decentralized

10 Clients – Centralized

10 Clients – Decentralized

(a) Response time (b) Throughput

Figure 11: Process execution cost

3 parallel activities: a while activity that invokes 10 times
a web service (Fig.12). 6 sites are used in the evaluation.
Each activity (branch) of the flow activity is executed by a
different instance of ZenFlow at a different site. Centralized
execution at a single site is used for comparison purposes.
The response time and throughput have been measured for
an increasing load. Figure 13-(a) shows the response time
in both scenarios. Initially, a single instance of ZenFlow can
handle the injected load and therefore, the response time is
better than in the parallel execution. However, as the load
increases, the centralized server saturates, and the response
time increases. The parallel server shows a more graceful
degradation for high loads.

Regarding throughput (Fig.13-(b)), the parallel server pro-
duces a better throughput than the centralized execution
event with very low loads. When the load increases (30
clients), the throughput with delegation doubles the one of
the centralized execution.

Site6

Web
service

Site1

...

client

client

client

<flow> </flow>

Site4 (delegated server1)
ZenFlow server

invokewhile
10

/while

Site5 (delegated server1)
ZenFlow server

invokewhile
10

/while

Site3 (delegated server1)
ZenFlow server

invokewhile
10

/while

Site2

ZenFlow
server

Figure 12: Parallel execution

4.5 Locality
If a web service (or set of web services published by a par-

ticular site) is invoked several times from a process, several
messages are sent between the site running the process and
the site where the web service is deployed. This can affect
the performance of the whole process, even if the exchanged
data is not large. In this experiment, we execute the BPEL
code that accesses a given web service at the same site where
the web service resides. That is, the process is moved to the
site where the web service it invokes runs. This might not be
feasible in general but, in the context of a single organization
(e.g. when using web services for Enterprise Application In-
tegration, EAI) it may be possible. With this, the network
is traversed only once and can reduce the network hops and
consumed bandwidth between the process and the invoked
service.

0

2000

4000

6000

8000

10000

12000

5 10 15 20 25 30 35 40 45 50

Number of clients

R
e
s
p

o
n

s
e

ti
m

e
(m

s
)

Centralized

Decentralized

0

50

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30 35 40 45 50

Number of clients

T
h

ro
u

g
h

p
u

t
(c

li
e
n

ts
/m

in
u

te
)

Centralized

Decentralized

(a) Response time (b) Throughput

Figure 13: Parallel execution of flow activities

The process used in the experiment has a flow activity
with 3 parallel activities: a while activity that invokes 10
times a web service. Each activity (branch) of the flow ac-
tivity is executed by a different instance of ZenFlow at a
different site (Fig.14). So, the top while activity runs at site
3, the middle one runs at site 4, and the bottom one at site
5.

Web
service

Site6

Web
service

Site7

Web
service

Site8

Site2

ZenFlow
server

Site1

...

client

client

client

<flow> </flow>

Site3 (delegated server1)
ZenFlow server

invokewhile
10

/while

Site4 (delegated server1)
ZenFlow server

invokewhile
10

/while

Site5 (delegated server1)
ZenFlow server

invokewhile
10

/while

Figure 14: Collocated orchestration

Figures 15-(a) and 15-(b) show the benefits of collocating
the fragments of a composite web service with the invoked
web services. The response time of the decentralized execu-
tion is less than half than the one of centralized execution.
The state to be transferred for each fragment was set to 86
KBytes (a medium state size). With a smaller state the
performance benefits would have been substantially bigger.

The reasons for the performance improvement are on one
hand that the execution is parallelized. On the other hand,
when the fragment performs several invocations to web ser-
vices deployed at the same site, many network hops are sa-
ved. In fact, this can be seen as a form of batching [4]. This
situation can be common in EAI and data grids, in which
segments of a workflow perform a series of interactions with
web services located at a particular site of the enterprise.

5. RELATED WORK
Papers [28], [22] and [9] suggest the use of Aspect-Oriented

Programming (AOP) in order to improve the evolution of
web service technologies. [28] focuses on the conjunction of
AOP and WS-Policy to decouple the non-functional capa-
bilities at description and implementation level. [22] uses
AOP to achieve web service adaptation. [9] presents an
aspect-oriented extension to BPEL in order to make web
service composition more modular, flexible and adaptable.
AOP can be provided on top of reflective systems [30]. The
discussion is made in the context of object oriented pro-

0

2000

4000

6000

8000

10000

12000

14000

5 10 15 20 25 30 35 40 45 50

Number of clients

R
e
s
p

o
n

s
e

ti
m

e
(m

s
)

Centralized

Decentralized

0

50

100

150

200

250

300

350

400

5 10 15 20 25 30 35 40 45 50

Number of clients

T
h

ro
u

g
h

p
u

t
(c

li
e
n

ts
/m

in
u

te
)

Centralized

Decentralized

(a) Response time (b) Throughput

Figure 15: Locality

gramming languages such as Java. In ZenFlow reflective
facilities also enable dynamic aspect weaving, by selecting
which metaobjects to activate and when.

[32] proposes partial behavioral reflection to reduce the
overhead of reflection and activate it only when needed on a
dynamic basis. The idea is based on the notion of hooksets
that enable static and dynamic reconfiguration of behavioral
reflection. ZenFlow reflection is similar to partial reflection
in the sense that only actual activated meta-objects do have
a cost.

Reflection has been used to achieve configurability and re-
configuration in the middleware domain ([10], [11]), to gua-
rantee platform independence ([7],[14]), and to add fault-
tolerance [31, 27]. ZenFlow exploits reflection offering a si-
milar degree of extensibility and reconfigurability but on a
different domain, web service orchestration, where to the
best of our knowledge there has not been previous work.

The available BPEL engines (ActiveBPEL[1], AgilaBPEL
[2], CapeClear [3]) do not support mechanisms for expres-
sing crosscutting modularity. The extension of such engines
need the modification of their code, leading to tangled and
scattered code involving both the functionality of the en-
gine and different non-functional aspects. This difficults the
maintenance and evolution of the engine because changes
affect to several parts of the engine. In [9] this problem is
solved at the programming level but a reflective variable is
used whenever properties of the process are needed during
execution. We have tackled the problem at the architectonic
level of the BPEL engine by only using reflection. Although
in this work we has focused on the decentralization non-
functional aspect, the presented approach is also extendible
to other non-functional aspects. The necessary actions to
achieve additional aspects implies building a metaobject per
non-functional aspect, and attaching it to the process defi-
nition, without altering the core code of our BPEL engine.
Both AOP and reflection constitutes different approaches to
solve crosscutting modularity but at different level.

Exception handling is an important issue in workflows
and composition of Web Services. Papers [12, 15, 35, 18,
23] present exception management frameworks for business
processes to reduce redundancies in exception processing
code. They propose different techniques such as exception
handling templates, assertions and meta workflows to reduce
error handling code. In [13] exception handling is used to
deal with the recovery aspect of survivability in the context
of BPEL. In this paper we have not dealt with reducing re-
dundancies of exception handling code. However, we have
treated exception handling in decentralized settings guaran-
teeing that the original BPEL semantics is preserved despite
decentralization.

Visual composition tools have been proposed such as Self-
Serv [6]. An earlier paper on ZenFlow focuses on its visual
capabilities [25]. Both Self-Serv and ZenFlow supports de-
centralized execution of composite web services but using
different approaches: Self-Serv exploits peer-to-peer orches-
tration model [5], whereas ZenFlow uses the reflection ap-
proach for the orchestration. In [8] an Integrated Develop-
ment Environment (IDE) for Composition of Web Services,
Synthy, is presented. This IDE is based on two staged ser-
vice composition approach that separates the functional and
non-functional requirements of the service being composed.
The non-functional stage exploits Semantic Web Technolo-
gies and, the functional stage uses some distributed pro-

gramming techniques (like BPEL and WSDL). ZenFlow fo-
cuses in this last stage of Synthy providing decentralized
execution through reflection.

The idea of partitioning business process to provide decen-
tralized orchestration has been considered in [26, 21]. The
authors focus on a technique to partition a composite web
service written as a single BPEL program into an equivalent
set of decentralized processes. The proposed technique gi-
ves a new code partitioning algorithm that is applicable to
decentralization of composite web services. In [26] experi-
mental results are presented to demonstrate that decentra-
lization increases the throughput of composite web services
substantially, even under high loads. [34] presents a work-
flow management system for distributed enactment of com-
posite services (DECS). In DECS the specification of service
composition and its enactment are separated. Processes can
be deployed either for centralized or decentralized coordina-
tion. Our paper positions with respect this previous work by
focusing on how to attain decentralization at the reflective
level without modifying the BPEL engine. Previous work
in the area results in interweaving decentralization with the
regular BPEL functionality.

The system described in [17, 29] is capable of reacting to
workload variations by altering its configuration in order to
optimally use the available resources. Such changes happen
automatically and without human intervention. In ZenFlow
the developer can program the reconfiguration using me-
taobjects.

Some researchers have explored how to extend composi-
tions with non-functional aspects. [20] introduces a mecha-
nism for finding and binding partner web services at run
time. This approach enables to repair long running business
processes without stopping them. This kind of dynamism
could also be added to ZenFlow using its reflective interface
over partner web services. [16] presents facilities to enable
dynamic workflow evolution adapting running instances of
workflows on a per instance basis.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have demonstrated the convenience of the

reflection approach for the web service orchestration. This
approach enables a clear separation of functional aspects
from non-functional ones, which is essential for the main-
tainability and update of the web service orchestration. We
have exercised reflection with a complex and involved non-
functional aspect that is decentralization. The evaluation
shows that the overhead introduced by reflection is mini-
mal. Scalability of the reflective decentralization has been
evaluated from different perspectives showing that reflection
can be effectively used without significant tradeoffs to sepa-
rate concerns.

As a future work we plan to exercise the reflection to add
new non-functional aspects to the BPEL engine, like de-
bugging and fault tolerance. For the debugging, our BPEL
engine needs to complete its current XPath evaluator fea-
ture.

7. REFERENCES
[1] ActiveBPEL. http://www.active-endpoints.com/.

[2] AgilaBPEL. http://swik.net/Agila-BPEL.

[3] CapeClear. http://www.capeclear.com/.

[4] F. J. Ballesteros, R. Jiménez-Peris,
M. Patiño-Mart́ınez, F. Kon, S. Arévalo, and R. H.
Campbell. Using interpreted Composite Calls to
improve Operating System Services. Softw., Pract.
Exper., 30(6), 2000.

[5] B. Benatallah, M. Dumas, and Q. Z. Sheng.
Facilitating the Rapid Development and Scalable
Orchestration of Composite Web Services. Distr. and
Parall. Datab., 17(1), 2005.

[6] B. Benatallah, Q. Z. Sheng, and M. Dumas. The
Self-Serv Environment for Web Services Composition.
IEEE Internet Computing, 07(1), 2003.

[7] L. Capra, W. Emmerich, and C. Mascolo. CARISMA:
Context-Aware Reflective Middleware System for
Mobile Applications. Soft. Eng., IEEE Trans. on,
29(10), 2003.

[8] G. Chafle, G. Das, K. Dasgupta, A. Kumar, S. Mittal,
S. Mukherjea, and B. Srivastava. An Integrated
Development Environment for Web Service
Composition. icws, 0:839–847, 2007.

[9] A. Charfi and M. Mezini. AO4BPEL: An
Aspect-oriented Extension to BPEL. WWW,
10:309–344, 2007.

[10] G. Coulson, P. Grace, G. Blair, W. Cai, C. Cooper,
D. Duce, L. Mathy, W. K. Yeung, B. Porter,
M. Sagar, and W. Li. A Component-based Middleware
Framework for Configurable and Reconfigurable Grid
Computing. Concurrency Computat.: Pract. Exper.,
18(8), 2006.

[11] F. Eliassen, E. Gjørven, V. S. W. Eide, and J. A.
Michaelsen. Evolving Self-Adaptive Services using
Planning-Based Reflective Middleware. In ARM.
ACM Press, 2006.

[12] M. F. Fabio Casati and I. Mirbek. An Environment
for Designing Exceptions in Workflow Systems.
Information Systems, 24(3):255–273, 1999.

[13] C. K. Fung, P. C. K. Hung, and D. H. Folger.
Achieving Survivability in Business Process Execution
Language for Web Services (BPEL) with
Exception-Flows. In EEE, 2005.

[14] P. Grace, G. S. Blair, and S. Samuel. A Reflective
Framework for Discovery and Interaction in
Heterogeneous Mobile Environments. SIGMOBILE
Mob. Comput. Commun. Rev., 9(1), 2005.

[15] D. Grigori, F. Casati, U. Dayal, and M.-C. Shan.
Improving Business Process quality through Exception
Understanding, Prediction, and Prevention. In The
VLDB Journal, 2001.

[16] J. Halliday, S. Shrivastava, and S. Wheater. Flexible
Workflow Management in the OPENflow System.
EDOC, 00, 2001.

[17] T. Heinis, C. Pautasso, and G. Alonso. Design and
Evaluation of an Autonomic Workflow Engine. In
ICAC, 2005.

[18] P. C. K. Hung and D. K. W. Chiu. Developing
Workflow-Based Information Integration (WII) with
Exception Support in a Web Services Environment. In
HICSS, 2004.

[19] IBM, Microsoft, and BEA. Business Process Execution
Language for Web Services. http://www-

106.ibm.com/developerworks/webservices/library/ws-

bpel/.

[20] D. Karastoyanova, A. Houspanossian, M. Cilia,
F. Leymann, and A. Buchmann. Extending BPEL for
Run Time Adaptability. In IEEE EDOC, 2005.

[21] R. Khalaf and F. Leymann. E Role-based
Decomposition of Business Processes using BPEL. In
ICWS, 2006.

[22] W. Kongdenfha, R. Saint-Paul, B. Benatallah, and
F. Casati. An Aspect-Oriented Framework for Service
Adaptation. In ICSOC, 2006.

[23] A. Kumar and J. Wainer. Meta Workflows as a
Control and Coordination Mechanism for Exception
Handling in Workflow Systems. Decision Support
Systems, 40(1), 2005.

[24] P. Maes. Concepts and Experiments in Computational
Reflection. In OOPSLA, 1987.

[25] A. Martinez, M. Patino-Martinez, R. Jimenez-Peris,
and F. Perez-Sorrosal. Zenflow: A Visual Web Service
Composition Tool for BPEL4WS. In VLHCC, 2005.

[26] M. G. Nanda, S. Chandra, and V. Sarkar.
Decentralizing Execution of Composite Web Services.
In OOPSLA, 2004.

[27] A. Nguyen-Tuong and A. S. Grimshaw. Using
Reflection for Incorporating Fault-Tolerance
Techniques into Distributed Applications. Parallel
Processing Letters, 9(2), 1999.

[28] G. Ortiz and F. Leymann. Combining WS-Policy and
Aspect-Oriented Programming. In AICT-ICIW, 2006.

[29] C. Pautasso, T. Heinis, and G. Alonso. Autonomic
Execution of Web Service Compositions. In ICWS,
2005.

[30] G. T. Sullivan. Aspect-Oriented Programming using
Reflection and Metaobject Protocols. Communications
of the ACM, 44(10), 2001.

[31] F. Täıani and J. C. Fabre. A Multi-Level Meta-Object
Protocol for Fault-Tolerance in Complex
Architectures. In DSN, 2005.

[32] E. Tanter, J. Noye, D. Caromel, and P. Cointe. Partial
Behavioral Reflection: Spatial and Temporal Selection
of Reification. In ACM OOPSLA, 2003.

[33] S. Vinoski. A Time for Reflection. IEEE Internet
Computing, 09(1), 2005.

[34] S. Woodman, D. Palmer, S. Shrivastava, and
S. Wheater. Distributed Enactment of Composite
Web Services . Technical Report CS-TR 848, School
of Computing Science, Newcastle University, 2004.

[35] L. Zeng, H. Lei, J.-J. Jeng, J.-Y. Chung, and
B. Benatallah. Policy-Driven Exception-Management
for Composite Web Services. In CEC, 2005.

