
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Information Processing Letters 105 (2008) 249–254

www.elsevier.com/locate/ipl

On the interconnection of message passing systems

A. Álvarez a, S. Arévalo b, V. Cholvi c,∗, A. Fernández b, E. Jiménez a

a Polytechnic University of Madrid, Spain
b Universidad Rey Juan Carlos, Spain

c Departamento de Lenguajes y Sistemas Informáticos, Universitat Jaume I, Campus de Riu Sec, 12071 Castellón, Spain

Received 13 March 2007; received in revised form 18 July 2007; accepted 5 September 2007

Available online 19 September 2007

Communicated by A.A. Bertossi

Abstract

One of the most important abstractions for designing distributed programs is the broadcast facility. In this paper, we study the
interconnection of distributed message passing systems. We have shown that totally ordered systems cannot be properly intercon-
nected in any form. However, we have provided a simple protocol to properly interconnect FIFO ordered systems.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Distributed systems; Interconnection networks; Formal methods; Design of algorithms

1. Introduction

One of the most important abstractions for design-
ing distributed programs is the broadcast facility, with
which a process sends a message to all the processes in
the system. Such a facility provides one-to-all commu-
nication, and can be seen equivalent to sending point-to-
point messages from the sender to the rest of processes.
However, by itself, the above definition of broadcast
does not impose any ordering restriction. This may lead
to problems in its use since, for instance, messages may
not be necessarily received in the order they were sent,
or different processes may receive them in different or-
der.

Then, typically, the above broadcast semantics is
completed with restrictions on the order messages are

* Corresponding author.
E-mail address: vcholvi@uji.es (V. Cholvi).

delivered. The most popular ordering requirements im-
posed to broadcast primitives are the FIFO, the totally,
and the causal orderings [1–8]. The first one requires
that all messages sent by the same process are received
in the order they were sent. The second one requires that
all messages are received in the same order, irrespective
of the sender. The third one enforces the receiving order
of messages that are causally related [9].

In this paper, we study the interconnection of dis-
tributed message passing systems. By this, we mean the
addition, to several existing message passing systems
with a given ordering requirement, of a simple intercon-
nection system to obtain a single system with the same
ordering requirements as the original ones. There are
mainly two reasons for interconnecting message pass-
ing systems with new protocols instead of using a single
protocol for the whole system:

• First, in this way we can interconnect systems
that are already running without changing them.

0020-0190/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2007.09.006



Author's personal copy

250 A. Álvarez et al. / Information Processing Letters 105 (2008) 249–254

They can keep using their protocols at their local
level.

• Second, depending on the network topology, it
could be more efficient to implement several sys-
tems and interconnect them than having a single
large system. An example of this would be a system
that has to be implemented on two local area net-
works connected with a low-speed point-to-point
link. In a single system with many popular proto-
cols there would be a large number of messages
crossing the point-to-point link for the same broad-
cast. In this case, it would seem appropriate to
implement one system in each of the local area net-
works, and use an interconnecting protocol via the
link to connect the whole system. With the appro-
priate interconnecting protocol, only one message
crosses the link for each broadcast.

Some work has already been done regarding the
interconnection of message passing systems [10–12].
However, all of these papers have just focussed on
causally ordered systems.

Here, we extend these previous works to the case of
systems that are either totally or FIFO ordered. We show
that whereas totally ordered systems cannot be inter-
connected in the model of interconnection we consider,
in the case of FIFO ordered systems interconnection is
always possible. In this latter situation, we give a sim-
ple protocol to interconnect fully general heterogeneous
systems, in contrast with the existing interconnecting
protocols for causally ordered systems which are es-
pecially designed for concrete architectures as a mean
of improving their performance. At this point, we note
that since any causal system is also FIFO, and taking
into account that causal ordered systems have been in-
terconnected in the past [10–12], this implies that some
particular FIFO systems (i.e., FIFO systems that are also
causal) have been previously interconnected. In turn,
here we show that any FIFO system, regardless if it is
causal or not, can be interconnected. Finally, we would
like to remark that our aim here is not centered on hav-
ing a very efficient protocol, but on proving that in fact
it is possible to interconnect FIFO systems.

The rest of the paper is organized as follows. In
Section 2, we introduce our framework for the inter-
connection of message passing systems. In Section 3,
we show the impossibility of interconnecting totally or-
dered systems. In Section 4, we study the interconnec-
tion of FIFO systems, and show how to interconnect
them. Finally, in Section 5, we present some conclud-
ing remarks.

Fig. 1. System architecture.

2. Model and definitions

From a physical point of view, we consider distrib-
uted systems formed by a set of nodes connected by
a communication network. The logical system we con-
sider is formed by processes (executed in the nodes
of the system) which interact by exchanging messages
among them (using the communication network). The
interface between the processes and the network has
two types of events [1]: by using bc-sendi (m), process i

broadcasts the message m to all processes of the system.
Similarly, by using bc-recvi (m, j), process i receives
the message m from process j . Fig. 1 illustrates the
above mentioned system architecture.

The basic broadcast service specification for n pro-
cesses consists of sequences of bc-sendi and bc-recvi

events, 0 � i � n − 1. In these sequences, each bc-recvi

(m, j) event is mapped to an earlier bc-sendj (m) event,
every message received was previously sent, and every
message that is sent is received once and only once at
each process. For simplicity, we also assume that any
given message is sent at most once. This assumption
does not introduce any new restriction, since it can be
forced by associating a (bounded) timestamp with every
send operation [13].

Following, we define totally ordered and FIFO or-
dered systems, according to the ordering requirements
of the broadcast services they implement.

Definition 1. We say that a system is totally ordered if
for all messages m1 and m2 and all processes pi and
pj , if m1 is received at pi before m2, then m2 is not
received at pj before m1.

Definition 2. We say that a system is FIFO ordered if
for all messages m1 and m2 and all processes pi and
pj , if pi sends m1 before it sends m2, then m2 is not
received at pj before m1.

We consider systems in which each message sent
must be eventually received in every process of the sys-



Author's personal copy

A. Álvarez et al. / Information Processing Letters 105 (2008) 249–254 251

Fig. 2. Interconnection system.

tem. This is a very natural property (usually known as
Liveness) which is preserved by every system that we
have found in the literature. In our terminology it means
that for each bc-sendi (m) event, a bc-recvj (m, i) event
will eventually occur for every process j in the system.

Now, we define what we understand by properly
interconnecting several totally/FIFO systems. Roughly
speaking, it consists of interconnecting these systems
(without modifying any of them) by using an intercon-
nection system (denoted IS), so that the resulting system
behaves as a single one and is also totally/FIFO ordered.
Such an interconnection system is formed by a set of in-
terconnecting system processes (denoted IS processes)
that execute some distributed algorithm or protocol.
Each of these processes is an application process of
some of the original systems, and hence receives all the
messages broadcast in that system and can itself broad-
cast new messages. In particular, the only way a value
broadcasted by an application process in some system
can be received by an application process in another
system is if the interconnecting process of the latter
system broadcasts it. The interconnecting processes can
communicate among themselves via message passing.
However, they cannot interfere with the protocol at their
local original message passing system implementing the
broadcast. Fig. 2 presents an example of an IS intercon-
necting two systems.

3. Impossibility of interconnecting totally ordered
systems

In this section we show that totally ordered systems
cannot be properly interconnected. To do so, we first
show that in a totally ordered system, a message sent
by a process pi cannot be locally delivered (i.e., to pi

itself) in less time than the delay needed to transfer the
message to any other process. Then, we use this result
to show, by contradiction, the impossibility result.

Let us first consider a totally ordered system S, and
assume that local computations take negligible (zero)
time. Assume also that the delays of transferring mes-

sages between processes are in the range [d ′, d], being
d ′ and d two nonnegative constants such that d ′ � d .
Let tlocal be the smallest delay since a process sends a
message until the message is locally delivered. The fol-
lowing result gives a lower bound for tlocal.

Lemma 1. For any totally ordered system S with at least
two processes, we have that tlocal � d .

Proof. Assume the claim is not true and that messages
are delivered locally in less than d time (i.e., tlocal < d).
Consider a run in which some process pi of the sys-
tem sends a message m1 at time 0, and that some other
process pj sends another message m2 at the same time.
Assume that the delay of both messages is d . Hence, m1
is delivered to pi before receiving m2, and m2 is deliv-
ered to pj before receiving m1. Since both messages
must be eventually delivered, m1 and m2 will be re-
ceived in different order in pi and in pj . Consequently,
by definition, the system is not totally ordered, reaching
a contradiction. �

Now, by using the previous lemma, we obtain the fol-
lowing result.

Theorem 1. Totally ordered systems cannot be properly
interconnected.

Proof. Consider a protocol that implements a totally or-
dered system in a single node (i.e., a single machine) but
with, maybe, multiple processes. In this system, when a
process executes bc-send operation, the protocol imme-
diately delivers the messages to all processes of the node
(by copying them into the processes receiving queues).
This system has negligible time tlocal, but since d is also
negligible, the previous lemma holds.

Let us now assume the existence of a protocol that
properly interconnects several totally ordered systems.
By definition, the resulting system must be totally or-
dered. However, if we use the above protocol to imple-
ment the systems to interconnect, one in each node, and



Author's personal copy

252 A. Álvarez et al. / Information Processing Letters 105 (2008) 249–254

the network connecting the nodes has message delay
d > 0, Lemma 1 is violated, since tlocal = 0. Therefore,
we reach a contradiction. �
4. Interconnection of FIFO ordered systems

In this section we show that, contrary to what hap-
pens with totally ordered systems, FIFO ordered sys-
tems can always be properly interconnected. First, we
consider the case when there are only two systems.
Later, we will consider the case of several systems.

Let us denote each of the FIFO ordered systems as Sk

(with k ∈ {0,1}). The interconnecting protocol consists
of two processes, denoted ispk (with k ∈ {0,1}), that are
part of each of the two systems. These interconnecting
processes are only in charge of the interconnecting pro-
tocol. It is worthwhile to remark that each ispk is part
of the system Sk and, for that reason, can use the com-
munication system implemented in Sk . Note also that
the introduction of those processes does not require any
modification of the original systems.

We consider that the set of processes of the result-
ing system ST includes all the processes in S0 and S1

combined, with the exception of isp0 and isp1, which
are only used to interconnect S0 and S1.

Each ispk process executes two concurrent atomic
tasks, Propagatek

out and Propagatek
in (atomicity is

needed in order to avoid race conditions). Propagatek
out

transfers messages issued in Sk to Sk (we use k to de-
note 1 − k), and Propagatek

in forwards within Sk the

messages transferred by Propagatek
out . Fig. 3 shows the

implementation of the Propagatek
in and Propagatek

out
tasks.

It must be noted that the link between isp0 and isp1

needs to be FIFO ordered. However, nothing has been
said about how to implement it. In a practical case, this
channel could be implemented in a number of ways,
either by using shared memory or by using message
passing. A scheme of how the interconnecting protocol
works is shown in Fig. 4.

The following theorem shows that the system ST , ob-
tained by connecting any two FIFO ordered systems S0

Fig. 3. The interconnecting protocol in ispk . Task Propagatek
out(m) is activated immediately after message m is received in ispk . As a result, it

transfers such a message to ispk , but only if it was not received from ispk . This condition prevents messages going back and forth between ispk and

ispk . On its turn, task Propagatek
in(m) is activated whenever the message m is received from the process ispk . As a result, it issues a bc-sendispk (m)

operation, thus propagating the message m to all processes within Sk .

Fig. 4. Scheme of the interconnecting protocol.



Author's personal copy

A. Álvarez et al. / Information Processing Letters 105 (2008) 249–254 253

and S1 by using the above mentioned interconnecting
protocol, is also FIFO ordered.

Theorem 2. Any two FIFO ordered systems can be
properly interconnected by using the protocol in Fig. 3.

Proof. By contradiction. Assume there are two mes-
sages, m1 and m2, sent in that order by, say, process
pi in system S0. Now, assume they are received by, say,
process pj in system S1 in reverse order.

Since S1 is a FIFO ordered system, m2 must have
been sent by isp1 before m1. Therefore, since the two
systems are connected by a FIFO ordered communica-
tion channel, we have that m2 must have been sent by
isp0 before m1. This implies that, since S0 is a FIFO or-
dered system, m2 must have been sent (by pi ) before
m1. Thus, we reach a contradiction. �

Now, in the following corollary, we show that the
same interconnecting protocol can be used to properly
interconnect any number of FIFO ordered systems.

Corollary 1. Let S0, S1, . . . , Sn−1 be n FIFO ordered
systems. They can be properly interconnected by using
the protocol in Fig. 3.

Proof. We use induction on n to show the result. Let
ST denote the resulting system. For n = 1 the claim
is clearly true, since ST = S0. For n = 2 it is imme-
diate from Theorem 2. Now, assume that we can obtain
a FIFO ordered system S′ by properly interconnecting
the systems S0, S1, . . . , Sn−2. Then, from Theorem 2,
we can properly interconnect S′ and Sn−1 to obtain a
FIFO ordered system ST . �

Performance. As it has been pointed in the Introduc-
tion, the aim of the proposed interconnecting protocol
is not centered on efficiency, but on the fact that it is
possible to interconnect FIFO systems. Anyhow, here
we compare the performance of a system obtained using
our interconnecting protocol with the performance of a
system that directly uses a broadcast protocol connect-
ing all the processes. We assume that the same broadcast
protocol is used in the global system of reference and in
each of the subsystems interconnected with our inter-
connecting protocol.

First, observe that our interconnecting protocol
should not affect the response time a process observes
when issuing a broadcast operation, since its broadcast
protocol is not affected by the interconnection.

Regarding the network traffic, we assume that the
broadcast protocol used generates one message per re-

ceiving process for each broadcast operation. Then, in
a global system with n processes, each broadcast opera-
tion generates n−1 messages. With our interconnection
protocol n + 1 messages are generated for two subsys-
tems, since we add two interconnecting processes, and
one message will be sent from one process to the other.
Generalizing these results for m subsystems, the num-
ber of messages for the interconnected system becomes
n + m − 1. Clearly, as m increases, this could generate
bottleneck problems.

Finally, we consider the latency, which is the time
until a broadcast value is visible in any other process.
For simplicity, we will discard here local computation
times at the interconnecting processes. Then, if we have
m subsystems, a system running the basic protocol has
latency l, the delay of a message between two intercon-
necting processes is d , and we interconnect the systems
in a star fashion, the worst case latency is 3l + 2d .

5. Concluding remarks

In this paper, we have studied the interconnection
of distributed message passing systems that are either
totally ordered or FIFO ordered. We have shown that to-
tally ordered systems cannot be properly interconnected
in any form. However, we have provided a simple pro-
tocol to properly interconnect FIFO ordered systems.

References

[1] H. Attiya, J. Welch, Distributed Computing Fundamentals, Sim-
ulations and Advanced Topics, McGraw Hill, 1998.

[2] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[3] R. van Renesse, K.P. Birman, S. Maffeis, Horus: a flexible group
communication system, Commun. ACM 39 (4) (1996) 76–83.

[4] P.M. Melliar-Smith, L.E. Moser, V. Agrawala, Broadcast pro-
tocols for distributed systems, IEEE Trans. Parallel Distrib.
Syst. 1 (1) (1990) 17–25.

[5] M. Raynal, A. Schiper, S. Toueg, The causal ordering abstrac-
tion and a simple way to implement it, Inf. Process. Lett. 39 (6)
(1991) 343–350.

[6] A. Schiper, K. Birman, P. Stephenson, Lightweight causal and
atomic group multicast, ACM Trans. Comput. Syst. 9 (3) (1991)
272–314.

[7] H. Garcia-Molina, A. Spauster, Ordered and reliable multicast
communication, ACM Trans. Comput. Syst. 9 (3) (1991) 242–
271.

[8] M.F. Kaashoek, A.S. Tanenbaum, S.F. Hummel, An efficient re-
liable broadcast protocol, SIGOPS Oper. Syst. Rev. 23 (4) (1989)
5–19.

[9] L. Lamport, Time, clocks, and the ordering of events in a distrib-
uted system, Commun. ACM 21 (7) (1978) 558–565.

[10] R. Baldoni, R. Beraldi, R. Friedman, R. van Renesse, The hierar-
chical daisy architecture for causal delivery, Distributed Systems
Engineering 6 (2) (1999) 71–81.



Author's personal copy

254 A. Álvarez et al. / Information Processing Letters 105 (2008) 249–254

[11] L.E.T. Rodrigues, P. Verissimo, Causal separators for large-scale
multicast communication, in: ICDCS ’95: Proceedings of the
15th International Conference on Distributed Computing Sys-
tems, IEEE Computer Society, Washington, DC, USA, 1995,
p. 83.

[12] N. Adly, M. Nagi, Maintaining causal order in large scale dis-
tributed systems using a logical hierarchy, in: Proc. IASTED Int.
Conf. on Applied Informatics, 1995, pp. 214–219.

[13] S. Haldar, P.M.B. Vitányi, Bounded concurrent timestamp sys-
tems using vector clocks, J. ACM 49 (1) (2002) 101–126.


