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Abstract

Databases have become a crucial component in mod-
ern information systems. At the same time, they have be-
come the main bottleneck in most systems. Database repli-
cation protocols have been proposed to solve the scalabil-
ity problem by scaling out in a cluster of sites. Current
techniques have attained some degree of scalability, how-
ever there are two main limitations to existing approaches.
Firstly, most solutions adopt a full replication model where
all sites store a full copy of the database. The coordination
overhead imposed by keeping all replicas consistent allows
such approaches to achieve only medium scalabilitiy. Sec-
ondly, most replication protocols rely on the traditional con-
sistency criterion, 1-copy-serializability, which limits con-
currency, and thus scalability of the system. In this paper,
we first analyze analytically the performance gains that can
be achieved by various partial replication configurations,
i.e., configurations where not all sites store all data. From
there, we derive a partial replication protocol that provides
1-copy-snapshot isolation as correctness criterion. We have
evaluated the protocol with TPC-W and the results show
better scalability than full replication.

Keywords: Large-Scale Database Replication, Partial
Replication, Database Replication Middleware, Snpashot
Isolation, One-Copy Snapshot Isolation

1. Introduction

The software industry is evolving to modern service ori-
ented architectures that are targeted to provide service to
increasingly large numbers of users. In order to provide
appropriate scale-out any kind of bottleneck in the service
infrastructure needs to be avoided. Currently, one of the
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most common bottlenecks in these information systems is
the backend database that stores the persistent data. This is
one of the reasons why database replication has received a
lot of attention in the last few years.

Early approaches to eager (also called synchronous)
database replication based on distributed locking lacked any
scalability [10]. This paper triggered a new wave of re-
search trying to overcome the scalability limitations. A lot
of research has focused on scalable replication protocols
that provide 1-copy-serializability as correctness criterion
[4], and assume full database replication [15, 20, 22, 2, 21,
12]. The problem of protocols providing serializability is
that all types of read/write and write/write conflicts must
be considered. In particular read/write conflicts result in
an inherent scalability ceiling since they are very frequent
and therefore, limit the amount of potential concurrency in
the system. In optimistic replication protocols [15, 22, 12]
read-write conflicts result in transaction aborts, whilst pes-
simistic protocols [20, 2, 21] result in low concurrency.
Snapshot isolation [3] is a multi-version concurrency con-
trol in which transactions see a snapshot of the database as
it was when the transaction started. Moreover, readers and
writers do not conflict. Compared to serializability snap-
shot isolation provides a very similar level of consistency (it
passes the tests for serializability of standard benchmarks
such as the ones from TPC). Today many databases pro-
vide snapshot isolation as their highest isolation level (e.g.,
Oracle, PostgreSQL, etc.). 1-copy-snapshot-isolation is a
correctness criterion for replicated databases that run under
snapshot isolation [16].

Full database replication means that all sites store copies
of all data items. An analytical study in [13] has shown the
scalability limits of full eager replication. The problem is
that updates have to be executed at all replicas. In some pro-
tocols update transactions are executed at all sites (symmet-
ric processing) to preserve all the databases identical (con-
sistent). Therefore, the replicated database does not scale
under update workloads (all sites do the same work). Other
protocols use asymmetric processing. That is, a transac-
tion is first executed at one site, its changes are collected in



form of a writeset which is applied at the other sites to keep
the copies consistent. Asymmetric processing provides bet-
ter scalability with update workloads, because applying the
writeset usually only requires a fraction of the processing
cost of executing the full transaction / update operations.
When there is only one site (no replication), all the capacity
of the site is used to process transactions. If the system has
two replicas (it executes transactions at two sites), then a
fraction of the capacity of each replica is devoted to install
the writesets produced by the other replica. When the num-
ber of replicas increases, there is a point at which adding a
new replica does not increase the system capacity anymore.
The reason is that a large fraction of the capacity of the new
replica is consumed to process updates propagated by the
other replicas.

In this paper we elaborate on solutions that aim at in-
creasing the scalability of replication following an update
everywhere model (i.e., there is not a distinguished site for
running update transactions). First, we provide an analyti-
cal model that allows to quantify the scalability of a partially
replicated database. Then, we propose an eager replication
protocol for partially replicated databases based on snap-
shot isolation. The protocol is able to handle distributed
transactions where different operations are executed at dif-
ferent sites. The challenge in our setting is to provide a
globally consistent snapshot for distributed transactions and
detect conflicts although no site has global knowledge in the
system. We have evaluated our protocol on the industrial
benchmark TPC-W showing a much improved scalability
over full replication.

The paper is structured as follows. Section 2 surveys the
state of the art on database replication. Then, we motivate
partial replication through an analytical model of the scala-
bility in Section 3 and the resulting analytical evaluation of
different replication alternatives. Then, we present the par-
tial replication protocol in Section 4. Section 5 shows the
empirical evaluation of the replication protocol using TPC-
W benchmark. We present our conclusions in Section 6.

2. Related work

[17] proposes a two dimensional replication model based
on the number of data items and the number of copies per
item. The model assumes a primary copy approach, that
is, all update transactions are executed at a single site, and
changes (writesets) are propagated after commit to the sec-
ondary sites which only execute read-only transactions. The
model assumes that the cost of applying the changes at the
secondaries is the same as the one of executing the full
transaction (symmetric update processing). The main dif-
ferences with our analytical model are as follows. First we
consider asymmetric update processing. Second, we con-
sider heterogeneous workloads in which different replicas

might process different mixes of read-only and update trans-
actions. Third, we consider that each replica might contain
a different fraction of the database.

Full database replication has been heavily studied [2, 5,
21, 6, 19, 1, 9]. The traditional correctness criterion for
data replication is one-copy-serializability (1CS) [4]. More
recently, some protocols have explored extensions of snap-
shot isolation for replicated data [7, 23, 27, 16, 8].

All the protocols on partial replication implement 1CS
and most of them assume that all data accessed by a transac-
tion is stored on the site where the transaction is submitted.
One of the earliest protocols on partial replication is the one
proposed in [14], integrated into the Postgres-R prototype.
The protocol follows a primary backup approach. The pri-
mary sends the writesets (changes) to all of the sites where
are decomposed, analyzed and applied if needed.

[25] proposes a protocol in which readsets and writesets
are multicast to all sites holding a copy of any data item
involved in the transaction. Then, each site checks whether
there is any conflict with other committed transaction at that
site (certification). The result of the certification is used
later when the site that executed the transaction, initiates a
distributed commit protocol to determine the outcome of the
transaction. More recently, the authors have compared this
approach with a protocol in which readsets and writesets are
multicast to all replicas, and all replicas run a local certifi-
cation process to decide on the transaction outcome [24].
There are several differences of this work with ours. The
correctness criterion we use is one-copy-snapshot isolation
(1CSI), whilst they use one-copy-serializability. The use of
1CSI has the great benefit of not dealing with readsets, in
addition to never have read-write conflicts, and therefore,
reduces the number of aborted transactions. Second, our
protocol only multicasts the writeset. Their protocol needs
both writesets and readsets that can be very bulky. Third,
they assume that for every transaction there is at least one
site that stores all data needed by the transaction.

[11] proposes an epidemic protocol for partially repli-
cated databases in a WAN environment. Each data item
has one or more permanent sites that always have a copy.
Other sites may have a temporary cached copy. Readsets
and writesets are propagated to maintain consistency. If a
data item is not stored at the site where the transaction ex-
ecutes, a request is sent to one of the permanent sites and
propagated with the associated lock table information. Our
work deals with 1CSI and focuses on a cluster environment.

The protocol in [18] supports full and partial replica-
tion. It avoids distributed transactions by requiring a pri-
ori knowledge of the data accessed by transactions. Partial
replication has also been studied in [5]. The model of repli-
cation is that some sites do not store the whole database.
Transactions are executed at a single site. This may lead to
full replication when there are complex requests that access



several tables.

3. Analytical Model for Partial Replication

3.1. System Model

The system consists of a set of n sites, N = {1..n}. The
database consists of a set of o objects, O = {O1, .., Oo}.
Objects are accessed in a transaction. A transaction is read
only if it only reads objects. An update transaction at least
writes (insert/update/delete) one object. The model is based
on asymmetric processing of transactions (one site executes
the update transaction and all other sites only apply the re-
sulting writeset). The load is defined as a pair (A,U). A
is the proportion of accesses to each object per time unit,
A = {A1, .., Ao}, i. e. Ai means the proportion of the
accesses (reads and writes) to the object Oi. Given A, U
is the proportion of writes per time unit, U = {U1, .., Uo},
i.e. Ui means the proportion of accesses to the object Oi

that modify it. Both A and U are further decomposed
in Ai = {a1i, a2i, ..., ani} and Ui = {u1i, u2i, ..., uni},
which define the percentage of accesses (writes) to ob-
ject i at each site, respectively. There is also a function
r : N × O → {0, 1}, which defines the replication schema
i. e. in which sites objects are stored. r(i, k) = 1 if Ok

is stored at site i, and r(i, k) = 0 otherwise. r models
a fully replicated database (every object is stored at ev-
ery site), if ∀i ∈ {1..n},∀k ∈ {1..o} | r(i, k) = 1.
We call a hybrid replicated database to a database where
at least one site stores a full copy of the database (full
replica), and at least one site does not store the full database
(partial replica). r models a hybrid replicated database, if
∃i ∈ {1..n}∀k ∈ {1..o} | r(i, k) = 1 ∧ ∃j ∈ {1..n}∃k ∈
{1..o} | r(j, k) = 0. Otherwise, r models a pure partially
replicated database. That is, a database where no site stores
a full copy of the database and data is replicated. Formally:
∀i ∈ {1..n}∃k ∈ {1..o} | r(i, k) = 0

3.2. Analytical Model

The goal of the analytical model is to understand the po-
tential scalability gains of partial replication with respect to
full replication. The model quantifies the scale out, which
determines how many times the replicated system increases
the performance of a non replicated system.

We assume that a non replicated database has a process-
ing capacity C, that means that a non-replicated database
can execute C transactions per time unit. We assume all
sites have the same capacity. In a non-replicated database,
the entire processing capacity C is used for executing lo-
cal transactions, but sites in the replicated database need to
use some of its processing capacity C for coordination with
other sites. We term the coordination work as remote work.

So, each site i in a replicated database uses a fraction of its
processing capacity for local work (Li) and the remaining
capacity for remote work (Ri), i. e. C = Li + Ri. Then,
the local work performed in a site i is:

Li = C − Ri (1)

The scale out is the sum of the amount of local work
executed at each site, divided by the processing capacity of
a non-replicated database (scaleout =

∑ n
i=1 Li

C ). That is,
how many times the capacity of a non-replicated system is
increased when it is replicated. The more local work (Li)
each site executes, the better the scalability of the system.
The total amount of local work Li at site i is the sum of
accesses to objects Ok stored at i (Eq. 2). The objects stored
at site i are defined by the function r(i, k).

Li =

o∑

k=1

C · r(i, k) · aik, ∀i = 1..n (2)

Since our model uses asymmetric processing, writes on
an object Ok at site i impose some (remote) work in the
other sites that also store a copy of Ok. We call this fraction
of remote work the writing overhead, wo, 0 ≤ wo ≤ 1.
Therefore, the amount of remote work, Ri, at site i is a
fraction (wo) of the writes on every object Ok stored at site
i that are executed at the rest of the sites that store a copy of
that object (Eq. 3).

Ri = wo ·
n∑

j=1,j �=i

o∑

k=1

r(i, k) · r(j, k) · ajk · ujk (3)

Therefore, replacing Li and Ri in Eq. 1 with the expres-
sions in Eq. 2 and Eq. 3 we obtain:

o∑

k=1

C · r(i, k) · aik =

C − wo ·
n∑

j=1,j �=i

o∑

k=1

r(i, k) · r(j, k) · ajk · ujk, ∀i = 1..n (4)

However, maximizing the amount of local work (Li)
each site processes may lead to saturation of other sites. For
instance, let us assume that there are three sites {s1, s2, s3},
two objects {O1, O2} and a writing overhead wo = 0.75.
s1 stores {O1}, s2 = {O2}, and s3 = {O1, O2}. That is,
s1 and s2 are partial replicas and s3 is a full replica. Fur-
thermore, s1 and s2 use their entire processing capacity for
local work (Ri = 0, Li = C at both sites). The amount
of remote work at s3 is R3 = (C + C) ∗ 0.75 = 1.5C.
That is, the amount of remote work at s3 surpasses its pro-
cessing capacity, and therefore, that site is saturated. In or-
der to avoid saturation of some sites, some of the remain-
ing sites cannot use their entire capacity, e. g. in the pre-
vious example, if s1 and s2 use only 2

3 of their capacity,
R3 = (2

3C + 2
3C)0.75 = C, s3 could process all remote

work. We model this fact by reducing the capacity of sites.
Ci (0 ≤ Ci ≤ 1.) is the percentage of the capacity site i
uses to prevent saturation of other sites. So, equation 4 is



now defined as follows:
o∑

k=1

C · r(i, k) · aik =

C · Ci − wo ·
n∑

j=1,j �=i

o∑

k=1

r(i, k) · r(j, k) · ajk · ujk,∀i = 1..n (5)

Moreover, the model must take into account the work-
load (A,U), and guarantee that the amount of accesses to
each object Ok corresponds with the proportion Ak. So,
each Ak should be equal to the fraction of accesses to Ok

with respect the global number of accesses to all objects:

Ak =

∑n
i=1 C · r(i, k) · aik∑n

i=1

∑o
k=1 C · r(i, k) · aik

,∀k ∈ {1..o} (6)

A similar expression is defined for writes Uk, which are
a proportion of writes of the total number of accesses for an
object Ak.

Ak · Uk =

∑n
i=1 C · r(i, k) · aik · uik∑n

i=1

∑o
k=1 C · r(i, k) · aik · uik

,∀k ∈ {1..o} (7)

Finally, the scale out is the sum of the amount of local
work executed at each site, divided by the processing ca-
pacity of the non-replicated database (Eq. 8).

scale out =
1

C

n∑

i=1

o∑

k=1

C · r(i, k) · aik (8)

So, given a replicated database of n sites with a repli-
cation schema r and a load (A,U), we look for the values
Ci, aik, uik that maximize the scale out solving the opti-
mization problem (non linear program):

max
1

C

n∑

i=1

n∑

i=1

C · r(i, k) · aik (9)

subject to Eq. 5, 6, 7 and the domain of variables: 0 ≤ Ci ≤
1; 0 ≤ aik ≤ 1; 0 ≤ uik ≤ 1;∀i ∈ {1..n};∀k ∈ {1..o}

3.3. Analytical Evaluation

We have analytically evaluated the different replication
strategies for a system with 100 sites. Ao = 0.01 (even
load) and Uk = 0.2 (20% updates) for all objects. To sim-
plify the non linear problem we assume that the amount
of updates on objects are evenly distributed among nodes,
i. e. uik = Uk. This assumption simplifies the non lin-
ear problem into a linear one. We compare the scale out
of full replication, hybrid replication (one site with the full
database and five replicas per object distributed among the
remaining sites) and pure partial replication (five replicas
per object and the database is distributed among 100 sites).
The number of copies per object and the number of partial
replicas (sites storing a fraction of the database) determine
the portion of the database each site stores. For instance, 5

copies and 90 partial replicas means that each partial replica
stores 5

90 of the database. Figure 1 shows the scale out. Full
replication scales to 20 with 40 sites. Then, if more sites are
added to the system, the scale out almost does not increase
(24 scale out for 100 sites). Hybrid replication scales better
reaching a scale out of 35. Pure partial replication shows
the best scalability in that setting with a close to linear scale
out, outperforming the rest of the replication strategies.

The evolution of scale out of pure partial replication for
different numbers of copies per object is shown in Fig.2.
As can be seen, the more copies per object, the less scale
out. With N

2 copies and 100 sites, each site stores half of
the database ( 50

100 = 1
2 ). So, the amount of remote work at

each site is considerable even for a medium percentage of
updates (20%) and therefore, the maximum scale out is 40
for a system with 100 sites. With 2-10 copies per object the
scale out is considerably higher. The reason of the higher
scale out for a smaller number of copies is due to the smaller
overhead that is introduced for remote updates.
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4. One-Copy-Snapshot-Isolation Partial Repli-
cation Protocol

Optimistic asymmetric replication protocols for full
replication execute transactions at a single site and before
committing, a validation process is executed for update
transactions to determine if the transaction conflicts with
any other concurrent update transaction executed at any



other site. In this case the transaction aborts, otherwise,
it commits. This validation process is done only for update
transactions. Since only write-write conflicts are checked
with snapshot isolation, read only transactions can safely
commit when they finish at the site where they were exe-
cuted without any further action.

In order to validate an update transaction the site that ex-
ecutes the transaction multicast (total order) the transaction
updates to all sites. Since all sites know all update transac-
tions, they can validate the transaction without any further
communication. Thanks to the use of total order multicast
(all sites will receive messages in the same order) and the
deterministic validation, all sites will produce the same out-
come for all transactions. One may think that with partial
replication validation should only be executed by the sites
that store data that has been modified. However, this may
produce inconsistencies.

For instance, let us assume that there are three sites
{S1, S2, S3}, the database consists of three objects {a, b, c}.
Site S1 stores S1 = {b, c}, S2 = {a, b}, and S3 = {a, c}.
There are two concurrent transactions executed at S1 and
S2, respectively. t1 updates {b} and t2 updates {a, b}. The
total (multicast) and validation order is t1, t2. If S1 only re-
ceives writesets related to b and c, it would commit t1 and
abort t2 (they are concurrent, conflict and t1 validates be-
fore t2). The same would happen at S2. However, S3 would
validate (and commit) t2 because there is no other concur-
rent conflicting transaction at S3 (S3 does not validate t1
because S3 does not store b). This means that t2 changes to
a would be applied at S3, but not at S1 and S2 yielding to
inconsistencies. If S3 had received t1, t2 validation would
also have failed at S3. Therefore, all sites must receive and
validate update transactions.

Another important issue is the selection of the site where
transactions are executed. Most of the partial replication
protocols do not address this issue. If transactions only
have a single SQL statement, it is easy to determine the
site where the transaction may execute. The system may
provide a directory that stores for each site the data that
site stores. However, if transactions may have several SQL
statements and they are not known a priori, it may happen
that a transaction is submitted to a site that stores the data
used in the first SQL statement but, that site does not store
the data the transaction needs for the following SQL state-
ments. Even if there is a priori knowledge about the data
used by transactions, it may happen that transactions access
a lot of data and therefore, at least one site may have a full
copy of the database. As we have shown with the analyti-
cal model, hybrid replication does not scale. So, a general
solution for partial replication should be able to deal with
distributed transactions.

4.1. Partial Replication Protocol

Snapshot isolation (SI) is a multi-version concurrency
control used in databases [3]. One of the most important
properties of SI is that readers and writers do not con-
flict. When a transaction T begins, it gets a start times-
tamp (T.ST ). This timestamp denotes the snapshot of the
transaction which consists of the latest committed values
(version) of the database (snapshot). Every read operation
of T is performed on the snapshot associated to T . That is,
the snapshot a transaction reads from reflects the number of
committed update transactions at the time that transaction
started. When T updates data, it creates a new version that
becomes valid at the time the transaction commits. Subse-
quent read operations of T will read its own writes. When
T finishes it gets a commit timestamp (T.CT ). The two
timestamps of a transaction are used to validate the transac-
tion, that is, to determine if the transaction will commit or
abort. T will commit if there is no other concurrent com-
mitted transaction Tj that has written some common object.
That is, T commit timestamp is in the interval of the start
and commit timestamp of Tj .

With partial replication the number of committed trans-
actions may be different among sites (not all sites store the
full database). However, all sites validate all update trans-
actions and therefore increment the snapshot value in the
same way.

The protocol proceeds as follows (Fig. 3). A client con-
nects to a site that at least stores the data accessed in the
first operation of the transaction. That site will coordinate
the transaction and associate the transaction with its start
timestamp (T.ST). It will also execute the transaction opera-
tions if the site stores all the needed data. Otherwise, it will
forward the operation to another site (redirect). If the oper-
ation is redirected to another site, that site will execute the
operation and send the results and changes back to the coor-
dinator. When a transaction executes at several sites it must
read from the same snapshot at all the sites. The transaction
start timestamp travels with the transaction. When a trans-
action operation is forwarded to a site, then that site finds
the right snapshot (getDummyTransaction(T.ST )) and ex-
ecutes the forwarded operation in the corresponding snap-
shot.

When a transaction is redirected to another site, that site
may have to apply changes of that transaction before execut-
ing the forwarded operation. For instance, if there are three
sites, S1, S2, S3 and a database with three objects A,B,C.
S1 stores AB, S2 BC and S3 AC. Now a client starts a
transaction at S1 and updates A. Then, it updates C using
information introduced in A. Since S1 does not store C, the
operation is forwarded to S3. However, S3 does not know
the updates executed on behalf of the transaction at S1.
Therefore, the transaction will not be session consistent. It



modified some data and when it reads them later, it does not
see its own changes. For this reason, the changes produced
by a transaction are applied at the forwarded site before
executing the forwarded operation (execute(changes(T ))).
On the other hand, the operation may produce changes that
are also needed at the coordinator and therefore, are propa-
gated with the result of the operation (send(T.coordinator,
result(opj), newChanges(Tk)...)).

When the client submits the commit operation, if it is a
query, the transaction can commit at all participating sites
(multicast(commit,T )). If it is an update transaction the co-
ordinator multicasts in total order the transaction writeset.
Now all sites perform validation. It will be the same at all
sites since all sites have received the same set of transactions
for validation and in the same (total) order. During valida-
tion (validate), the transaction is compared with concurrent
update transactions that already validated (committed). If
validation succeeds, the writeset is applied and T can com-
mit. At sites that have already performed some operations
on behalf of T , applying the writeset will only apply the
missing updates.

When a transaction operation is forwarded from the
transaction coordinator site to another site, the transaction
must be executed using the same snapshot that at the co-
ordinator. For this to be correct, each site starts a num-
ber of dummy transactions after each transaction commit
(startTransaction(), storeDummyTransaction(T ), only one
dummy transaction is started in the algorithm). These trans-
actions are associated with the current database snapshot.
When a redirected operation arrives, an unused dummy
transaction with the correct snapshot will be used for the
execution of this operation (getDummyTransaction(T.ST )).
There is also a garbage collection algorithm (not shown)
that aborts unused dummy transactions corresponding to
old snapshots that will not be needed anymore. Since start-
ing transactions has a negligible cost, as well as aborting
transactions that did not access any data, the strategy attains
its goal with an almost null overhead.

5. Evaluation

5.1. Evaluation Setup

We have evaluated our protocol using the TPC-W bench-
mark [26]. TPC-W simulates an online bookstore and
defines a transactional web benchmark for evaluating e-
commerce systems. TPC-W establishes three different
workloads: browsing (10% updates), shopping (20%), and
ordering (50%). The benchmark establishes a database with
10 tables but provides freedom to change the schema of the
databases as far as all the information of the tables is kept.
We split the table item into two tables to separate the up-
dated part, from the read only part. There is also a new

Initialization
snapshot= 0 ;
commitedTX= ∅;
transactionTable= ∅;

Upon receiving operation opj of transaction T from client
if first(opj , T ) then

T =startTransaction();
T.coordinator = Sk;
T.ST = snapshot;
transactionTable.store(T , T );

end
if dataIsLocal(opj , Sk) then

execute(opj , T.ST );
return result(opj) to the client;

else
redirect(opj , getChanges(T ), T );

end

Upon receiving redirect(opj , changes(T ), T )
if firstOperationAtSite(T) then

Tk = getDummyTransaction(T.ST );
transactionTable.store(T , Tk);

else
Tk =transactionTable.getTX(T );

end
execute(changes(T ) ∩ localData(Sk), Tk);
execute(opj , Tk);
send(T.coordinator,result(opj),newChanges(Tk),T );

Upon receiving (T.coordinator, result(opj), newChanges, T )
return result(opj) to the client;
execute(newChanges ∩ localData(Sk), T );

Upon receiving commit/abort T from the client
if opj = abort then

multicast(abort,T );
else

T.writeset = getWriteset(T );
if T.writeset = ∅ then

multicast(commit,T ));
else

multicastTotal(commit, T );
end

end

Upon receiving (commit, T ) / (abort, T )
if executedAtSiteK(T ,Sk) then

Tk= transactionTable.getTX(T );
commit(Tk) / abort(Tk);

end

Upon receiving (commit,T ) in total order
if not executedAtSiteK(T ,Sk) then

Tj = getDummyTransaction(T.ST );
else

Tj = transactionTable.getTX(T );
end
Tj .CT = snapshot + 1;
if validate(Tj ) then

snapshot = snapshot + 1;
if T.writeset ∩ localData(Sk) �= ∅ then

if not executedAtSiteK(Tj ,Sk) then
execute(Tj , T.writeset ∩ localData(Sk));
DeleteDummyTransaction(Tj );

else
execute(Tj , T.writeset ∩ localData(Sk) not
previously executed);
transactionTable.deleteTX(Tj );

end
commit(Tj ) ;
committedTx = committedTx ∪ {Tj};

end
Tj=startTransaction();
Tj .ST = snapshot;
storeDummyTransaction(Tj );

else
abort(Tj )

end

validate(T)
return �Tj ∈ commitedTX ∧ Tj .ST ≤ T.CT ≤ TjCT ∧
(T.writeset ∩ Tj .writeset �= ∅);

Figure 3. Replication protocol at site Sk



table, stock, with the item id and stock. The item table does
not have the stock attribute. The database was fragmented in
an even way across replicas. Furthermore, read only tables
(item, author, country), order and order line are replicated
at every replica. The database population parameters were
100 emulated browsers and 10,000 items which generated
a database of nearly 650MB. Due to the lack of space we
present the results for the ordering mix that is the most chal-
lenging mix due to the higher update ratio (50% updates),
and can show better the benefits of partial replication.

The experiments were run in a cluster of up to 14 ho-
mogeneous sites running Fedora Core 3 interconnected
through a 100-MBit Ethernet switch. Each site is equipped
with two processors AMD Athlon 2GHz, 1 GB of RAM
running Postgres 7.2 and Yakarta Tomcat 5.5.9.

5.2. Scale Out

This experiment aims at quantifying the scale out for an
increasing number of sites and at the same time compares
the empirical results with the ones provided by the analyti-
cal model. The scale out measures the number of times the
maximum throughput of a non-replicated system is multi-
plied by replicating the system. We ran the ordering mix
of TPC-W for an increasing number of sites and different
degrees of replication: full replication, minimum degree of
partial replication (2 copies per object), and a high degree
of partial replication (number of copies = N/2). For each
configuration TPC-W was configured to inject an increasing
load until the system was saturated (maximum throughput).
The scale out is obtained dividing the maximum throughput
of each configuration by the maximum throughput of one
site.
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Figure 4. Analytical vs Empirical Scale Out

The empirical scale out for full replication was very poor
(Fig. 4). It barely triplicated the maximum throughput of a
non-replicated system with a configuration of 14 sites. With
a high degree of replication (N

2 ), the scale out improves sig-
nificantly, above 5 with 14 sites. What is more, from 10
sites to 14 sites, full replication increases the scale out by
0.25, whilst with N

2 copies the increase is close to 1. With
the minimum degree of replication (2 copies) the scale out

is substantially boosted, scaling till a scaleout factor of 8.
This contrasts sharply with the low scale out of full replica-
tion.

The analytical curves shown in Fig. 4 correspond to the
same setting as the empirical ones. As shown in the figure
the analytical curves almost match the empirical ones and
therefore, the model predicts very accurately the scale out.

5.3. Performance Evolution under Increas-
ing Loads

In this experiment we study the behavior under increas-
ing loads of full and pure partial replication. The perfor-
mance results show both the throughput and response time
(Fig. 5) for 12 replicas. Each graph includes curves for full
replication, and 2, 4 and 6 copies of each object.
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Figure 5. TPC-W Results. 12 sites

The maximum throughput with full replication is 70 tps
(Fig. 5(a)). However, this maximum throughput is achieved
when the system is already in saturation. The throughput
increases up to a load of 100 tps (transactions per second),
but beyond that load, the growth is very mild due to the
system saturation. The response time for full replication is
worse than expected looking at the throughput results (Fig.
5(b)). It increases very sharply till reaching 1200 ms. Then,
it increases with a milder slope. This behavior has to do
with the fact that TPC-W clients are synchronous. That is,
they do not send a request until they receive the response
to the previous one. Therefore, when the server saturates,
the planned load (x axis) is not really achieved. That is why
the response time does not increase exponentially when sat-
uration is reached, as it would happen with asynchronous
clients. The response time stabilizes at about 1.4 seconds.

The partial replication results (2, 4, and 6 replicas per ob-
ject) show that the lower the number of replicas, the higher
the throughput. With a configuration of 6 copies per ob-
ject and 12 sites, each site holds a fraction 6

12 = 1
2 of the

database. The throughput is better than the one of full repli-
cation, reaching a maximum of 110 tps (Fig. 5(a)). This
means a significant increase of 60% over full replication.
The response time stabilizes at 900 ms (a 25% decrease over
full replication). With 4 copies per object, the throughput



increases to a peak of almost 130 tps (20% increase com-
pared to 6 copies). The response time is also smaller, be-
tween 100 and 200 ms for medium and high loads. Finally,
the throughput with 2 copies is the best one, reaching a peak
of 150 tps (Fig. 5(a)). This represents an increase of 210%
over full replication. The response time reaches a maxi-
mum of 600 ms that is a 50% decrease over full replication.
In summary, partial replication does not only scale signif-
icantly more than full replication, but also behaves much
better under overloads as the ones shown in the graphs.

6. Conclusions

We have presented a new protocol for data replication
that overcomes the two scalability limitations of current ap-
proaches: lack of concurrency due to 1CS and the overhead
of full replication. The protocol combines 1CSI and par-
tial replication. We have motivated analytically the need
for partial replication and discarded hybrid replication as an
alternative because of its lack of scalability. The protocol
has been evaluated with TPC-W and the results have shown
excellent scalability as predicted by the analytical model.
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Madis: A slim middleware for database replication. In Int.
Euro-Par Conf., pages 349–359, 2005.
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