
Improving the Scalability of Fault-Tolerant Database Clusters

R. Jiménez-Peris, M. Patiño-Martı́nez�

School of Computer Science
Technical University of Madrid (UPM)

Madrid, Spain
Ph./Fax: +34-91-3367452/12

�rjimenez, mpatino�@fi.upm.es

B. Kemme
School of Computer Science

McGill University
Montreal, Canada

Ph./Fax: +1-514-3988930/3883
kemme@cs.mcgill.ca

G. Alonso
Department of Computer Science

Swiss Federal Institute of Technology (ETHZ)
Zürich, Switzerland

Ph./ Fax: +41-1-6327306/1172
alonso@inf.ethz.ch

Abstract

Replication has become a central element in modern information
systems playing a dual role: increase availability and enhance scal-
ability. Unfortunately, most existing protocols increase availability
at the cost of scalability. This paper presents architecture, imple-
mentation and performance of a middleware based replication tool
that provides both availability and better scalability than existing
systems. Main characteristics are the usage of specialized broad-
cast primitives and efficient data propagation.

1 Introduction

Many information systems are based on clusters where a
number of servers simultaneously share the load and act as
a backup to each other. This dual functionality is increas-
ingly important as the system grows: additional sites can
increase both the processing capacity and the availability of
the system. For this to work, however, the data needs to be
replicated across all servers (for availability) and the load
partitioned to use all available resources (for performance).
Most existing data replication protocols have failed to pro-
vide these requirements: they do not scale and create huge
overheads [7].

What is needed is a replication protocol that can provide
both performance and availability as well as an implemen-
tation that is not intrusive. In this paper we present such a
protocol and its implementation atop existing systems. The
applications we have in mind are clusters of data servers
where requests can be divided into disjoint categories, a typ-
ical situation in e-commerce applications. The replication
protocol we propose guarantees consistency at all times so
that replicas can be used as backups for other replicas. It is
also designed to minimize the processing overhead of repli-
cation, thereby providing a higher scalability than what is
currently possible with existing systems. The main charac-
teristics of our approach are as follows. Transactions are
executed locally and only their changes are sent to the other
sites reducing the execution overhead of replication. The
usage of a special form of total order multicast (in which
transaction execution overlaps with the time needed to de-
termine the total order of messages) reduces transaction re-
spone time by minimizing message latency. Furthermore,

�This work has been partially funded by the Spanish Research Council
(CICYT), contracts TIC98-1032-C03-01 and TIC2001-1586-C03-02.

it allows for concurrent execution of transactions without
sophisticated mechanisms. The system is implemented as
a middleware layer requiring only little functionality from
the underlying data sources. This shows that efficient repli-
cation is feasible in layered and component-based systems.

2 Motivation

2.1 Limitations of Data Replication

A replicated database consists of a group of nodes (sites).
Each site has a copy of the database. Clients interact with
the system by submitting transactions to any site. Each site
coordinates the execution of the transactions submitted to
it. A transaction is called local at the site it is submitted to,
and remote at the other sites. Nearly all commercial systems
use the read-one write-all available (ROWAA) approach in
which queries (read-only transactions) are executed locally,
while update transactions are executed at all currently avail-
able sites. The write-all policy has important implications
since each site has not only to process its local transactions
but also the updates of remote transactions.

Assume we have � sites in the system, each being able to
execute � transactions per second (tps). Each site executes �
local transactions and a number of remote transactions. This
number depends on the proportion of update transactions
(�). That is, at each site � � � � � � ��� �� � � (i.e., each
site processes its local queries and updates transactions, �,
plus the update transactions arriving at the other sites, ���
�� � � � �). The relative throughput of a site �, or scale-
out (���), is the work it performs on local transactions, �,
divided by its nominal capacity, �. From here, the scale-out
factor for the entire system, ��, can be obtained as the sum
of the scale-out factors of each site:

�� �
�

� � � � ��� ��

The scale-out factor indicates how much of the nomi-
nal capacity of the system, �, remains after replication has
been taken into consideration. It clearly varies with the per-
centage of updates in the load. If we perform only updates,
� � �, the scale out factor is 1, indicating that the overall
capacity is the same as that of a single site. Similarly, with
only queries, � � �, the scale out factor is n, indicating the
system has linear scalability. Fig. 1(a) shows the overall
scalability for an increasing number of sites as a function of
�. The interesting aspect is that even relatively small values

(A) Scaleout for different valuesw (B) Scaleout for different valueswo (C) Scaleout for = 0.15 and differentwo w

0

3

6

9

12

15

1 3 5 7 9 11 13 15sites

so
w = 0

w = 0.25

w = 0.5

w = 0.75

w = 1

0

1

2

3

4

5

1 3 5 7 9 11 13 15sites

so
wo = 0.15

wo = 0.25

wo = 0.5

wo = 0.75

wo = 0.85

wo = 1

0

3

6

9

12

15

1 3 5 7 9 11 13 15sites

so
w = 0

w = 0.25

w = 0.5

w = 0.75

w = 1

Figure 1: Scale-out for different values of � and ��

of � have a significant effect on the scalability. To further
understand this behavior, we need to examine what happens
to write operations. At the local site each write operation
must be parsed and executed. In many existing replication
protocols, this price is paid by all sites. Alternatively, the lo-
cal site can, instead, send the physical updates to the other
sites so that they only have to install the changes. With
this idea, for any site, the cost of a remote transaction (de-
noted rt) is smaller than the cost of a local one (denoted lt).
We capture this notion by introducing a writing overhead
�� � ��	
�. The writing overhead is maximal, �� � �,
when the cost of executing the local part of a transaction is
the same than the cost of executing its remote part. From
here, the scale-out factor becomes:

�� �
�

� � �� � � � ��� ��

Fig. 1(b) shows that for small values of the writing over-
head, the scalability of the system can be improved even if
the load consists of only update operations. This improve-
ment is also significant when the load is not just updates
but also includes read operations (Fig. 1(c)). The intuition
behind this behavior is clear: the smaller ��, the lower the
cost of remote transactions and the less work a site has to do
on behalf of other sites. Since sites have more spare capac-
ity, the overall processing capacity of the system increases
accordingly and hence the increase in throughput as more
sites are added. This means, in order to achieve scalability
the workload must be query oriented (small �) and updates
must be propagated and applied efficiently (small ��).

2.2 Related Work

The limitations of replication are well known. Gray et al.
[7] provided an empirical evaluation of them and concluded
that conventional replication protocols [4] are unfeasible in
practice. In an effort to resolve these limitations, proposals
have been made to develop data replication using reliable
total order multicast primitives [17, 13, 12, 16, 10, 11, 2, 1].

In this paper we borrow and expand solutions proposed
in these previous efforts. The starting point is a protocol
that has the potential to reduce the replication overhead in
a clustered system [15]. This protocol exploits existing op-
timization techniques [13] to conceal the time required to

establish the total order behind the execution of the trans-
actions. Unlike previous work [12], this paper focuses on
replication that can be performed on a middleware layer
atop existing databases. The architecture of our system is
quite similar to [1] but the focus of the research is different.
[1] analyzes how to provide availability even in wide area
networks, our focus is to provide efficient, concurrent, and
scalable execution in cluster configurations.

3 Replication Protocol

In what follows, we give a short overview of the protocol we
use in our system. It was first proposed in [15]. The pro-
tocol assumes that sites communicate by exchanging mes-
sages and only fail by crashing. Each site contains a copy
of the entire database and the correctness criterion is one-
copy-serializability [4].

3.1 Execution Model

We follow the read-one write-all available approach of ex-
isting systems. Furthermore, we assume that queries are ex-
ecuted at their local site using snapshot isolation [3, 20, 14].

As explained above, load partitioning is an important as-
pect of cluster based systems. This partitioning can be best
done when working at the middleware layer and it is a com-
mon strategy when working with web servers. The idea is
that the designer of a site identifies parts of the expected
load that can be processed independently (e.g., different cat-
egories of auctions) and allocates each part to a different
site. Other sites have a copy of the data to act as a backup
and to facilitate read only operations over that data. We
capture this idea using the notion of conflict class.

The available data is initially partitioned into basic con-
flict classes. Basic conflict classes are disjoint and can be
as small as a tuple or a selection over a table. These ba-
sic conflict classes are then grouped into compound conflict
classes. Compound conflict classes do not need to be dis-
joint but they need to be distinct. The load is partitioned
based on compound conflict classes. Each compound con-
flict class has a master or primary site. A transaction � can
access any compound conflict class and we assume that the
class it will access is known in advance (��). The same

mechanisms used in complex web sites to forward a request
to the appropriate site can be used to identify the compound
conflict class accessed by a transaction.

We say that a transaction, � , is local to the master site of
�� and it is remote everywhere else. For example, assume
there are two sites
 and
 � and two basic conflict classes
�� and ��.
 is the master of the compound conflict class
���� and
 � is the master of the compound conflict classes
���� ��� and ����. A transaction updating �� is local at

 and remote at
 �, a transaction updating both�� and��
will be local at
 � and remote at
 . Queries over any of
these basic conflict classes can be local to either
 or
 �.

With this, a transaction � is processed as follows. At its
start, � is broadcast to all sites. Only � ’s master site ex-
ecutes � . After completing the execution, the master site
broadcasts a commit message to all other sites and piggy-
backs to this message the result of all modifications per-
formed by � (i.e., the write set of �). Upon receiving these
modifications, a remote site proceeds to install the changes
directly without having to execute the transaction.

For concurrency purposes, we use a simplified version of
a lock table: each site has a queue ��� associated to each
basic conflict class ��. Upon delivery of a transaction �
that accesses a compound conflict class �� , each site (local
or remote) adds � to the queues of the basic conflict classes
contained in �� .

3.2 Communication Primitives

Update transactions are propagated to all sites using group
communication primitives [8, 5, 6]. We assume a virtual
synchronous system [5], where all group members see mem-
bership changes at the same logical instant.

Two messages are broadcast per update transaction: a
message containing the transaction itself and a commit mes-
sage with the updates performed. Commit messages are just
reliable broadcast, no ordering guarantees are needed. The
broadcast used to send update transactions to all sites needs
total order semantics. This order determines the serializa-
tion order of the transactions. We use an aggressive version,
optimistic delivery total ordered broadcast [13], of the opti-
mistic total-ordered broadcast presented in [18].

Optimistic delivery in total ordered broadcast takes ad-
vantage of the fact that in a local area network, messages are
often spontaneously totally ordered. This optimistic deliv-
ery broadcast is defined by three primitives. To-broadcast(m)
broadcasts the message� to all the sites in the system. Opt-
deliver(m) delivers message � optimistically to the appli-
cation (with no order guarantees). To-deliver(m) delivers�
definitively to the application (in a total order). A sequence
of opt-delivered messages to an application is a tentative
order. A sequence of to-delivered messages to an appli-
cation is the definitive order or total order. Messages can
be opt-delivered in a different order at each site, but are
to-delivered in the same order at all sites. The properties
of optimistic broadcast ensure that every to-broadcast mes-
sage is eventually opt-delivered and to-delivered by every
site in the system. They also ensure that no site to-delivers
a message before opt-delivering it.

By delivering a message in two steps (opt-delivery and
to-delivery) we are able to overlap transaction processing
with the time needed to determine the total order. In the tra-
ditional approaches (see Fig. 2 (a)), first the total order of a
transaction is determined, then the transaction is executed.
In our approach, a message is opt-delivered as soon as it is
received from the network and before the definitive order-
ing is established. Transaction processing can start directly
after the opt-delivery (Fig. 2 (b)).

(a) Regular delivery

(b) Optimistic delivery

Figure 2: Optimistic execution

3.3 Replication Protocol

We describe the protocol (Fig. 3) according to different
events that occur during the lifetime of a transaction � : � is
opt-delivered,� is to-delivered,� completes execution, and
� commits. One important issue is that a transaction can
only commit when it has been executed and to-delivered.
Each transaction has two state variables to ensure such a
behavior. The executed variable is set when the execution
of a transaction finishes. The committable variable indicates
whether the transaction has been to-delivered.

When a transaction � is opt-delivered, it is queued in all
the basic conflict classes it belongs to. This is done at all
sites. At the master site of � , once � is the first transaction
in all the queues, it will be submitted for execution.

At the time � completes its execution (this can only hap-
pen at its master), the to-delivery of � might have already
taken place or not. If that is the case, � can be committed
since it is the first transaction in all its queues and there can-
not be a conflicting transaction ordered before � neither in
the tentative order nor in the definitive order. The commit
message (with the write set) is then broadcast to all sites.
If the transaction has not been to-delivered, it is marked as
executed. Waiting for the to-delivery before committing the
transaction is necessary to avoid conflicting serialization or-
ders at the different sites.

When the to-delivery message of � is processed at � ’s
master site, � can be already executed. In this case, � is the
first transaction in all its queues and there is no mismatch
between the optimistic and the definitive orders. With this,
� can commit, and the commit message is broadcast to all
sites. If the transaction has not yet been executed or is not

Upon Opt-delivery of ��
For each conflict class �� � ���

Append �� to the queue ���

EndFor
Once �� is the first in all queues
� Local(��)

Submit �� for execution

Upon TO-delivery of ��:
Mark �� as committable
If �� is executed then

Commit ��
Remove �� from all ���
Broadcast commit (����)

Else (still active or not local)
For each �� � ���

If First(���) = �� � Local(��)
� � Committable (��) then

Abort ��
EndIf
Schedule �� before the first not

to-delivered transaction in ���

EndFor
EndIf

Upon complete execution of ��
If �� is marked as committable then

Commit ��
Remove �� from all ���
Broadcast commit(����)

Else
Mark �� as executed

EndIf

Upon receiving commit(����)
If � Local(��) then

Delay until �� becomes committable
� �� first in all the queues

Apply the updates of ����
Commit ��
Remove �� from all ���

EndIf

Figure 3: Replication protocol

local, the protocol checks for mismatches between the ten-
tative and the definitive total order that would lead to incor-
rect executions. If any conflicting transaction � � was opt-
delivered before � but not yet to-delivered (mismatch be-
tween opt- and to-delivery order), it is incorrectly ordered
before � in the queues they have in common. Hence, �
and � � must be reordered such that � is scheduled before
� �. This reordering step might lead to aborting a transac-
tion. This would happen if � � was already executing or
had already completed its execution and was waiting to be
committed. However, note that the abort only occurs at the
site where � � is local (on all other sites � � is remote; thus,
reordering only requires to switch the transactions in the
queues). Moreover, the probability for this situation to oc-
cur is quite low as it requires that messages get out of order
and that the messages that are out of order correspond to
transactions that conflict and one of the transactions is be-
ing or has been executed at that site.

A local transaction commits by submitting a commit to
the database. At remote sites, the updates received in the
commit message are applied after the transaction has been
to-delivered to ensure that the updates are applied follow-
ing the total (serialization) order. When the updates are ap-
plied and the commit has been submitted to the database,
the transaction is removed from the queues. As shown in
[15], this protocol guarantees 1-copy serializability.

4 Implementation
4.1 Architecture

Each site has a replica manager (Fig. 4) running an instance
of the replica control protocol. The replica managers are
implemented as a middleware layer, located between the
clients submitting transactions and the database.

The transaction manager implements the replication pro-
tocol. It maintains the conflict class queues and controls the
execution of the transactions. It coordinates with the other
sites (exchanging commit messages) and interacts with cli-
ents (receiving transaction request and sending results) thro-
ugh the communication manager, and it submits transac-

Figure 4: Main components

tions to the database through the connection manager.
The communication manager is the interface between

the transaction manager and the group communication sys-
tem (in our current system Ensemble [9]). Its task is to
pipeline all messages (sending transactions and commits,
opt- and to-delivering transactions, and delivering commits).

The transaction manager interacts with the database thro-
ugh the connection manager. In our current implementa-
tion, we use PostgreSQL [19], version 6.4.2, as underlying
database system. The connection manager keeps a pool of
processes available, each one of them with an open con-
nection to the database. This acts as the connection pool-
ing mechanisms found in modern middleware tools. Using
this pool, transactions can be submitted and executed with-
out having to pay the price of establishing a connection for
each of them. At the same time, the processes can be used
concurrently, thereby allowing the transaction manager to
submit to the database several transactions at the same time.

4.2 Execution of Update Transactions

Upon receiving a transaction from a client, the transaction
manager checks whether it is a query or an update transac-
tion. If it is a query, it will be executed locally. Otherwise
it broadcasts the update transaction to all sites using the op-

timistic delivery total order broadcast. When the commu-
nication manager opt-delivers an update transaction � , it
enqueues the transaction in the queues of the basic classes
that correspond to the compound class the transaction wants
to access. If the site is the master for that compound class,
then � is local to that site. When � is at the head of all of
its queues at its master site, the transaction manager sends
the transaction to the connection manager that in turn issues
a begin transaction (���) and starts submitting operations
for execution at the database. Once execution is completed,
the transaction manager will not commit � until its defini-
tive order is confirmed (the transaction is to-delivered). If
the definitive (to-delivery) and tentative order (opt-delivery)
agree, the transaction manager will commit � by issuing a
commit to the connection manager. The connection man-
ager, in turn, will return the result of � and its write set to
the transaction manager. The transaction manager will re-
turn the results to the client, send a commit message with
the updates to all the sites through the communication man-
ager, and remove � from the queues. If the definitive (to-
delivery) and tentative order (opt-delivery) do not agree,
the transaction manager establishes whether the ordering
problem affects transactions that conflict. If this is not the
case, the ordering problem is ignored (the transactions do
not conflict; transitive closures for transactions accessing
compound classes that overlap are also captured by the to-
delivery). If the ordering mismatch affects transactions that
conflict, the serialization order obtained so far (following
the opt-delivery order) is incorrect (it should have followed
the to-delivery order) and � must be aborted. This is done
by issuing an abort to the connection manager and reorder-
ing � accordingly in the queues. No communication with
the rest of the sites is needed, since they will not apply the
transaction updates until the local site completes.

If the transaction is remote, the transaction manager waits
until it is at the head of all its queues, it is to-delivered,
and its commit message has been received. The transaction
manager then asks the connection manager to install the up-
dates on the local copy. Once the transaction is completed,
the transaction manager removes it from all the queues.

4.3 Execution of Queries

Queries are executed only at their local site. The idea is that
queries are executed using snapshot isolation so that they do
not interfere with updates. However, and unlike commercial
products, PostgreSQL does not provide snapshot isolation.
We solve the problem by giving queries a preferential treat-
ment. Since queries are not sent to all sites, only the local
site sees the query. Thus, as long as the local site makes
sure that the query does not reverse the serialization order of
updating transactions, it can execute the query at any time.
This can be easily enforced by queuing the query after trans-
actions that have been to-delivered and before transactions
that have not yet been to-delivered. By doing this, the site
can be sure that, no matter what happens to the update trans-
actions, their serialization order will not be altered.

4.4 Optimistic Delivery

We have used Ensemble [9] as communication layer. How-
ever, Ensemble or other available group communication sys-
tems do not support a total order broadcast with optimistic
delivery. We bypass this limitation by implementing the
total order broadcast in two steps. First, the client sends
the message using ip-multicast. Immediately after that, the
message is sent again using the Ensemble reliable total or-
der broadcast. The delivery of the first message represents
the opt-delivery, the delivery of the second represents the to-
delivery. As ip-multicast is unreliable, a total order broad-
cast can be received without having received the optimistic
message. In that case, before delivering the total order mes-
sage (to-delivery), an opt-delivery is automatically triggered.

4.5 Interaction with the Database

In terms of direct interfaces to the database engine, our
implementation requires two services from the API of the
database engine. The first is a service to obtain the write
set of a transaction (the new physical values of the modified
tuples) and the second is a service that installs changes in-
stead of executing a transaction. These two services exist in
most commercial databases although they are not always di-
rectly accessible. Nevertheless it is possible to use the tools
that database engines provide to extent their functionality
to make these services visible to the outside. Thus, for all
intents and purposes, the protocol we propose can be used
with most commercial database engines.

5 Experimental Results

5.1 Parameters of the Experiments

All the experiments have been run in a cluster of 15 SUN
Ultra-5 10 (440MHz UltraSPARC-IIi CPU, 2 MB cache,
256 MB main memory, 9GB IDE disk) connected through
a 100Mbits Fast Ethernet network.

The database used for the experiments consists of 10 ta-
bles, each with 10,000 tuples. Each table has five attributes:
two integers, t-id (which also acts as the primary key) and
attr1, one 50 character string (attr2), one float (attr3) and
one date (attr4). The only index on the table is an index on
the primary key. The tuple size is slightly over 100 bytes,
which yields a database size of more than 10MB.

The load in the database is divided among update trans-
actions and queries. Since there is an infinite range of pos-
sibilities in terms of how many read and write operations a
transaction can have, we have simplified the load to make
the results better understandable. We will consider update
transactions that do not perform any read operation (worst
case). The percentage variation between read and writes in
the load is controlled by varying the relative number of up-
date transactions vs. queries in the load.

The structure of the transactions used in the experiments
is as follows. Update transactions have one or more update
operations of the type:

update table-i set attr1="randomtext",
attr2=attr2+4 where t-id=random(1-10000)
Queries are structured as operations that scan a whole table
and perform operations over all the data they read:
select avg(attr3), sum(attr3) from tab

Transactions have conflict rates between 10 and 20% (i.e.,
transactions have a 10-20% probability of conflicting with
another transaction when they execute). For simplicity in
the experiments, we have not used compound conflict classes
but coarse granule basic classes. Each basic class encom-
passes ��	���

��
data items within each table (i.e. ���	���

��
data

items in total) and there is a total of 16 conflict classes.
Such a setting reflects a typical partition of the load in a
cluster based web site. Transactions are submitted at a rate
that varies from experiment to experiment and are evenly
distributed among all the replicas. Table 1 summarizes the
parameters of the experiments.

Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4
Database size 10 tables of 10,000 tuples each
Tuple size approx. 100 bytes
of servers 1-15
% of update txn 100% 0-100% 0-100% 100%
of upd op. in txn 5 8 8 1
txn per second 10 max. 10-110 20-260
write set size 504 804 104

Table 1: Experiment Parameters

5.2 Other Eager Replication Solutions

A first question that needs to be addressed is whether the
protocol we propose really solves the limitations of con-
ventional replication protocols (e.g., those described in [4]).
Gray et al. [7] showed that these conventional protocols do
not scale and, in particular, that increasing the number of
replicas would increase the response time of update trans-
actions and produce higher abort rates. To test the protocol,
we have compared the scalability in terms of response time
of our solution with that of a commercial product that im-
plements replication based on standard distributed locking
(Fig. 5.2, borrowed from [12]). For this experiment we used
a fixed load of 5 update transaction per second and increased
the number of sites in the system from 1 to 5 (the reason for
using such a low load is that distributed locking could not
cope with anything higher).

The results for distributed locking reflect the behavior
predicted by Gray et al. The behavior clearly corresponds
to a system that does not scale: for a fixed load, the re-
sponse time increases as the number of sites increases. In
this experiment the long response times are mainly due to
the fact that distributed locking has a significant amount of
messages all within the boundaries of the transaction. Our
system in comparison was quite stable. For the range of
sites explored the response time did not vary, showing that
the message overhead is not significant and that the system

Standard Distributed Locking

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sites

R
e
s
p

o
n

s
e

T
im

e
(m

s
)

Standard Distributed Locking (5 upd)

Scalable replication (5 upd)

Figure 5: Comparison with Distributed Locking

is easily able to handle the small extra workload when more
sites are added.

5.3 Throughput Scale-out

In the second test we examine how the processing capacity
of the system (throughput) varies as more sites are added.
We have run three sets of experiments to see how the system
behaves when the load is read only, write only, and a mix-
ture of both. The update transactions used perform 8 update
operations each and have been designed to take about the
same time as a query (to ease the comparison).

In the experiments, we first measured the maximum thro-
ughput delivered by a site. Then we used this 1-site through-
put to determine how much the system scales for a given
number of sites by measuring the maximum throughput for
that number of sites. The number of sites varies from 1 to
15. The results are shown in Fig. 6.

Throughput Scale-out

1

3

5

7

9

11

13

15

1 3 5 7 9 11 13 15
sites

s
c
a
le

-o
u

t

0% upd

50% upd

100% upd

Figure 6: Scalability for different transaction loads

The linear scalability for read only loads (0% updates) is
an obvious result of the protocol we propose. Since queries
are executed only at one site and no information is propa-
gated to the other sites, a system with
 sites has a pro-
cessing capacity that is
 times larger than that of a sin-
gle site. Note, however, that this scalability could have
not been reached with a replication protocol based on quo-
rums (where read operations do create redundant work). At
the other extreme, for a write only load (100% updates)
the scalability is limited but there is some scalability. The
fact that, within the range tested, the scale-out is at least
30% of the number of sites is a significant gain over con-
ventional protocols where the scalability would have been
0% [7]. In view of the analytical model, this proves that
the protocol and implementation we propose indeed elimi-

nates a fair amount of the redundant work done in the sys-
tem (e.g., the writing overhead �� is around 0.15, a quite
small value). Since the load we considered is only database
load, the gain is relatively small. We are confident that
once more complex transactions are involved (e.g., trans-
actions that generate web pages with the results), this gain
will be even more significant. The third experiment (50%
updates) shows how the scalability improves as the propor-
tion of queries increases (i.e., a decreasing � in the analyt-
ical model). This curve indicates how real systems (with a
mixed load) will perform: the more queries, the more the
scalability curve will resemble the upper one (0% updates);
the more updates, the more the scalability curve will tend
towards the lower one (100% updates).

5.4 Response Time Analysis

In this third experiment we try to find out the limits of the
protocol by exploring when the response time becomes un-
acceptable. The idea is, given a system with a fixed number
of sites, to increase the load while observing the response
time until the response time is too high. As above, we con-
sider loads of 0%, 50%, and 100% updates. We consider
systems with 5, 10, and 15 sites. The transactions used
are the same as in the previous experiment. The results are
shown in Fig. 7(a-c).

Workload Analysis (100% upd)

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100 110
Workload (tps)

R
e

s
p

.
ti

m
e

(m
s

)

5 rep

10 rep

15 rep

Workload Analysis (50% upd)

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100 110
Workload (tps)

R
e

s
p

.
ti

m
e

(m
s

)

5 rep

10 rep

15 rep

Workload Analysis (0% upd)

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100 110
Workload (tps)

R
e

s
p

.
ti

m
e

(m
s

)

5 rep

10 rep

15 rep

Workload Analysis (5 rep)

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100 110

Workload (tps)

R
e
s
p

.
ti

m
e

(m
s
)

0% upd

50% upd

100% upd

Workload Analysis (10 rep)

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100 110
Workload (tps)

R
e

s
p

.
ti

m
e

(m
s

)

0% upd

50% upd

100% upd

Workload Analysis (15 rep)

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100 110
Workload (tps)

R
e

s
p

.
ti

m
e

(m
s

)

0% upd

50% upd

100% upd

(A)

(B)

(C)

(D)

(E)

(F)

Figure 7: Response time for different transaction profiles
and configurations

In all figures we observed a relatively flat evolution of the
response time until the system is saturated and can no longer
respond. As expected, the response time is essentially flat
for read only loads but it does not increase significantly for
write only loads. Also in all figures, the saturation point is
reached at lower loads the higher the proportion of update
transactions. With respect to each other, the saturation point

moves to higher loads as the number of sites increases. This
is also a good sign in terms of scalability as it indicates that
for a given cluster, we can increase the throughput (experi-
ment 2) by adding more sites without affecting the response
time in any significant way. In addition, and interesting as
well from the point of view of scalability, the growth in re-
sponse time when the saturation point is reached is less ex-
plosive as the number of sites increases. This indicates that
larger systems have a much more graceful degradation than
smaller systems (a 50% update is a relatively high update
rate; most systems have a larger proportion of queries and
their response time curve will be somewhere between that
for 50% updates and that of 0% updates). Finally, as the
analytical model indicates, the response of any replication
protocol is strongly determined by the proportion of updates
in the load. For 100% update rates, the saturation point and
the behavior of the system varies only slightly as the num-
ber of sites increase. This is due to the fact, seen in the pre-
vious experiment, that for high update rates, adding more
sites does not significantly scale the system upwards.

This effect can be better observed in Figures 7(d-f) where
the same results are grouped by the update rate rather than
by system size. One interesting observation is the fact that
for loads below the saturation point, the response time is
exactly the same independently of the number of sites used
(a similar result as that shown in experiment 1 but for much
higher loads). The change in slope for the evolution of the
response time for different update rates can be explained as
it was done in the analytical model. At very low transac-
tion rates, there is plenty of time to process write sets and
transactions. As the transaction rates grow, the spare time
diminishes and thus, the time devoted to process write sets
starts to affect the transaction response time. For very high
update rates, the amount of redundant work increases to the
point that, as the load increases, there is less spare capac-
ity in the system and, therefore, the response time grows as
transactions have to wait longer to be executed.

5.5 Communication Overhead

When using group communication primitives, the system
built can only scale as much as the underlying communi-
cation tool. In particular, our implementation requires two
messages per transaction and it could be questionable whe-
ther the optimistic protocol we use is feasible in practice. In
order to test this aspect of the system, we have performed a
test with as many small update transactions as possible and
observed how the system behaves. The transactions used
contain a single update. The response time was measured
for increasing loads and different configurations until the
system was saturated. Fig. 8 shows a flat response time up
to quite high transaction rates (200 transactions per second).
This indicates that the communication does not become a
bottleneck up to that point where the system saturates. At
that stage, it does not matter what happens to the commu-
nication layer since the system is incapable of dealing with
the load anyway. Thus, for the purposes of cluster based
systems, the use of group communication primitives does
not seem to be the limiting factor.

A last point to note regarding this experiment is the dif-
ference in scalability for short transactions (Fig. 8) and me-

Small Transactions

0

100

200

300

400

500

600

20 50 80 110 140 170 200 230 260
Workload (tps)

R
e
s
p

o
n

s
e

T
im

e
(m

s
)

5 rep

10 rep

15 rep

Figure 8: Small transactions

dium transactions (Fig. 7(d)). The reason is that for short
transactions the constant overhead associated with process-
ing a transaction remotely is quite large in relative terms.
Thus, there is no that much redundant work to reduce. The
longer the transaction the bigger the effect of reducing the
writing overhead,��, and the higher the scalability.

5.6 Aborts

A last aspect of the protocol we propose is the rate of aborted
transactions it generates. Optimistic delivery of messages
allows reducing the response time of transactions but some
transactions might be aborted when there is a mismatch
between the optimistic and definitive order for conflicting
transactions. Unlike what has been observed in other repli-
cation protocols using group communication [10], in our
experiments we observed a very low abort rate. We even
conducted a set of experiments (varying the conflict rate and
introducing hot spots, experiments not shown for reasons
of space) to artificially increase the abort rate and it never
went beyond 0.2%. This is due to the nature of the proto-
col, which in order to abort a transaction requires that the
messages get out of order and that those transactions con-
flict and one of the transactions is local and is executing (or
has been already executed). An interesting property of the
algorithm is that the more sites in the system, the lower the
probability of a transaction being local at a site, and thus,
the lower the probability of an abort caused by messages ar-
riving out of order. On the other hand increasing the num-
ber of sites increases the probability of messages getting out
of order. These two opposed forces compensate each other
when increasing the number of sites, and the experiments
show that this compensation keeps the abort rate very low
up to 15 sites.

6 Conclusions

In this paper we propose a middleware layer based on group
communication primitives that exhibits a good scalability
and circumvents the known limitations of existing proto-
cols. One of the key features of this middleware layer is
that it only requires two services from the database API that
are implemented in most commercial databases, instead of
modifying the whole database. The protocol allows design-

ers to strike a reasonable balance between availability and
scalability as it permits to add more sites to the system and
yet improve both availability and scalability, without com-
promising consistency. The performance results we have
obtained so far indicate that the protocol is a viable solution
in many application scenarios in spite of running it as an
additional middleware layer.

References
[1] Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C. Tutu.

Practical Wide Area Database Replication. Technical Report
CNDS-2002-1, Johns Hopkins University, 2002.

[2] Y. Amir and C. Tutu. From Total Order to Database Replica-
tion. In Proc. of Int. Conf. on Distr. Comp. Systems (ICDCS),
July 2002.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O´Neil, and
P. O´Neil. A Critique of ANSI SQL Isolation Levels. In Proc.
of SIGMOD, pages 1–10, 1995.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison
Wesley, Reading, MA, 1987.

[5] K. Birman. Building Secure and Reliable Network Applica-
tions. Prentice Hall, NJ, 1996.

[6] G. V. Chockler, I. Keidar, and R. Vitenberg. Group Com-
munication Specifications: A Comprehensive Study. ACM
Computer Surveys, 33(4):1–43, Dec. 2001.

[7] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The Dangers of
Replication and a Solution. In ACM SIGMOD’96.

[8] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and
Related Problems. In Distributed Systems, pages 97–145. Ad-
dison Wesley, 1993.

[9] M. Hayden. The Ensemble System. Technical Report TR-98-
1662, CS Dept. Cornell University, Jan. 1998.

[10] J. Holliday, D. Agrawal, and A. E. Abbadi. The Perfor-
mance of Database Replication with Group Communication.
In IEEE FTCS, 1999.

[11] J. Holliday, D. Agrawal, and A. E. Abbadi. Using Mul-
ticast Communication to Reduce Deadlock in Replicated
Databases. In IEEE SRDS, 2000.

[12] B. Kemme and G. Alonso. Don’t be lazy, be consistent:
Postgres-R, A new way to implement Database Replication.
In Proc. of Inf. Conf. on Very Large Databases, VLDB’00,
2000.

[13] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing
Transactions over Optimistic Atomic Broadcast Protocols. In
Proc. of IEEE ICDCS, pages 424–431, 1999.

[14] Oracle. Oracle 8 (tm) Server Replication. 1997.
[15] M. Patiño Martı́nez, R. Jiménez Peris, B. Kemme, and

G. Alonso. Scalable Replication in Database Clusters. In
Proc. of DISC’00, LNCS 1914, pages 315–329, 2000.

[16] F. Pedone and S. Frolund. Pronto: A Fast Failover Protocol
for Off-the-shelf Commercial Databases. In Proc. of IEEE
SRDS, 2000.

[17] F. Pedone, R. Guerraoui, and A. Schiper. Transaction Re-
ordering in Replicated Databases. In IEEE SRDS’97.

[18] F. Pedone and A. Schiper. Optimistic Atomic Broadcast. In
Proc. of DISC, 1998.

[19] PostgreSQL. v6.4.2. http://www.postgresql.com, Jan. 1998.
[20] R. Schenkel and G. Weikum. Integrating Snapshot Isolation

into Transactional Federations. In 5th Int. Conf. on Coopera-
tive Information Systems, Sept. 2000.

