
Graphical visualization of the evaluation of functional
programs

Ricardo Jimenez-Peris,’ Cristobal Pareja-Flores,2
Marta Patifio-Mart(nez,’ J. Angel Velazquez-lturbide’

‘ Depto. de Lenguajes y Sistemas Informaticos e Ingenier(a del Software
Facultad de Informatica. Universidad Politecnica de Madrid

Campus de Montegancedo, s/n. 28060-Madrid. SPAIN

{rjimenez, mpatino, avelazquez}(?fi. upm.es
2Depto. de Informatica y Automatic,

Escuela Universitaria de Estadistica. Universidad Complutense de Madrid
Avda. Puerta de Hierro, sin. 28040-Madrid. SPAIN

cpareja@eucmax. sim.ucm.es

Abstract
The increasing interest in functional programming for computer

science education demands adequate programming environments.

Our work is based on an integrated programming environment
where the evaluation of functional expressions can be seen as a

term rewriting process. Our goal is to facilitate the understanding
of this process. We propose an innovative way to display the
evaluation of functional expressions that combines text and
graphics. Lists and trees constructors are displayed graphically,
while the remaining expressions are shown as text. An adequate
format for graphics and pretty-printing of text gives a very clear

presentation of the evaluation of expressions.

1 Introduction
There is an increasing interest in functional programming for

computer science education, mainly for programming education
(e.g. see [4]), but also for other subject areas [1]. One of the
problems functional programming faces for a wider use in
computer science education is the lack of adequate programming
environments. They should be state-of-the-art ones, i.e. integrated
environments with user-friendly interfaces. In addition, these
environments should not mirror directly tools for imperative
programming, but should adapt them to the characteristics of
functional programming, or even to provide new tools.

We have developed an environment [10] for the functional

language Hope+ [5], that fulfils the previous features. In

particular, it provides the programmer with a view of the
evaluation of functional expressions as a term rewriting process
according to an operational semantics for the language. The user
can observe intermediate expressions obtained during the
evaluation process.

Permission to make digitalhard copy of part or all of this work for personal
or classroom use is grantad without fee provided that mpies are not made
or distributed for profit or Wmmercial advantege, the mpyright noti-, the
title of the publication and Its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.

Integrating Tech. into C.S.E. 6/96 Barcelona, Spain
01996 ACM 0-89791 -844-419610009 ...$505O

Some of the facilities provided to the programmer are: the ability

to choose the evaluation strategy (either eager or lazy), and the

ability to control the progress of the evaluation of expressions. An

expression can be evaluated in three ways: completely, one
rewriting step (step breakpoint), or until the application of a

particular function (a functional breakpoint).

An important problem is the overwhelming amount of

information that can result during the evaluation process. In this
paper, we briefly describe these problems and several solutions,
but we concentrate on the most innovative technique. It consists

of the presentation of expressions yielded during an evaluation, in
a mixed fortnat, both textual and graphical, that provides an

intuitive feeling of which parts of the expression are functional

values and which are not, as well as how the evaluation

progresses.

2 Managing intermediate expressions
The control of intermediate expressions exhibits several
problems, each deserving a separate solution. We only point out
some of these problems and outline the solutions proposed for our
environment

● Too many intermediate expressions.

The programmer must be able to control the evaluation process,

so that just some expressions are shown. The environment offers

three facilities, as mentioned above, and we foresee the
incorporation of others existing in debuggers.

● Presentation of large expressions.

Only those parts relevant for our purposes should be shown.
There are some mechanisms for hiding certain subexpressions,

e.g. syntax-directed editors [7] use elision ‘...’ to represent hidden
parts.

● Discriminating among subexpressions.

This is important for several purposes, such as readability or
knowing the next subexpression to be evaluated. Simple solutions

are pretty-printing or highlighting subexpressions.

● Presentation of structured values.

36

It is a particular case of the last problem, since the structure of
data involved in the computation is not clear, e.g. it is hard to read
an expression denoting a tree. We propose an innovative solution

which displays subexpressions in a mixed fomat, graphical and

textual. The former is used for showing structured values; the

latter is used for the remaining kinds of subexpressions.

3 Visualization of expressions
The representation of structured values by means of expressions is

a powerful feature of functional programming, not available in
standard imperative languages. However, such expressions are
often hard to read: the programmer must ‘parse’ the expression
and build, either mentally or on paper, a picture of the denoted
structure. This problem is illustrated by means of an example.

Consider a function that mirrors a tree:

data tree (alpha)

.= Empty

++
Node(tree(alpha) #alpha#tree (alpha));

dec mirror : tree(alpha) -> tree(alpha);

--- mirror (Empty)

<. Empty;

--- mirror (Node (tl, x, t2))

<= Node(mi.rror (’C2), x,
mirror(tl)) ;

An excerpt from the sequence of expressions produced during an
evaluation is:

+

+
+

+
+

The

mirror (N30de N~d&de (Node (Empty, 5,
Empty) , (Node (EmPty, 6,
Empty), 4, ‘Empty)), 1, Node (Empty, 2,
Empty)))

Node (mirror (Node (Empty, 2, Empty}) ,
1, mirror (Node (Node (Empty, 5,
Empty) , 3, Node (Node (Empty, 6,
Empty), 4, Empty))))

. . .

Node (Node (Empty, 2, Empty) , 1, Node
(Node (Empty, 4, mirror (Node (Empty,
6, Empty))), 3, mirror (Node (Empty,
5, Empty))))

. . .

Node (Node (Empty, 2, Empty), 1, Node
(Node (Empty, 4, Node (Empty, 6,
Empty)) , 3, Node (Empty, 5, Empty)))

previous problem is not exhibited by other classes of

expressions, at least so crudely. For instance, function application
is better understood by the text denoting it, e.g. summation

(1, 10, sqr) for representing the summation of the square of

numbers between 1 and 10, inclusive. Consequently, we have

adopted a mixed format, textual and graphical.

The incorporation of this style of presentation in the environment
will be available both to display expressions and to input the
expressions for evaluation with a graphical editor. We have
prototype this mixed presentation style in the environment,
restricting it to lists and trees, with a prefixed format. In our
prototype, the previous evaluation is shown as in figure 1. Notice
that bounding boxes are displayed to indicate a change from
function to values and vice versa.

mirror(

T----”””----””--”-
AAA ,) p

IL’% I
I

I

FirstRewriting

‘A’[._._....................1
Initial Expression

A

A /-L._...
A[.’V(!AV
—..1..-. ,...

~lmr([jJ)l

Intermediate Rewriting

A
AA

Ad-R
A

Final Result

Figure 1

The usual list notation using brackets is also readable (e.g. see the

list [1, 2, 3]), but it may also become obscure within large
expressions. Consequently, we have also adopted a graphical
visualizations of lists. Figure 2 shows four snapshots of the

preorder traversal of a tree, storing it in a list.

This kind of presentation has several benefits:

● It associates a substantially different presentation for

constructors (graphics) and for other expressions (text). This
helps to distinguish intuitively between values and general
expressions, mainly between values and functions.

● Box nesting is clearer than text nesting. It helps to identify
clearly the syntactical structure of expressions when values and

other classes of expressions are mixed.

● The evaluation progress is clearly shown, e.g. the movement
of function applications towards the leaves in trees or inward in
lists is easily seen, reinforcing the intuition behind algorithms.

preorder([“””--”--”-”””1--1-”--”~”--”~)

~ A-AI
15
AA:

Initial Expression

oI preorder(A)<’preorder(’A’)
Al A’

First Rewriting

u::””::.::..:...:,1 E!lZIII <> preorder(2 :) ~*, ~

Intermediate Rewriting

11]315/412]

Final Result

Figure 2

37

4 Related work
There are a number of systems, similar in several ways, to the one

described in the paper. Algorithm animation systems [6, 8]
provide powerful facilities to make visualizations but they require
a substantial programming effort in contrast to our automatic

displays. Other related works are those about debugging

functional programs [3], but they do not include graphical
presentations. Two exceptions are the works [2] and [9]. The
former visualizes lazy functional programs, providing valuable
help in tracing the often unpredictable behaviour of lazy

evaluation. However, they show a low level representation of
expressions, syntactic graphs. This model is useful for
professionals, not for students. The second work is based on the
visualization of expressions, as is our environment, providing
some graphical aids for control, but not for data.

5 Conclusions
We have presented an innovative way to display the evaluation of

functional expressions that combines text and graphics. Lists and

trees constructors are shown graphically, while the remaining

expressions are shown as text. An adequate format for graphics

and pretty-printing of text gives a very clear presentation of the
evaluation of expressions. We think that the integration of this

mixed presentation style with the rest of the partial solutions
described in section 2 becomes a powerful tool for understanding
the evaluation of expressions based on the operational semantics
of the language.

In the future, we plan to extend this mixed presentation style to

any data type, built-in or user-defined. We will provide a
comprehensive set of graphical formats so that the programmer

can choose one and associate it with a data type declaration.
Expressions will also be input in the same format with a graphical

editor; thus, testing of programs will be easier, keeping a uniform
and friendly interface.

References

1

2

3

4

5

6

7

First International Symposium on Functional Programming

Languages in Education (FP.LE’95). Nijmegen-Plasmolen,

The Netherlands, December 1995.

Foubister, S. P. and Runciman, C. Techniques for

simplifying the visualization of graph reduction. In K.

Hammond, D. N. Turner and P. M. Sansom (eds.)

Functional Programming, Glasgow 1994, Springer-Verlag,

1995, pp. 66-77.

Johnson, M. S. (cd.). ACM SIGSOFTISIGPLAN Software

Engineering Simposium on High-Level Debugging. Pacific

Grove, California, March 1983.

Journal on Functional Programming, January 1993. Special

issue on education.

Perry, N. Hope. Technical Report IC/FPR/LANG/2.5. 1/7,

Dept. of Computing, Imperial College, University of

London, October 1989.

Price, B., Small, 1. and Baecker, R. A principled taxonomy

of software visualization. Journal of Visual Languages and

Computing, 4(l), September 1993, pp. 211-266.

Reps, T. and Teitelbaum, T. Language processing in program

editors. Computer, 20(1 1), November 1987, pp. 29-40.

8 Roman, G. C. and Cox, K. A taxonomy of program

visualization systems, Computer, 26(12), December 1993,

pp. 11-24.

9 Touretzky, D. S. and Lee, P. Visualizing evaluation in

applicative languages, Communications of the ACM, 35(1 O),

October 1992, pp. 49-59.

10 Veltiquez-Iturbide, J. A. Improving functional programming

environments for education. In M. D. Brouwer-Janse and T.

L. Barrington (eds.), Human-Machine Communication for

Education Systems Design, Springer-Verlag, 1994, pp. 325-

332.

Acknowledgements

This work was partially supported by the Spanish agency CICYT,
under project TIC95-0967-C02.

38

