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Abstract

Correlation engines are a key component of modern SIEMs. They employ
user-defined rules to process input alerts and identify the minimal set of meaningful
data that should be provided to the final user. As IT systems grow in size and
complexity, the amount of alerts generated by probes is constantly increasing and
centralized SIEMs (i.e., SIEMs with a single-node correlation engine) start to show
their processing limits.

In this chapter we present a novel parallel correlation engine to be embedded in
next generation SIEMs. The engine is based on Complex Event Processing and on a
novel parallelization technique that allows to deploy the engine on an arbitrary number
of nodes in a shared-nothing cluster. At the same time, the parallel execution preserves
semantic transparency, i.e., its output is identical to the one of an ideal centralized
execution. Our engine scales with the number of processed alerts per second and
allows to reach beyond the processing limits of a centralized correlation engine.

Keywords: Correlation engine, scalability, complex event processing.

1. Introduction

Security Information Management Systems (SIEMs) represent an effective tool to monitor
complex systems and help security IT staff to identify and react to security threats. SIEMs
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provide reliable information abstraction and correlation so that the amount of information
delivered to the final user is free of background noise and identifying real threats as well
as their sources becomes easier. The heart of a SIEM is its correlation engine that employs
user-defined rules to process input alerts and identify the minimal set of meaningful data
that should be provided to the final user.

As IT systems keep growing and become more complex, current SIEMs [Ali10, Pre10]
start to show their limits. They rely on a centralized correlation engine that can not cope
with massive amount of information produced by large and complex infrastructures and are
forced either to shed the load or to queue alerts and delay their processing. This is not an
option in many scenarios where no information can be discarded and real-time processing
of alerts and timely discovery of threats is a must.

Motivation. Complex Event Processing (CEP) [ACc+03, AAB+05, CDTW00, CCD+03,
SHCF03] represents a promising tool to improve current SIEMs. They can process large
amounts of information in real time and provide information abstraction and correlation,
similarly to SIEM correlation engines. Within the context of CEPs, an alert is called an
event, a directive is a query and the rules of a directive are referred to as operators.

Some CEPs offer distributed processing [SHCF03, AAB+05] and, at a first glance,
might seem as a perfect match to overcome the single-site execution limitations of current
SIEMs. However, the scalability achieved by previous CEP proposals is still limited due to
single node bottlenecks (e.g. [AAB+05]) or high distribution overhead (e.g. [SHCF03]).
In particular, current distributed CEPs try to overcome the processing limit of a centralized
execution either with inter-query parallelism or intra-query parallelism via inter-operator
parallelism [CBB+03].

The former allows to run different queries on different nodes. Intra-query parallelism
through inter-operator parallelism, deploys different operators on different nodes so that the
per-event load at each node decreases. However, both options still require the whole data
flow to pass through a single node, that is, no real parallelism is achieved.

Providing real parallelism (i.e., intra-operator parallelism) in CEPs is a challenging task.
A naı̈ve way to achieve it, also known as intra-partition parallelism, dictates to replicate an
operator on several nodes and have each node processing a fraction of the input. Partitioning
the input data over several processing unit is an ad-hoc (hence, error-prone) process. This
strategy allows to overcome the processing capacity of a centralized system because no
node processes the whole input data; however, intra-partition parallelism is a poor match
for SIEMs, where correlation of all the available information is key to threat discovery.
Indeed, with intra-partition parallelism, events that once correlated might reveal a threat,
could be processed by different nodes and the threat might remain hidden.

Contributions. This chapter proposes a novel approach to alert correlation in SIEM sys-
tems. We propose to use CEP systems as the underlying correlation engine of a SIEM, in
order to improve their scalability and applicability in scenarios where massive amount of
alerts must be processed with strict timing requirements.

We introduce a novel parameterizations technique for CEP systems that achieves intra-
operator parallelism [GJPPMV10]. The proposed technique allows to deploy any query
operator on an arbitrary number of nodes in a shared-nothing environment.
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The logical input stream of alerts is partitioned in many physical streams that flow in
parallel through the system so that no node is required to process the whole input. The
parallel system enables throughput rates far beyond the ones allowed by a single processing
node while guaranteeing the correctness of a centralized execution. The result is a highly-
scalable CEP that can process massive amount of input data on-the-fly and that is a perfect
candidate to enhance state of the art SIEM correlation engines.

Organization. Section 2. provides an overview of Complex Event Processing introducing
basic terminology and operators. Section 3. introduces our novel parallelization technique
that allows the correlation engine to scale with the input load while guaranteeing that no
threats are missed. Section 4. provides a concrete example of how to convert a SIEM
directive in a CEP query while Section 5. provides some concluding remarks.

2. Complex Event Processing

Complex Event Processing (CEP) finds patterns of interest over streams of data. A data
stream S is an infinite sequence of events e0, e1, e2, . . . . All events of a stream share a
“schema” that defines the number and type of their attributes; attribute Ai of event e is
referred to as e.Ai. We assume events are timestamped at data sources that are equipped
with well-synchronized clocks managed through, e.g., NTP [Mil03]. In case data sources
clock synchronization is not feasible, we assume events are timestamped at the entry point
of the CEP system. In either case, we refer to the timestamp of event e as e.ts, that is,
timestamp is an additional attribute of all schemas.

Table 1 provides a sample schema of a security event; it lists relevant attributes that
will be used in the examples throughout the chapter. Pair Plugin id and Plugin sid,
identify the sensor that generated the event (e.g, SNORT) and the event type (e.g., FINGER
probe 0 attempt), respectively. Src IP, Src Port and Dst IP,Dst Port specify the two
endpoints that were interested by the event. ts is the timestamp generated when the event
was recorded.

Table 1. Sample security event schema.
Plugin id Id of the device that generated the event
Plugin sid Id of the type of event

Src IP Source IP address
Src Port Source port number
Dst IP Destination IP address

Dst Port Destination port number
ts Timestamp

CEP allow users to specify pattern of interests over incoming data through continuous
queries. The latter is “continuosly” executed over the streaming data, so that each time a
pattern of interest is identified, the result is presented to the user.

A continuous query is defined over one or more input streams and can have multiple
output streams. Queries are modeled as an acyclic direct graph made of “boxes and arrows”.
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Each box (operator) represents a computational unit that performs an operation over events
input through its incoming arrow(s) and outputs resulting events over its outgoing arrow(s).
Each arrow (stream) represents a data flow. An arrow between two boxes means that the
second box consumes events produced by the first one.

Typical query operators of CEP systems are similar to relational algebra operators. They
are classified depending on whether they keep state information across input events. State-
less operators (e.g., Map, Union and Filter) do not keep any state across events and perform
one-by-one computation; that is, each incoming event is processed and an output event is
produced, if any.

Stateful operators (e.g., Aggregate and Join) perform operations on multiple input
events; that is, each incoming event updates the state information of the operator and con-
tributes to the output event, if any. Because of the infinite nature of data streams, stateful
operators keep state information only for the most recent incoming events. This technique
is referred to as windowing. Windows can be defined over a period of time (e.g., events
received in the last hour) or over the number of received events (e.g., last 100 events).

In the following we introduce the basic processing tasks of a SIEM correlation engine
and map them to a CEP operator, providing examples of both its syntax and semantics.
Readers interested in CEP are referred to [GGR12].

2.1. Transforming Events

Raw information conveyed by incoming events might need further processing before being
used for correlation. For example, in order to reduce the per-event processing overhead
and allow higher throughput, events attributes that are not required for correlation, should
be removed as soon as the event reaches the engine. Other transformations include, time-
zone translation of the event timestamp, conversion among metrics (e.g., Celsius degrees to
Fahrenheit degrees), etc.

Event transformation in CEP systems is performed by the Map operator. The latter is a
generalized projection operator defined as

M{A′
1 ← f1(ein), . . . , A

′
n ← fn(ein)}(I,O)

with I and O that denote the input and output stream, respectively. ein is a generic
input event, {A′

1, . . . , A
′
n} is the schema of the output stream and {f ′

1, . . . , f
′
n} is a set of

user-defined functions. Each input event is transformed according to the set {f ′
1, . . . , f

′
n}

and the resulting event is propagated over the output stream. The output stream schema
might differ from the input one, but the output event preserves the timestamp of the input
one. Figure 1 shows a sample Map operator that extracts source IP address and port from
each incoming event. The latter event complies with the schema of Table 1 while output
events have attributes Src IP, Src Port, ts. The syntax of the operator in Fig. 1 is

M{A′
1 = ein.Src IP,A′

2 = ein.Src Port, A′
3 = ein.ts}(I,O)
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Figure 1. Extracting attributes from incoming events.

2.2. Filtering Events

One of the main tasks of the correlation engine is to remove background noise from the
incoming streams of alerts. A basic technique to reduce the load of alerts of interest is
to look into each event and choose whether it is relevant or not, based on its content. For
example, if the engine is monitoring a particular subnetwork, events related to nodes outside
of the monitored set, can be safely discarded.

The CEP operator that is used either to discard events or to route events to different
output streams, depending on the event content is the Filter operator. It is similar to a case
statement and it is used to route input events over multiple output streams. It is defined as

F{P1, . . . , Pm}(I,O1, . . . , Om[, Om+1])

where I is the input stream, O1 . . . , Om, Om+1 is an ordered set of output streams and
P1, . . . , Pm is an ordered set of predicates.

The number of predicates equals the number of output streams and each input event is
forwarded over the output stream associated to the first predicate that the event satisfies.
That is, ein is forwarded over Oj where j = min1≤i≤m{i | Pi(ein) = TRUE}.

Events that satisfy none of the predicates are output on stream Om+1, or discarded if
output m+ 1 has not been defined.

Predicates are defined over the attributes of the input event and include comparisons
between two attributes (e.g.,ein.Src Port = ein.Dst Port )or comparisons between an
attribute and a constant(e.g., ein.Dst Port = 22).

Figure 2 shows a sample Filter operator that routes events based on their Plugin ID
attribute. SNORT events (Plugin ID = 1001) are routed over output O1, while CISCO
Pix events (Plugin ID = 1514) are forwarded over output stream O2; as no additional
output stream has been specified, events with Plugin ID /∈ {1001, 1514} are discarded.
The syntax of the operator in Fig. 2 is

F{ein.P lugin id = 1001, ein.P lugin id = 1514}(I,O1, O2)

2.3. Merging events

SIEM correlation engines collect event from a multitude of sources, so that events need to
be merged in a unique stream before further processing. In CEP systems, the Union operator
merges two or more input streams with the same schema into a single output stream. Input
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Figure 2. Route SNORT and CISCO Pix events, discard others.

events are propagated over the output stream in FIFO order. The Union operator is defined
as

U{}(I1, . . . , In, O)

where I1, . . . , In is a set of input streams and O is the only output stream; all streams
share the same schema. Figure 3 shows a sample Union operator that merges streams from
two SNORT sensors into a single output stream, propagated for further processing. The
operator syntax is

U{}(I1, I2, O)
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Figure 3. Merge SNORT events from two different sensors.

2.4. Aggregating events

In some scenarios, only little information can be inferred from single events, while a greater
knowledge can be obtained aggregating multiple events together. For example, each new
connection to a given node might be of little interest, while the number of connections over
the last, e.g., minute, hour, day, might provide a greater amount of information.
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The Aggregate operator is used in CEP systems to provide information related to group
of incoming events. The operator computes an aggregate function (e.g., average, count,
etc.) over a window of its input stream. It is defined as

Ag{Wtype, Size,Advance,A′
1 ← f1(W ), . . . , A′

n ← fn(W ),

[Group− by = (Ai1 , . . . , Aim)]}(I,O)

Events over input stream I are stored in the current window W until it becomes full.
Wtype specifies the window type that can be either time-based (Wtype = time) or event-
based (Wtype = numEvents). If the window is time-based, it is considered full if the
time distance between the incoming event and the earliest event in the window exceeds the
window Size. In case of event-based windows, a window is full if it contains Size events.

Once a window is full, an output event is produced. Output events are propagated over
stream O and have timestamp equal to the timestamp of the earliest event in the current
window. The output event schema is {A′

1, . . . , A
′
n} and {f1, . . . , fn} is a set of user-defined

functions (e.g., sum, count, average, etc.) computed over all events in the window.
After an output event has been propagated, the window is updated (or “slid” forward)

and stale events are discarded according to parameter Advance. If Wtype = time and ein
is the current input event, a event e in the current window is discarded if ein.ts − e.ts >
Size. If Wtype = numEvents, the earliest Advance events are discarded from the
current window.

Finally, the parameter Group-by is optional and is used to define equivalence classes
over the input stream. In particular, assume Group-by= Ai, where Ai is an attribute of the
input schema. Then, the Aggregate operator handles separate windows for each possible
value of Ai.
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Figure 4. Count open connections for each server on a per-minute basis.
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To further clarify the semantic of operators based on windows, we refer to the Aggregate
operator of Figure 4. The operator counts the number of open connections for each server
(i.e., Group-by= Dst IP ) during the last minute (i.e, Size = 60), with an advance of
twenty seconds (i.e., Advance = 20). It is defined as

Ag{time, 60, 20, A′
1 = count(), Group− by = ein.Dst IP}(I,O)

Figure 4 shows the sequence of input events. Three events refer to a connection to IP
address 192.168.1.3 (Dst IP ) and their timestamps are 0, 40 and 65, respectively. One
event refers to a connection to IP address 192.168.1.4 and is generated at time 15.

Figures 5 shows the window evolution as the above events are received by the operator.
In the following, we provide detailed steps of the operator behavior as events are received.
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Figure 5. Aggregate Sample Time-Based Window Evolution

• Step 1. Event relative to IP address 192.168.1.3 (Dst IP ) with timestamp 0 is re-
ceived.

• Step 2. As this is the first event relative to IP 192.168.1.3, a new window is created
and the event is stored (recall that Group-by= Dst IP ).
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• Step 3. Event relative to IP address 192.168.1.4 with timestamp 15 is received.

• Step 4. As for the previous event, there is no window for events relative to IP
192.168.1.4, so a new window is created and the event is stored.

• Step 5. Event relative to IP address 192.168.1.3 with timestamp 40 is received.

• Step 6. A window for IP address 192.168.1.3 is already defined. No event currently
stored in the window is discarded as the timestamp difference between the input event
(40) and the earliest event in the window (0) is smaller than the window size (i.e., 60
seconds). The incoming event is stored in the window.

• Step 7. Event relative to IP address 192.168.1.3 with timestamp 65 is received.

• Step 8. The window relative to IP address 192.168.1.3 must produce an output as the
timestamp difference between the incoming event (65) and the earliest event in the
window (0) is greater than the window size. The output event is produced considering
the events currently stored in the window (the ones with timestamp 0 and 40).

• Step 9. After the output is produced, the window is slid forward of Advance time
units until the timestamp of the incoming event falls within the current window. Fi-
nally, the incoming event is stored. In the example, the event with timestamp 0 is
discarded; in general, any event with timestamp between 0 and 20 would be removed.

2.5. Correlating Events

The ultimate goal of the SIEM engine is to correlate events coming from different input
streams and extract information of interest. For example, a successful brute-force attack
can be detected correlating a number of denied login attempts followed by one successful
login event.

The Join operator can be used in CEP systems to correlate events from different sources.
It is a binary operator defined as

J{P,Wtype, Size}(Sl, Sr, O)

Sl, Sr are two input streams referred to as left and right, respectively, while O denotes
the output stream. P is a predicate over pairs of events (one from each input stream), that
is, the Join predicate include comparisons between attributes of the same event or between
attributes of different events. Parameters Wtype and Size are windows parameters similar
to the ones in the Aggregate operator.

The Join operator keeps two separate windows, Wl,Wr, for each input stream. Events
arriving on the left (resp. right) stream are stored in the left (resp. right) window and used to
update (i.e., slide forward) the right (resp. left) window. If Wtype = time, upon arrival of
event ein ∈ Sl, window Wr is updated removing all events e such that ein.ts−e.ts ≥ Size.
If Wtype = NumEvents, upon arrival of event ein ∈ Sl, window Wr, if full, is updated
removing the earliest event.

After window update, for each e ∈ Wr, the concatenation of events ein and e is pro-
duced as a single output event if P (ein, e) = TRUE.

9



Match

events with

same

Src_IP
R Plugin_id

R ts

R Dst_Port

R Src_Port

R Dst_IP

R Src_IP

R Plugin_sid

1514

0

22

22

192.168.1.3

192.168.0.1

600504

L Plugin_id

L ts

L Dst_Port

L Src_Port

L Dst_IP

L Src_IP

L Plugin_sid

1001

4

22

22

192.168.1.3

192.168.0.1

103

Plugin_id

ts

Dst_Port

Src_Port

Dst_IP

Src_IP

Plugin_sid

1001

1

22

22

192.168.1.3

192.168.1.0

103

Plugin_id

ts

Dst_Port

Src_Port

Dst_IP

Src_IP

Plugin_sid

1514

0

22

22

192.168.1.3

192.168.0.1

600504

Plugin_id

ts

Dst_Port

Src_Port

Dst_IP

Src_IP

Plugin_sid

1001

4

22

22

192.168.1.3

192.168.0.1

103

Sl
O

Sr

Figure 6. Match SNORT and CISCO Pix events with the same Src IP .

Window update, predicate evaluation and output propagation for input events over the
right stream are performed in a similar fashion.

Figure 6 shows a join operator that receives events from SNORT and CISCO Pix sen-
sors. Events coming from the two streams are matched any time they refer to the same
source IP address (Src IP ) and their distance in time is less than 10 seconds. The syntax
of the Join operator is

J{P = (left.ein.Src IP = right.ein.Src IP ), time, 10}(Sl, Sr, O)

3. Parallel Complex Event Processing

The ultimate goal of a SIEM is to detect all threats. As SIEMs are used to monitor sensi-
tive infrastructure, all attempted or successful attacks must be discovered and any piece of
information must be carefully analyzed.

Our goal in architecting a parallel correlation engine is to make sure that the parallel
system identifies all threats, just as a centralized one. At the same time, we must minimize
distribution overhead, in order to make parallelization cost-effective. If a parallel system
provides the same results of its centralized counterpart, the former is said to be semantically
transparent. In the following, we provide details on how to parallelize each of the operators
presented in Section 2..

Semantic transparency for stateless operators is straightforward. Assume a stateless
operator, e.g., a Filter, is parallelized and distributed over multiple nodes; that is, the same
operator is deployed on multiple nodes and each instance processes a fraction of the input
events. As stateless operators process events one-by-one, no matter which event will be
processed by which instance of the parallel operator, the final outcome will match the one
of a centralized execution.

However, semantic transparency becomes challenging with stateful operators. As a
stateful operator keeps state across input events, we must guarantee that all events that are
aggregated/correlated in a centralized execution, are processed by the same instance of the
parallel operator. As an example, let us consider an Aggregate operator deployed over
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Figure 7. Query Parallelization Strategy
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Figure 8. Subquery parallelization

multiple nodes that is used to compute the number of open connections for each server
during the last hour. We must ensure that all the events related to open connections for
a particular server are processed by the same Aggregate instance in order to provide the
correct results, that is, the semantic provided by the distributed operator is equal to the
semantic of the centralized one.

This section provides details of the proposed parallelization technique and the rationale
behind our design.

3.1. Query Parallelization Strategy

Our query parallelization strategy aims at reducing the communication overhead among
nodes. The rationale is that, in order to guarantee semantic transparency, communication is
required only before stateful operators. Therefore, we define the parallelization unit (called
subquery) according to stateful operators of a query. Each query is split into as many
subqueries as stateful operators, plus an additional one, if the query starts with stateless
operators. A subquery consists of a stateful operator followed by all the stateless operators
connected to its output, until the next stateful operator or the end of query. If the query
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starts with stateless operators, the first subquery consists of all stateless operators before
the first stateful one.

As the query of Fig. 7.a has two stateful operators plus a stateless prefix, Fig. 7.b
shows three subqueries. The first one contains the prefix of stateless operators, and the next
two, one stateful operator with the following stateless operators. Assuming a cluster (i.e., a
set) of 90 nodes, each subquery is deployed on a subcluster of 30 nodes. Data flows from
one subcluster to the next one, until the output of the system. All instances of a subcluster
run the same subquery, called local subquery, for a fraction of the input data stream, and
produce a fraction of the output data stream.

3.2. Semantic transparency

Once the query has been partitioned, semantic transparency requires that input events are
carefully distributed to each subquery containing a stateful operator. That is, the output
of a subquery feeding its downstream (i.e., following) counterpart must be carefully ar-
ranged so that, if the downstream subquery has a stateful operator, events that must be
aggregated/correlated together are received by the same instance of the stateful operator.

In this section we show how to parallelize a query and achieve semantic transparency
by means of the sample query in Fig. 8. The latter provides the IP address of the servers
that managed a number of connections above a given threshold over the last hour, every ten
minutes. It receives a stream of events with the schema of Table 1. The Map operator is
used to extract relevant fields from incoming events. The Aggregate has windows defined
over time with Size = 3600 seconds and Advance = 600; it groups connections by server
(i.e., Group-by= Dst IP ) and counts the number of relevant events per server. Finally,
events output by the Aggregate that carry a number of connections greater than a given
threshold are forwarded to output by the Filter operator.

As the query has one stateful operator and a stateless prefix, it is split into two sub-
queries. Subquery1 consists of the Map operator while Subquery2 has the Aggregate and
the Filter operators. They are allocated to subcluster 1 and 2, respectively.

To guarantee effective event distribution from one subcluster to the downstream one,
output events of each subcluster are assigned to buckets. Event-buckets assignment is based
on the fields of the event. Given B distinct buckets1 and event e = {A1, A2, ..., An},
its corresponding bucket b is computed by hashing one or more of the event fields2, e.g.,
Ai, Aj , modulus B, e.g., b = Hash(Ai, Aj) mod B. All events belonging to a given
bucket will be forwarded to and processed by the same node of the downstream subcluster.

In order to distribute the buckets across N downstream nodes, each subcluster employs
a bucket-node map (BNM). The BNM associates each bucket with a node of the downstream
subcluster, so that BNM [b] provides the downstream instance that must receive events
belonging to bucket b. In Figure 8, the number of nodes in subcluster 2 is N = 3 while B
can be set arbitrarily, as long as B ≥ N .

Event-buckets assignment and BNMs are endorsed by special operators, called Seman-
tic Router (SR). They are placed on the outgoing edge of a subcluster and are used to dis-
tribute the output events of the local subquery to the nodes of the downstream subcluster.

1B is a user-defined parameter.
2As explained later, the fields used to compute the hash depend on the semantic of the downstream operator.
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As discussed above, semantic transparency requires events that must be aggre-
gated/correlated together to be processed by the same node. However, it is also required
that event processing happens in the same order as in a centralized execution. For this rea-
son, we place another special operator, called Event Merger (EM), on the incoming edge of
each subcluster. EMs take multiple timestamp-ordered input streams from upstream (i.e.,
preceding) SRs and feed the local subquery with a single timestamp-ordered merged stream.

The bottom part of Figure 8 shows how the original query is split in subqueries, aug-
mented with SRs and EMs and deployed in a cluster of nodes.

In the following we detail the parallelization logic encapsulated in SRs and EMs for
each of the stateful operator we consider.

3.2.1. Semantic Routers

Semantic Routers are in charge of distributing events from one local subquery to all its
downstream peers. To guarantee that events that must be aggregated/joined together are
indeed received by the same node, SRs located upstream of a stateful subquery must be
enriched with semantic awareness, that is, they must be aware of the semantics of the
downstream stateful operator.

Join operator Assume a stateful subquery contains a Join operator. In order to guarantee
correct distribution of the events, upstream SRs partition their input stream into B buckets
and use the BNM to route events to the N nodes where the Join is deployed. The attribute
specified in the equality clause of the Join predicate is used at upstream SRs to determine
the bucket of an event. That is, let Ai be the attribute of the equality clause, then for each
event e, BNM [Hash(e.Ai) mod B] determines the recipient node to which e should be
sent. If the Join predicate contains multiple equality clauses, the hash is computed over
all the attributes of those clauses. Therefore, events with the same values of the attributes
defined in the equality clause will be sent to the same instance and matched together.

Aggregate operator If the stateful operator is an Aggregate, its parallelization requires
that all events sharing the same values of the attributes specified in the Group-by parameter
should be processed by the same instance. In the example of Fig. 8 the Aggregate groups
events by their destination IP address. Hence, data partitioning by upstream SRs is per-
formed in a similar way to the Join operator. That is, the set of attributes specified in the
Group-by parameter are hashed and the BNM is used to partition the stream across the N
instances of the downstream subcluster.

3.2.2. Event Mergers

Just like SRs, Event Mergers (EMs) are key to guarantee semantic transparency. EMs merge
multiple timestamp-ordered input streams coming from upstream SRs and feeds the local
subquery with a single timestamp-ordered input stream. As a result, the local subquery
will produce a timestamp ordered output stream. To guarantee that the output stream is
timestamp-ordered, input streams must be carefully merged. In particular, an EM forwards
the event with the earliest timestamp, any time it has received at least one event from each
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Figure 9. Detect suspicious and successful brute-force attacks

input stream. To avoid blocking of the EM, upstream SRs might send dummy events for
each output stream that has been idle for the last d time units. Dummy events are discarded
by EMs and only used to unblock the processing of other input streams.

4. Transforming SIEM Directives into CEP Queries

This section presents a sample directive taken from OSSIM SIEM [Ali10] and shows how
it can be expressed as a CEP query and parallelized through the technique of Section 3..

The directive is designed to detect a brute-force attack against a CISCO Firewall and,
eventually, its successful result. A first alarm should be raised if an unusual number of
“denied login” events for a particular connection is generated (e.g., 1000 denied logins).
After the first alarm has been triggered, a more severe alarm should be raised if a “permitted
login” event is received for the same connection (i.e., the attacker achieved to login to the
firewall).

Both denied login and permitted login events are sent from a CISCO Pix sensor
(Plugin id 1514). Denied login event is identified by Plugin sid 605004 while permitted
login event by Plugin sid 605005. The first alarm sets reliability3 to 10 while the second
alarm sets it to 15.

The query in Figure 9 shows the implementation of the described directive in a CEP
system.

The query defines one input and two output streams. Input stream schema is compliant
with the one in Table 1 while the output streams share the same schema with attributes
Src ip, Dst ip and Reliability.

Attributes Src ip and Dst ip refer to the source and destination IP addresses related to
the login attempt.

An initial Filter operator is used to forward only events of interest, i.e., Plugin id =

3Reliability is a standard parameter of SIEM systems that defines the trustworthiness of the alarm; that is,
only alarms with reliability greater than a given threshold are reported to the user.
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Figure 10. Query Partitioning

1514 and Plugin sid ∈ {605004, 605005}; all other events are discarded. Events related
to a denied login (Plugin id = 1514 and Plugin sid = 605004) are processed by an
Aggregate operator.

The Aggregate Wtype is set to numEvents and has Size = 1000 and Advance = 1.
Group-by is set to Dst IP,Dst Port, that is, the Aggregate keeps separate windows for
each port on each destination host. Any time 1000 denied login events are received for the
same pair Dst IP,Dst Port, an output event is forwarded to the following Map operator.
The output event carries information about the attack target (i.e., Dst IP,Dst Port) and
the timestamp of the earliest denied login event.

The Map operator takes the input event, adds attribute Reliability = 10 and forwards
the event over the output stream. The events produced by the Map operator are sent to the
query output and also forwarded to the Join operator for further correlation.

The Join operator is used to correlate suspicious brute-force attempt alarms coming
from the Map operator with successful login events forwarded by the Filter.

The Join operator predicate P matches two incoming events if they refer to the same
destination (i.e., if they share the same Dst IP,Dst Port attributes) and if the successful
login event timestamp is greater than the timestamp of the brute-force attempt alarm (i.e.,
the successful login happens after the brute-force attack). Windows size is equal to 3600
seconds. This implies that two matching events cannot be distant in time more than one
hour.

Events produced by the Join operator are forwarded to another Map operator that sets
Reliability = 15. Produced events are forwarded to the query output.

Figure 10 shows how the query in Fig. 9 is partitioned according to the technique
described in Section 3.1..

An initial subquery is allocated for the stateless prefix of the original query (i.e., the
Filter operator). Another subquery contains the first stateful operator and its stateless suffix,
until the next stateful operator (i.e., the Aggregate operator and Map1 operator). A final
subquery is allocated for the Join operator and Map2 operator, that is, the last stateful
operator and its stateless suffix.

Once the original query has been partitioned into subqueries, a Semantic Router oper-
ator and an Event Merger operator are added for each edge connecting two distinct sub-
queries. Figure 12 shows the three subqueries (SQ1, SQ2 and SQ3) augmented with Se-
matic Router and Event Merger operators.

The Filter operator will have one SR for each outgoing edge, SRF1 and SRF2.
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The former will forward events with Plugin id = 1514 and Plugin sid = 605004
while SRF2 will handle events with Plugin id = 1514 and Plugin sid = 605005.
The Aggregate operator specifies Group-by= Dst IP,Dst Port while the Join opera-
tor has the same attribute pair in the equality clause of its predicate. Hence, for each
incoming event ein, each SR on the outgoing edge of the first subquery will compute
Hash(ein.Dst IP, ein.Dst Port) mod B to compute the bucket of the event and then
it will look up the BNM to identify the designated recipient among the instances of the
downstream subquery.

The subquery containing the Aggregate operator is enriched with an Event Merger on
the incoming edge and one Semantic Router to forward output events to the next subquery.
Here as well, SR will use attributes of Dst IP,Dst Port of each incoming event to com-
pute the bucket of the input event and then the designated receiver among the instances of
the downstream subquery.

The subcluster containing the Join operator is enriched with two EM operators, one for
each input stream.

Finally, Figure 12 shows subqueries SQ1, SQ2, SQ3, allocated to subclusters of 2, 3
and 2 nodes, respectively.
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5. Conclusion

In this chapter we propose to use Complex Event Processing systems as the correlation
engine of next generation SIEMs. We argue that current correlation engines relying on a
centralized execution are not suitable for complex scenarios where high-throughput data
must be processed with tight timing constraints. We show how Complex Event Processing
can be used to express SIEMs directives and provide a novel parallelization technique that
allows to parallelize the execution and deploy the engine over an arbitrary number of nodes
in a shared-nothing cluster. The parallel system can handle input load far behind the ones
afforded by single-node correlation engines. At the same time, our parallelization technique
guarantees semantic transparency, i.e., it guarantees that the parallel execution provides the
same output of an ideal centralized execution. The result is a highly-scalable correlation
engine that can be easily embedded in next generation SIEMs to process massive amount
of input data and make sure that no threats are “missed”.
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