
The Locker Metaphor to Teach Dynamic Memory

Ricardo Jimhnez-Perk, Marta Patiiio-Martinez, J. Angel Vehzquez-lturbide
Universidad Polithcnica de Madrid

Depto. de Lenguajes y Sistemas InformAticos, Facultad de Informitica
Campus de Montegancedo s/n, 28660 Boadilla del Monte, Madrid, Spain

{rjimenez,mpatino,avelazquez}@fi.upm.es

Crist6bal Pareja-Flores
Universidad Complutense de Madrid

Depto. de InformGtica y AutomBtica, Escuela Universitaria de Estadistica
Avda. Puetta de Hierro s/n, 28040 Madrid, Spain

cpareja@dia.ucm.es

Abstract

Some students experience difficulties when first introduced
to dynamic memory. The goal of this paper is to present an
analogy behveen dynamic memory programming and a
real-world example that will help students in understanding
the underlying concepts behind dynamic memory: a left-
luggage room with lockers.

1 Introduction

Dynamic memory (i.e. pointer variables and their use) is a
crucial topic in imperative languages and is covered in
many courses, typically in CS2. It also constitutes one of
the hardest topics in programming courses. The main
problem seems to be that dynamic memory concepts are
too abstract. Paradoxically, these low level concepts are
embodied in languages such as Pascal, by means of
nonintuitive, abstract mechanisms.

There are many ways of introducing programming topics
that enhance comprehension, e.g. program animation. We
use here a discourse that is commonly used in computer
science to deal with abstract and arbitrarily defined
concepts: metaphors. There are many examples of
successtil metaphors in this field: the desktop, the memory
of computers, running programs, etc. Notice that the word
“metaphor” here is loosely used to refer to any image that
represents one thing and that is used instead of something
else to explain it better [3].

permission to make digitalhard copy of part or all of this work for personal
or classroom us8 is granted without fee provided that copies are not made
or distributed for proflt or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
cop

Y
ing Is by psrmlsslon of ACM, Inc. To copy otherwise, tqrepublish, to

pos on servers, or to redistribute to lists, requires pnor specific permission
and/or a fee.

SIGCSE ‘97 CA, USA
0 1997 ACM o-89791.aa9-4~97looo2...$3.50

The use of analogies in teaching abstract concepts is often
a key element in its pedagogy, as advocated in [2]. For
instance, a well-known metaphor for introducing the
critical section problem in teaching concurrent
programming is that of Ben&i about igloos and eskimos
PI-

In OUT work, we begin by introducing dynamic memory
concepts intuitively by means of a metaphor. Once these
concepts are well understood, they are taught in a general
setting, as found in programming languages. We have
chosen a concrete and well-known scenario, a left-luggage
room, to ease the comprehension of the abstract concepts.

The structure of the paper is as follows. First, we present
our metaphor and its analogy with dynamic memory
concepts. In section 3, we include several common
programming pitfalls, showing how the metaphor helps in
revealing them. The two last sections include a discussion
and our conclusions.

2 The Locker Metaphor

In this section, we present the elements of the metaphor.
Each subsection presents new concepts and explains their
correspondence in Pascal.

2.1 Left-luggage room and locker keys

A left-luggage room is a store of lockers, where each one
can be opened by means of its corresponding key, as
shown in the figure below:

169

Each key has a number which corresponds to the number
of the locker it opens. The dynamic memory area is very
similar to a left-luggage room, where memory cells are
lockers and memory addresses are locker keys; as each
locker can be opened with its key, a cell can be accessed by
its associated memory address. Notice that neither keys
nor memory addresses can be modified (both are literal
values).

2.2 Keyrings

In our metaphor, keyrings are used to hold keys. Each
keyring can hold at most one key (i.e. zero or one).
Keyrings and keys play the role of pointer variables and
address values, respectively, in imperative programming
languages. Keyrings represent pointer variables that can
hold a locker key (a memory address). A keyring holding
no key represents the NIL value of a pointer variable. Two
keyrings can hold a copy of the same key; in this case, they
can open the same locker. This situation corresponds to the
fact that two pointer variables can point to the same
memory cell, that is, they can contain the same memory
address.

can be observed in the metaphor: when the contents of a
keyring is copied into another, the key in the destination
keyring is lost, with no chance of recovering it later.

2.3 Asking for a locker

When someone needs a locker, he or she goes to the locker
manager office, gives the manager a keyring, and asks him
for a locker. The manager will take any available key and
put it in the keyring (the previous key, if any, is thrown
away). Although the way the manager bookkeeps keys
could be considered irrelevant to the user, it can help to
fully understand certain kinds of errors. We can imagine
that at the manager offrce there is a board with numbered
hooks (as can be seen in the figure below), one per locker.
If a key is hanging on a hook, then its locker is free,
otherwise it is assigned.

In a programming language, the dynamic memory manager
is in charge of cell bookkeeping. When a cell is needed, the
New primitive is invoked, returning the address of a free
cell. We can imagine some kind of bookkeeping similar to
that of the manager, but its details are irrelevant.

Simple pointer operations can also be explained graphically
with the locker metaphor. Comparison of pointers
(keyrings) is straightforward: it will be successful only if
both keyrings are empty or the keys contained in both
keyrings open the same locker.

Assignment of pointer variables corresponds to the
following procedure: if the source keyring is empty, the
target keyring is left empty; otherwise, a copy of the key in
the source keyring is made, the old key in the destination
keyring (if any) is thrown away, and fmally the copy is
introduced into the target keyring. An important property

2.4 Liberating a locker

When a locker is no longer needed, the user notifies the
locker manager, and gives him the keyring with the key of
the locker. The manager makes a copy of the key, hangs it
up on its hook, indicating that the locker is available again,
and returns to the user the keyring with the old key. Notice
that surprisingly, the user keeps his copy of the key, This
part of the metaphor corresponds to this situation: when a
memory cell is not needed anymore, it must be freed by the

170

--_ .-

Dispose operation, but this operation could leave the neither a new locker was given, nor were the contents of
pointer with its previous value. the locker duplicated.

2.5 Equivalent concepts
Let us consider this fact in our metaphor by means of the
following sequence of operations.

To summarize, a table with the equivalence between the
metaphor and dynamic memory concepts is shown.

We have two keyrings kl and k2. We ask the locker
manager for a key and he puts it in keyring kl . The
manager assigns us a locker (say, number 25).
Now, we can open the locker with the key in
kqring kl and put $1,000 in. Ajterwards, we
duplicate the key in keyring kl andput the copy in
keyring k2. Then we use the key in keyring k2 to
open the locker and take out the money. When we
open again the locker with the key in kl, there is
no money.

memory pool left-luggage room
memory manager locker manager
pointer keyring
memory cell locker
address key of a particular locker
list of available cells board hooks with a key
kl, k2: ^Type kl and k2 are keyrings
New (kl) ask for a locker, get its key

and put it in keyring kl
kl* open the locker whose key is

in kl to access its contents
kl = NXL
kl = k2

kl:= NIL
kl:= k2

check whether kl is empty
check whether kl and k2 are
both empty or both contain
keys that open the same
locker
leave empty keyring kl
if k2 is empty then leave kl

3 Common Pitfalls

There are many examples of situations (i.e. uses of pointer
variables) that the metaphor helps to illustrate graphically.
We include in this section several common pitfalls. First,
we give a description of each one in terms of the metaphor.
An advantage is that the underlying concepts of dynamic
memory can be illustrated independently from the
programming language being used. For the sake of
completeness, we include the corresponding Pascal code.

3.1 Copying pointers and cells

A frequent error occurs when students, intending to
duplicate the contents of a cell, resort to assigning pointers.
The source of this error is that they think that copying
pointers implies the duplication of the pointed cell.
Following our metaphor, the copying of a key simply
results in having two keys of the same locker. Obviously,

In the example it is clear that copying keyrings (pointers) is
not a way to make more money, because the keys are
copied, but not the locker contents.

This example is equivalent to the following Pascal code
segment:

VAR
kl, k2 : ^INTEGER;

New(k1) ;
kl^:= 1000;
k2:= kl;
k2^:= 0;
Write (kl*)

that will display number o on the screen.

3.2 Memory leakage

A common programming mistake consists in forgetting to
free unused cells. In the metaphor, it is evident that a locker
can only be reused if its key is returned to the manager. On
the other hand, if the locker key is lost, neither the locker
will be used again nor will it be assigned to someone else,
since no one has its key.

This mistake can be illustrated by the following example:

We have the kqring kl. We ask for a locker to
the locker manager, whose key will be put in
kqvring kl. (Although it is irrelatant, we can
suppose that we are assigned locker 47.) We
open the locker with the key in keyring kl and
put $1,000 in. Finally, we throw the key in the
river, leaving the keyring empty. When we try to
open the locker, we find out that we do not have
its key.

171

The assigned locker (locker 47) will never be reused, as the
locker manager should have received its key back. Even
worse, we will not be able to open the locker in order to get
our money.

The corresponding Pascal code is:

VAR
kl : ^INTEGER;

New (kl);
kl* := 1000;
kl := NIL;
Write (kl^)

The program will yield a run-time error.

3.3 Misuse of liberated cells

Another common mistake is trying to use cells that were
previously liberated. In the metaphor, the situation is as
follows. Once a locker has been fi-eed, it can be assigned to
someone else. However, the previous owner still keeps a
copy of the key, so two different people can access the
same locker, only one being authorized. As a consequence,
the correct working of the locker system depends on the
goodwill of its users. This situation can be illustrated by the
following example:

We have @ring kl and Peter has keyring k2.
We ask the locker manager for a key to be
placed in keying kl. (Suppose we are assigned
locker number 18.) Now, we can use the locker.
Later, we ffee the locker (number I8), showing
the key in kl to the locker manager. Recall that
we still keep the key.

Later, Peter asks for a locker with keyring k2.
Suppose that he is assigned the same locker (in
this case, locker 18). Peter then puts $1,000 into
the locker. If we open the locker now (remember
we still keep the key of locker 18), we can take
the money porn it. When Peter opens the locker
again, he willfind out that there is no money.

In Pascal:

VAR
kl, k2 : ?NTEGER;

New (kl) ;
. . . useof kl* . . .
Dispose (kl) ;
. . .

172

New (k2) ; {it happens to point to
the same cell as kl}

k2A := 1000;
kl^ := 0 ; {the money is stolen}
Write (k2”)

Notice that this program is useful for illustrating a bad use
of pointers, but reading the program is more didactic than
running it. In fact, only when both variables are assigned
the same address will it print the expected value of 0.

3.4 Uninitialized pointer variables

Another frequent error consists in using pointer variables
that have not been initialized, as if they were pointing to a
dynamic variable. In the metaphor this situation can be
modelled as follows. At the beginning, keyrings can hold
old keys (i.e. keyrings with previously used keys). For this
reason, the keys they contain should not be used, since
they open lockers we are not authorized to operate, To use
a keyring for the first time, we have to empty it or to ask
for a new locker with it. Thus, the old key is not used,

It is straightforward to think of a more concrete scenario
and to show its correspondence in Pascal,

4 Discussion

In the previous sections, we have intermingled the
metaphor and dynamic memory concepts. We have
proceeded in this way in order to explain it to the reader,
but the metaphor is usually used in a different way during
lectures. We prefer to start first by introducing the left-
b3gw metaphor, and by highlighting the
misunderstandings and errors described in section 3. Then,
we introduce proper dynamic memory programming,
relating its concepts to the metaphor when necessary, thus
providing students with a concrete basis to refer to
whenever a concept is too abstract to comprehend,

Our metaphor can be adapted to cope with several data
types, by providing several kinds of lockers. However, as
the metaphor gets more complicated, we prefer to restrict
our examples to use a simple data type (e.g. INTEGER).

The metaphor can also be extended to deal with linked
lists, by considering that the contents of the locker consists
of two shelves, one to store an object (e-g, money), and the
other for storing a keyring. The keyring in the second shelf
can be used to hold a key of yet another locker; thus,
lockers can be linked. This extension of the metaphor is
useful to introduce linear data structures in a concrete way,
However, we find it more adequate to use the metaphor in

situations similar to the ones expressed in this paper.
Students can easily understand the corresponding Pascal
code and can always refer to the metaphor when in doubt.

Metaphors used for learning in computer science fall into
three overlapping streams [4]. Operational approaches
focus on their measurable effect on learning. Structural
approaches develop formal representation of relations
between the source and the target domain. Pragmatic
approaches acknowledge that metaphors are incomplete,
but claim that their power may be attributed to such
disparities, We designed our metaphor following the
second approach because we wanted a bijection between
the elements of the metaphor and those of dynamic
memory.

Our metaphor has a number of important features, some of
them because it is structural. First, it is simple since it
refers to a familiar situation. Second, it has a rich structure,
which enables a clear illustration of all the concepts and
activities involved in handling dynamic memory. We can
easily show correct and incorrect situations as illustrated by
the pitfalls described above. Third, its expressivity enables
us to explain dynamic memory in terms of this unique
metaphor. This is an important advantage because mixiig
several metaphors can confirse beginners [3].

5 Conclusions

A pedagogic metaphor for introducing dynamic memory
programming has been presented. The metaphor helps
students to understand concepts of dynamic memory in a
concrete way. It also allows them to work with dynamic
memory before it is presented as a programming language
mechanism, in a more abstract way. As a consequence, we
can highlight errors in a natural way, thus paving the way
for a better understanding of sometimes hard to grasp
abstract concepts.

We have no formal statistics measuring the impact of the
metaphor on our students. Nevertheless, our experience has
shown that using the metaphor to illustrate abstract
concepts has lead to an overall better understanding of the
abstract concepts underlying dynamic memory
management.

Acknowlegments

References

1. Ben&i, M. Princ@les of Concurrent Programming.
Prentice-Hall, 1982.

2. Cole, J. D. While loops and the analogy of the single
stroke engine. SIGCSE Bulletin 23, 3 (Sept. 1991),
20-22.

3. Johnson, G. J. Of metaphor and the difficulty of
computer discourse. Communications of the ACM 37,
12 (Dec. 1994), 97-102.

4. Madsen, K. H. A guide to metaphorical design.
Communications of the ACM37, 12 (Dec. 1994), 57-
62.

We want to thank Sami Khuri for his comments and
suggestions which greatly helped to improve the paper.

173

