Computer and Network Security

Lecture 8
Protocols

Outline

- Protocols
- Authentication
 - Standard techniques
 - Biometrics

Where are we now?

- So far...
 - Conventional cryptography
 - Hash functions and MACs
 - Public key cryptography
 - Encryption
 - Signatures
 - Identification (Fiat-Shamir), Zero Knowledge
- And now what?
 - Protocols
 - Authentication/Identification
 - Key distribution

Secure protocol

- A protocol is a set of rules for exchanging messages between ≥ 2 parties
 - Number of rounds (≥1)
 - Number of messages (≥1)

Good morning, Bob! How are you?

Hey Alice! I'm fine. What about you?

I'm doing all right. Thanks!

Secure protocol

- Message
 - unit of information send from one entity to another during a protocol run
- Round
 - Basic unit of time in a protocol

Secure protocol

- When acting honestly, entities (participants) achieve the stated goal of the protocol
 - E.g, Alice successfully authenticates to Bob, or
 - Alice and Bob exchange a fresh session key
- Neither passive nor active adversary can defeat this objective
 - E.g., by successfully impersonating Alice in an authentication protocol with Bob

Authentication

- How does Alice prove to Bob that she is indeed Alice?
 - Remind Eve is around...

Authentication - Definitions

- Entity authentication
 - Corroboration that an entity is the one claimed
- Unilateral authentication
 - Entity authentication providing one entity with assurance of the other's identity
- Mutual authentication
 - Entity authentication which provides both entities with assurance of each other's identity.

Authentication – How and Why?

- Why?
 - Cash withdrawal
 - Remote login
 - File access
- How?
 - Something you know
 - · PIN or password
 - Something you have
 - A secure token, e.g., that generates a one-time password.
 - Key embedded in a `secure area' on host machine, in browser software, etc.
 - A smartcard
 - Something you are
 - biometric
 - Some where you are
 - IP address

Password based authentication

- User has a secret password
 - System checks it to authenticate the user
- How is the password communicated?
 - Eavesdropping risk
- How is the password stored?
 - Clear
 - Encrypted
 - Hashed
- How does the system check the password?
- How easy is it to guess the password?
 - Easy-to-remember passwords tend to be easy to guess
- Password file is difficult to keep secret

Unix Passwords

a123e

a123e

/etc/passwd Alice:a123e

...

- Eavesdropper
- Intruder
- Brute force attack
- Dictionary attack

Unix Passwords

- One way?
- Collision resistance?
- Password reply?
- Brute force attack
- Dictionary attack (offline!)

Unix Passwords

- char *crypt(const char *key, const char *salt);
- DES_k(m)
 - k = password
 - m = 000000
 - Truncates passwords to 8 characters!
 - Iterate 25 times
 - Discourage brute-force
- Relies on the randomness of the key
 - A, .., Z, a, .., z, 0, .. 9, +, -, ... 948 possible password
 - Humans like to use dictionary words
 - Around one million passwords
 - Easy dictionary attack

Add a little Salt

- Alice:fURxfg,4hLBX:14510:30:Alice:/users/alice:/bin/csh
- Salt picked at password-creation time
 - 4096bits
 - Harder offline dictionary attack
 - 1M password now hash to 4096M strings

Weakest link

- No matter how secure the system is
 - The human factor is the problem!
- · Write it down
- Use a single password at multiple sites
 - Do you use the same password for Amazon and your bank account?
- Make passwords easy to remember
 - "password", "Kevin123", "popcorn"
- Some services use "secret questions" to reset passwords
 - "What is your favorite pet's name?"

Password Survey

- Klein (1990) and Spafford (1992)
 - 2.7% guessed in 15 minutes
 - 21% in a week
 - Sounds Ok?
 - Not if passwords last 30 days or more!
 - Much more computing power is available now!
- U. of Michigan: 5% of passwords were "goblue"
 - How many passwords on this campus involve "madrid", "ronaldo", etc.?

Biometrics

- Why?
 - Something you know might be
 - stolen
 - guessed
 - Nothing to remember
 - Passive (no typing, no choosing, ...)
 - No sharing
- Two categories
 - Behavioral
 - Speech, keystroke timing
 - Psychological
 - Iris, Fingerprint, Face recognition

Authentication process

- Registration
 - Acquisition
 - Creation of Master characteristics
 - Storage of Master characteristics
- Authentication
 - Acquisition
 - Comparison
 - Decision

Biometric recognition errors

- Security is overestimated
 - Based on weak assumptions
- Error rates
 - Fraud = system accepts a forgery
 - Insult = system rejects valid user
 - Higher acceptance threshold
 - · Higher fraud rate
 - Lower insult rate
- U.K. banks set target fraud rate of 1%, insult rate of 0.01% [Ross Anderson]

Finger Recognition

- Contact
- Dirt , grime and wounds
- Placement of finger
- Can be cloned... or cut!
 - Play-Doh fingers fool 90% of fingerprint scanners
 - Clarkson University study

Face Recognition

- Contactless
- Light
- Expression

Voice Recognition

- Speech input
 - Frequency
 - Duration
 - Cadence

- Liveness
- Background noise
- Cold?

Signature recognition

- Speed
- Velocity
- Pressure

- Signature changes with
 - Age
 - Mood
 - Illness

Lesson learned

- Effective authentication is hard to achieve
 - Human factor
- Biometrics is far to be adopted
 - Technology is not mature
 - Religious, cultural issues
 - Better to fix "traditional" systems
 - Password policy enforcement
 - E.g., secure token