11/30/2010

Computer and Network Security

Lecture 10
Certificates and Revocation

Outline

» Key Distribution
e Certification Authorities
* Certificate revocation




Key Distribution

KDC knows user secret keys

What if...

— Alice and Bob have no (mutually) trusted KDC
— and / or have no online KDC

Public Key Infrastructure

How to determine the correct public key of a given
entity

— Binding between IDENTITY and PUBLIC KEY

Possible attacks

— Name spoofing: Eve associates Alice’s name with Eve’s
public key

— Key spoofing: Eve associates Alice’s key with Eve’s name

— DoS: Eve associates Alice’s name with a nonsensical
(bogus) key

What happens in each case?

11/30/2010



Diffie-Hellman

 Diffie-Hellman (1976) proposed the “public
file” concept
— universally accessible
— no unauthorized modification
— poor idea = not scalable!

Popek-Kline

e Popek-Kline (1979) proposed “trusted third
parties” (TTPs)

— TTPs know public keys of the entities and
distribute them on-demand basis

— on-line protocol (a disadvantage)

11/30/2010



Kohnfelder

Kohnfelder (BS Thesis, MIT, 1978) proposed
“certificates” as yet another public-key
distribution method

Explicit binding between the public-key and its
owner/name

Issued (digitally signed) by the Certificate
Authority (CA)

Issuance is done off-line

Certificates

Cert, = SignskT(AIice, pky)

“ii"‘f"' 3 Certificate Authority (CA)

Cey
pk, a Alice, pk,, Cert, R ~s

User are issued certificates

— Offline

CA does not know user secret key

— It only certifies (binds) identities and public keys

11/30/2010



Certificates

* Procedure
— Alice registers at local CA
— Alice receives her certificate:

{o, pk,, ID,, issuance_time, expiration_time, ...}
o= Signka{pkA, ID,, issuance_time, expiration_time, ...}

— Alice sends her certificate to Bob
— Bob verifies CA’s signature on the certificate
* pk; hard-coded in software (browser)

— Bob uses pk, for encryption and/or verifying
signatures with Alice

Station-to-station protocol

Authenticated PK-based key exchange
~

P, 8, SkAr pkAl CertA P, 8, SkB: pkB: CertB "

1. pickvrandom
2. y,=g'“mod p

Ya N
- 1. pick w random

2. yg=g"modp

3. 0= SignskB(yA, Al

4. Kyg=Yy,"modp

Certg, 05, Vg

1. Verifyka(CertB)
2. VerifypkB(oB)
3. 0, SignskB(yA, Al
4. Kpg=y,"Y modp Certy,, 0,

v

1. Verify, (Certy)
2. VerifypkA(oA)

11/30/2010



Who issues certificates?

Certification Authority
— e.g. GlobalSign, VeriSign, Thawte, etc.
— look into your browser...

Trustworthy (at least to its users/clients)
Off-line operation (usually)

Has a well-known long-term certificate
Very secure: physically and electronically

How does it work? 1/2

A public/private key-pair is generated by user
User requests certificate via local application
(e.g., web browser)

— Good idea to prove knowledge of private key as part
of the certificate request. Why?

Public key and “name” usually part of a PK
certificate

Private keys only used for small amount of data
(signing, encryption of session keys)

Symmetric keys (e.g., RC5, AES) used for bulk data
encryption

11/30/2010



How does it work? 2/2

* CA checks that requesting user is who he claims
to be (in the certificate request)

* CA’s own certificate is signed by a higher-level
* Root CA’s certificate is self-signed and his
identity/name is “well-known”

Spain CA (X) Madrid CA (Y) UPM CA (W) ALICE (A)

3 -~ 8 -
CertY=Signst(Y, pky, ...) CertW=SignskY(W, pkyy --.) CertA=SignskW(A, pky, -..)
Certx:Signst(X, pky, -..)

Who needs (Alice’s) certificate

* Any party wishing to
— Send encrypted messages to Alice
— Verify signature issued by Alice

e A verifier must
— Know the public key(s) of the CA(s)
— Trust all CA(s) involved
— Verify signature and “validity”

* Validity
— Expiration date > Signing date
— Revocation checking = FAIL

11/30/2010



Certificate verification

To be covered...

Certificate applications

Secure channels in TLS / SSL for web servers
Signed and/or encrypted email (PGP,S/MIME)
Authentication (e.g., SSH with RSA)

Code signing

Encrypting files (EFS in Windows/2000)

IPSec: encryption/authentication at the
network layer

11/30/2010



Components of a certification system

* |ssue certificates
e Store of certificates
e Publish certificates (LDAP, HTTP)

e Pre-installation of root certificates in a trusted
environment

* Support by OS platforms, applications and services

* Helpdesk (information, lost + compromised private
keys)

* Advertising revoked certificates

» Storage “guidelines” for private keys

Security of CA

* Must minimize risk of CA private key being
compromised
— Best to have an off-line CA

— Requests may come in electronically but not
processed in real time

— Microsoft recommends using CA hierarchy where root
CA is off-line and signing CA are on-line

— Tamper-resistant hardware

* Distributed CA
— using threshold crypto

11/30/2010



Key Lengths

» Strong encryption has been adopted since the
relaxation of US export laws

e 512-bit RSA and 56-bit DES are not safe
* Root CA should have an (RSA) key length of > 2048 bits
— 3-to-5 years lifetime

e A personal (RSA) certificate should have key length of >
1536 bits

e Security requirements are constantly increasing!

Certificate hierarchy

pk self signed pk self signed
,;3 root CA cross certificates “ﬁb root CA
Ay i
cAl ~$ cA2 CAs ~$ “ﬂ CA6
bk signed by ro pk signed by root pk signed by ro pk signed by root
and CA5

% 4 ‘.& 3
et ~ - ~

A3 CA4 A7 CA8

pk signed by CA pk signed by CA2 pk 5|gned by CA5 pk signed by CA6

11/30/2010

10



Revocation

Certificate have expiration date

What if

Bob’s CA goes berserk?

Bob forgets his private key?

Someone steals Bob’s private key?

Bob looses his private key?

Bob willingly discloses his private key?
* Eve can decrypt/sign while Bob’s certificate is still valid...
¢ Bob reports key loss to CA (or CA finds out somehow)

CA issues a Certificate Revocation List (CRL)

When verifying Bob’s signature or encrypting a message for Bob, Alice first checks

Distributed in public announcements
Published in public databases

if Bob’s certificate is still valid!

Generally, certificate = capability

Certificate revocation needs to occur when
— certificate holder key compromise/loss

— CA key compromise
— early end of contract

Certificate Revocation Lists (CRLs) hold the list
of certificates that are not yet naturally

expired but revoked

— Reissued periodically (even if no activity!)

— More on revocation later...

11/30/2010

11



11/30/2010

Requirement for revocation

Timeliness
— Must check most recent revocation status

Efficiency

Computation

Bandwidth and storage
Availability
Security

Types of Revocation

* Implicit
— Each certificate is periodically re-issued
— Alice has a fresh certificate - Alice not revoked
— No need to distribute/publish revocation info

* Explicit
— Only revoked certificates are periodically announced

— Alice’s certificate not listed among the revoked onse
-> Alice not revoked

— Need to distribute/publish revocation info

12



11/30/2010

Revocation Methods

* CRL - Certificate Revocation List
— CRL-DP, indirect CRL, dynamic CRL-DP,
— delta-CRL, windowed CRL, etc.
— CRT and other Authenticated Data Structures

e OCSP — On-line Certificate Status Protocol

* CRS - Certificate Revocation System

CRL

e Off-line mechanism

e CRL = list of revoked certificates (e.g., SNs) signed by a
revocation authority (RA)

* RA not always CA that issued the revoked certificates
* Periodically issued: daily, weekly, monthly, etc.

* Pros

— Simple

— Don’t need secure channels for CRL distribution
* Cons

— Timeliness: “window of vulnerability”

— CRLs can be huge

13



Revocation facts

Jan 29 and 30, 2001, VeriSign, Inc. issued two certificates for
Authenticode Signing to an individual fraudulently claiming to be an
employee of Microsoft Corporation.

Any code signed by these certificates appears to be legitimately signed
by Microsoft.

Users who try to run code signed with these certificates will generally
be presented with a warning dialog, but who wouldn't trust a valid
certificate issued by VeriSign, and claimed to be for Microsoft?
Certificates were very soon placed in a CRL, but:

code that checks signatures for ActiveX controls, Office Macros, and so
on, didn't do any CRL processing

According to Microsoft

¢ since the certificates don't include a CRL Distribution Point (DP), it's impossible
to find and use the CRL!

On-line Certificate Status Protocol (RFC 2560) -

OCSP

June 1999

In place of or, as a supplement to, checking
CRLs

Obtain instantaneous status of a certificate

OCSP may be used in sensitive, volatile
settings, e.g., stock trades, electronic funds
transfer, military

11/30/2010

14



11/30/2010

OCSP Players

certificate request

! 1
s 5 . 1
1 3 1
3 1 ,% 1
CertB 1 iy | 1A |
1 \\/ 1
1 1
1 1
|
transaction request | :
+ transaction response 1 1
Certg 1 1
1 1
1 1
1 1
is Certg revoked? 1 1
> 1
1 : OCPS responder
e 1 | 1
OCPS response (Yes / No) : % !
I
I 1

Who signs OCPS responses?

e The CA
— Has to be online

e Trusted OCPS responder
— Authorized by the CA

— Has a special certificate that says

» “Responder can sign OCPS responses for Certificates
issued by CA”

15



Security Considerations

* On-line method

e DoS vulnerability
— flood of queries + generating signatures!

* unsigned responses = false responses
— pre-computing responses offers some protection
against DoS, but...

* pre-computing responses allows replay attacks (since
no nonce included)

* but OCSP signing key can be kept off-line

Certificate Revocation System (CRS)

e proposed by Micali (1996)

* aimes to improve CRL communication costs /
size

* basic idea: signing a message for every
certificate stating its status

* use of off-line/on-line signature scheme to
reduce update cost

11/30/2010

16



CRS: Creation of a certificate

e Two new parameters in Cert: Y, o, and N

— Ymax =Huax(Yo)
— N=H(N,)

* Yy Ng

— unique per certificate

— securely stored at the CA
* Hl()

— public one-way function

CRS: creation of a certificate

Two new parameters in PKC: Y,,,x and N
Yyiax =HV(Yo)

N=H(No)

[ Yo, Ny ] -- per-PKC secrets stored by CA

H() -- public one-way function

34

11/30/2010

17



How CRS works

1. MAX=365
2. attheissuance date, i=0

daily update for Cert,

r 1 < N %

if Certg is valid
Up = Y3g5.= H3%(Y)
Ug request for Certg else

Certg = Yyax N, issuing date, ...

if H(Ug)=N
Cert, is not valid
elseif H(Ug)=Yyax
Certy is valid

Example, MAX =3

Secret =Y, N,

Certg=Y; N .%

Pre-computed signatures: \!fi/’ $re_-cl_|o(r;lr))uted signatures:
2D = i) Y, = HIY,) = H(H(Y,)

Y3 = H(Y,) = H(H(Y,)) = H(H(H(Y,))) Y3 = H(Y,) = H(H(Y,)) = H(H(H(Y,)))

Revocation token:
Day 1 Ug=Y; N = H(N,)
Alice (max-i = 2)
Is H(Ug) = N?
Is H(Ug) = Y3? * Since H one-way

— Nobody can guess N,
Day 2 Ug=Y
R B2 — Nobody can guess Y, from Y,,...,Y,
Alice (max-i = 1)
Is H(Ug) = N?
Is H(Ug) = Y5?

11/30/2010

18



11/30/2010

Security consideration

e All signatures pre-computed
e Directory is not trusted
e CA must upload updates (every day)

19



